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Abstract—A holistic task based grasping system requires the use 

of perception modules that are tied with knowledge 

representation systems in order to provide optimal solutions. 

Task based grasping has been a well-researched field. One of the 

most comprehensive systems for task based grasping is the K-

CoPMan system that uses semantic information in mapping and 

planning for grasping. However, this system as well as other lacks 

conceptual knowledge that can aid the perception module in 

indentifying the best objects in the field of view for task based 

manipulation. Furthermore, the system depends on full 3D 

models of objects in order to perform grasping. This restricts the 

scalability, extensibility, usability and versatility of the system. In 

this paper, we propose an alternate knowledge representation 

and inference framework based on the concept of functional and 

geometric part affordances in order to aid task based grasping. 

The performance of the system is evaluated based on complex 

scenes and indirect queries. 
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I.  INTRODUCTION 

In the area of robotics, as well as other systems requiring 
the use of ontologies, Semantic Web based knowledge 

acquisition systems have been typically defined using Web 

Ontology Languages (OWL), that are characterized by formal 

semantics and RDF/XML-based serializations. Extensions to 

OWL have been used in semantic editors such as Protégé and 

semantic reasoners and ontology bases such as Pellet, 

RacerPro, FaCT++, HermiT, etc. In the area of semantic text 

parsing and knowledge management, a number of frameworks 

such as Framenet, Lexical Markup Framework (LMF), UNL, 

WordNet and WebKB are available. Alternatively, a number of 

tools for conceptual knowledge management have also been 
developed recently. These include reasoners and concept 

ontologies such as Mindpixel, Cyc, Learner, Freebase, YAGO, 

DBpedia, and MIT ConceptNet. These semantic reasoners and 

ontology databases can be directly exploited for applications in 

robotic manipulation.  

The most significant of semantic knowledge acquisition 

systems for robotic vision systems is KnowRob (Knowledge 

Processing for Robots) [13], which uses reasoners and machine 

learning tools such as Prolog, Mallet and Weka, operating on 

ontology databases such as researchCyc and OMICS (indoor 

common-sense knowledge database). In the case of KnowRob, 

the data for the knowledge processing stems from three main 
sources: semantic environment maps, robot self-observation 

routines and a full-body human pose tracking system. 

Extensions to KnowRob, such as the K-CoPMan (Knowledge-

enabled Cognitive Perception for Manipulation) system [14], 
enable autonomous robots to grasp and manipulate objects.  

All the above frameworks for knowledge acquisition based 

object grasping and manipulation suffer from the fact that they 

require the use of explicit model databases containing object 

instances of the query to be processed, in order to obtain 

successful object recognition. K-CoPMan, for instance, uses 

CAD for matching 3D point clouds in order to identify the 

queried object in the given environment. Furthermore, while 

using semantic knowledge of the scene in order to improve 

object recognition and manipulation, these systems are largely 

devoid of performing implicit goal-directed cognitive tasks 

such as substituting a cup for a mug, bottle, jug, pitcher, 
pilsner, beaker, chalice, goblet or any other unlabeled object, 

but with a physical part affording the ability to hold liquid and 

a part affording grasping, given the goal of ‘bringing an empty 

cup’ and no cups are available in the work environment. 
In order to alleviate these issues, we have utilized the 

concept of part affordances for building a scalable grasping 
system [29].  Gibson proposed the original idea of affordances 
grounded in the paradigm of direct perception. Physical 
affordances define the agent’s interaction possibilities in terms 
of its physical form [16]. For example, stable and horizontal 
surfaces are needed to support objects, objects need to have a 
brim or orifice of an appropriate size, in order to be functional 
as a container to drink from. Additional examples of 
affordances studied with respect to robotic manipulation in [16] 
include ‘sittability’ affordance of a chair that depends on body-
scaled ratios, doorways affording going through if the agent fits 
through the opening, and monitors afford viewing depending 
on lighting conditions, surface properties, and the agent’s 
viewpoint. The spectrum of affordances have been extended to 
include social-institutional affordances, defining affordances 
based on conventions and legally allowed possibilities leading 
to mental affordances. Affordances based on History, 
Intentional perspective, Physical environment, and Event 
sequences (HIPE) leading to functional knowledge from mental 
simulations have been studied in [15]. Affordances serve as key 
to building a generic, scalable and cognitive architecture for 
visual perception. ‘Affordance based object recognition’ or 
recognition based on affordance features is an important step in 
this regard. 

II. OVERVIEW 

The primary contribution of this paper is in providing a 

scalable knowledge assimilation and deployment framework 
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for robotic grasping that is free of 3D model instance 

representations. 

The fundamental basis of our framework revolves around 

the theme of ‘Conceptual Equivalence Classes’. These classes 

are defined as sets of objects that are interchangeable from the 

view-point of usage for the primary functionality of the object. 
Hence, objects such as mugs, cups and beakers form an 

equivalence class. Bags and baskets also form an equivalence 

class, so do cans and bottles, bikes and motorbikes and so forth. 

Equivalence classes can be uniquely defined and recognized in 

terms of their (a) Part Functional Affordance Schema and (b) 

Part Grasp Affordance Schema. It should be noted here that the 

definition of conceptual equivalency class used here is distinct 

and unrelated to the equivalency class definitions provided by 

the OWL framework, which uses only textual or named entity 

equivalency. 

A. Unit Definitions based on Textual Semantics 

In our framework, we employ WordNet [5] for generating 
textual unit definitions for concepts or objects queried for. 
While WebKB provides improvements over WordNet, while 
returning results that are restricted to nouns (of specific interest 
to our framework), the standalone nature of WordNet 
recommends its usage. WordNet provides a lexical database in 
English with grouped sets of cognitive synonyms (synsets), 
each expressing a distinct concept. It also records the various 
semantic relations between these synonym sets, such as 
hypernyms (higher level classes), hyponyms (sub-classes), 
coordinate terms (terms with shared hypernyms), holonyms 
(encompassing structure) and meronyms (constituent parts). 
The system interacts with the WordNet interface based on the 
queried term to obtain a possible match. The system also 
assimilates concept 3D geometric shape information such as 
Sphere, Cylinder, Cube, Cone, Ellipsoid, Prism, etc., 2D 
geometric shape information such as Square, Triangle, 
Hexagon, Pentagon, Ellipse etc. and abstract structural 
concepts such as Thin, Thick, Flat, Sharp, Convex, Concave 
etc. by parsing the concept definition. Additionally, 
information on material properties of the concept such as 
Metal, Wood, Stone, Ceramic etc. and part functional 
affordance properties (based on terms such as Cut, Contain, 
Store, Hold, Support, Wrap, Roll, Move, Ride, Enter, Exit, 
Gap, Hole)  are also obtained and stored by the system. 

B. Unit Definitions based on Conceptual Properties 

For the case of conceptual unit definitions, we employ the  
Open Mind Common Sense (OMCS) [11] based ConceptNet 
framework. ConceptNet has been used in the context of robotic 
task management [12]. The particular choice of this ontology 
database is due to its exhaustiveness, ease of use and suitability 
of attributes with respect to our affordance framework. The 
ontology provides English language based conceptual 
groupings. The database links each concept with properties 
such as ‘InstanceOf’ and ‘SymbolOf’ – possibile semantic 
replacements, ‘ConceptuallyRelatedTo’ – possible 
functional/conceptual replacements, ‘PartOf’ – encompassing 
structures, ‘ReceivesAction’, ‘CapableOf’, ‘UsedFor’ – 
possible functional affordances as well as ‘MadeOf’, 
‘HasProperty’ etc. that provide further information about the 

concept. The use of these properties enables the part affordance 
based equivalence class selection. 

C. Unit Definitions based on Visual Features 

While visual unit definitions can be used to improve the 
performance of the system or to obtain instance level 
recognition, our novel framework for conceptual equivalence 
class recognition and grasping system does not require the use 
of these databases and hence is 3D/2D model free. 
Furthermore, it should be noted that from the viewpoint of 
grasping using range images, monocular image information is 
largely superfluous. Instance level recognition, if necessary in 
future revisions to the system, can be carried out using a bag of 
features approach working with SIFT/SURF or other state-of-
art feature descriptors on labeled image or 3D shape databases 
(such as LabelMe, LabelMe 3D and ImageNet). 

D. Unit Definitions based on Grasp Affordances 

For the case of part grasp affordance definitions, a number 
of systems are available. These can be used for limiting the 
large number of possible hand configurations using grasp 
preshapes. Humans typically simplify the task of grasping by 
selecting one of only a few different prehensile postures based 
on object geometry. One of the earliest grasp taxonomy is due 
to Cutkosky [4]. In our system we employ the ‘Human 
Grasping Database’ [3] from KTH-Otto Bock. This taxonomy 
lists 33 different grasp types hierarchically assimilated in 17 
grasp super-types. It is possible to most of these grasp types to 
geometric shapes they are capable of handling. A 
representative set of grasp affordances from the database are 
presented in Fig 1. Each query concept is defined (as a whole 
or in parts) to provide grasp affordances of the types listed in 
the taxonomy database. 

E. Unit Definitions based on Part Functional Affordances 

The most important component of the presented system is 

the Part Functional Affordance Schema. This component 

essentially performs the symbol binding – mapping concepts: 

in our case – the Conceptual Equivalence Classes to visual 

data in the form of 3D geometries. While various schemes for 

affordance definitions have been studied in the past, we utilize 

a set of part functional affordance schema, largely with respect 

to objects found in households and work environments. These 

affordances are based on functional form fit of the Conceptual 
Equivalence Classes. A representative section of the part 

functional affordance schema is presented in Table 1. Note 

that the functional affordance here is defined with respect to 

objects of the class being able to perform the defined function. 

Table 1.  Representative Part Functional Affordance Schema. 

Part Functional 

Affordance 

Geometric Mapping Examples 

Contain - ability High convexity Empty bowl, 
Cup 

Support - ability Flat - Convex Plate, Table 
Intrinsic contain -

ability 
Cylinder/Cube/Cuboid/

Prism 
Canister, 

Box 



Incision - ability Sharp edge (flat linear 
surface) 

Knife, 
Screwdriver 

Engrave - ability Sharp Tip Cone, Pen 

2D Roll - ability Circular/ Cylindrical Tire, Paper 
Roll 

3D Roll - ability Spherical Ball 
Weed - abilitya Linear textural 

structures 
Comb, Brush 

Filter - abilitya Bi-linear textural 
structures 

Grid, Filters 

Wrap(p) -ability w.r.t. given shape Shoe, Glove 

Connect - abilitya Solid with support (m) Plug, USB 
Stick 

 

The scale of each part is also defined with respect to a discrete 
terminology set based on comparative sizes – (finger (f), hand 

(h), bi-hand (b), arm/knee (a), torso (t), sitting posture (i), 

standing posture (d), non-graspable (n) etc.). The conceptual 

equivalence classes are defined based on joint affordances of 

parts of the objects, along with their topological relationships. 

Some of the various topological relationships (for 2-part 

objects) used are Table 2. 

Table 2. Part Joint Topological Relationships 

Relationship Code Details 

1v2 1 vertical 2 

1h2 1 horizontal 2 

1v2n 
1 opposition 

vertical 2 

1h2n 
1 opposition 

horizontal 2 

1s2 1 staggered 2 

1os2 
1 orthogonally 

staggered 2 

 
In Table 2, 1 indicates the larger object and 2 the smaller one, 

vertical dimension refers to the smallest of the 3 dimensions 

and horizontal to the largest. All relationships are with respect 

to the non-symmetrical axis of the object (for e.g. the opening 

in a roughly cuboidal bag). Opposition refers to the 

relationship with respect to the face opposite to the non-

symmetrical face.  

Based on these attribute definitions, the equivalence 

classes can be uniquely represented. Examples of equivalence 
classes are provided in Table 3. Note that (ga) denotes grasp 

affordance and (pa) denotes part affordance. 

Table 3.  Example Equivalence Class defintions. 

Equivalence 

Class  

Definition 

Basket 1v2, b-a, handle (ga), opening (pa: 
containability) 

Plate h-b, (ga), (pa: supportability) 

Cup 1h2, f-h, handle (ga), opening (pa: 
containability) 

Chair 1os2, a-i, 2x(pa: supportability) 

Canister h-b, (pa: intrinsic containability) 

Box h-i, (pa: intrinsic containability) 

Plug 1v2n, f-h, support, contact (pa: 
connectability (m)) 

Knife 1h2, f-h, grip, blade (pa: incisionability) 

Bike b,a,a, 1v2(3hv4), seat (pa: supportability), 

2xwheels (pa: 2drollability) 
Laptop b-a, (pa: supportability) 

Pen f-h, grip, tip (pa: engravability) 

Ball h-a, (pa: 3drollability) 

Spoon 1h2, f-h, grip, opening (pa: containability) 

Spatula 1h2, f-h, grip, opening (pa: supportability) 

Faucet 1h2, f-h, pipe, orifice (pa: filterability) 

Suitcase 1v2, b-a, handle, box (pa: intrinsic 
containability) 

Desk a-d (pa: supportability) 

Cabinet a-d (pa: intrinsic containability) 

Stair nx(pa: supportability) 

Shoe opening (pa: containability), (pa: 
wrappability/ ellipsoid) 

Key 1v2n, f-h, support, contact (pa: 
connectability (m)) 

Brush grip, bristles (pa: weedability) 

Shelf nx(pa: supportability) 

Scissors 2xblade (pa: incisionability) 

Cars 4xwheels (pa: 2drollability) (intrinsic 

containability)  

 

F. Query Evaluation 

For any given query term, the system checks for availability of 

concept definition in the following list of attributes in a 

sequential order. The first database to be queried for is (a) the 

Part Affordance Schema. If unavailable, the system checks for 

the availability of a concept in the Part Affordance Schema 
that is matched using (b) the synsets of the queried term, 

followed by the ‘InstanceOf’ and ‘SymbolOf’ properties from 

ConceptNet, if necessary. If a match is not found, the system 

tries to use (c) the ConceptuallyRelatedTo property returned 

by ConceptNet (in response to the query term) to define 

possible alternatives for the object to be found. Alternatively, 

(d) the coordinate terms of queried object are searched for in 

order to obtain a conceptual replacement object. If a match is 

still not found, the system searches in (e) the holonym list and 

(f) the ‘PartOf’ list from ConceptNet. This is followed by 

matching for (g) ‘ReceivesAction’, ‘CapableOf’, ‘UsedFor’, 
which denote possible functional equivalency of the objects.  

The frequency scores on each of these properties are also 

returned as a measure of confidence in the object found. If no 

matches are found in the Part Affordance Schema for the 

queried object or any of the alternatives to be searched for, as 

suggested by the above list of related objects, the system 

parses the definitions of the queried object returned by both 

WordNet and ConceptNet to search for structural properties 

associated with the object. These include shape geometry 

information such as cylindrical, spherical or cuboidal or its 

alternate surface forms as well as abstract geometrical 

property terminologies such as flat, thick, thin, concave or 
convex.  



Material properties of the object from the parsed definitions 
such as wood, stone or metal, (as well as those returned by the 
‘MadeOf’ property from ConceptNet) as well as functional 
affordances from WordNet are stored as properties of the 
concept being queried for. While it is possible that the given 
range scene can be searched for the required object entirely 
based on the geometry information or the defined geometries 
(from the Part Functional Affordance Schema) based on a 
matched affordance property returned from parsing the concept 
definitions, the confidence level (based on frequency scores 
and weighted by property confidence measures) returned by 
such an unit recognition scheme is very low. Furthermore, 
based on a learned appearance database of different material 
types (such as wood, stone or metal), the classification can be 
improved if monocular scene imagery is also available. Such a 
material classification approach can also be used to select 
salient regions in the scene in order to reduce computation 
requirements of the range image processing. 

G. Detection of Part Affordances 

As discussed earlier, the Part Functional Affordance 
Schema defines unique symbol binding from affordance 
concepts to observables in terms of functional geometry 
mapping. While certain affordances are defined based on 
geometrical shape structures such as cylinders, cubes, cuboids 
and spheres or continuous space parametric variations of these 
shapes (as defined by superquadrics), other affordances are 
defined in terms of abstract geometrical attributes such as flat, 
concave, convex, sharp tip, sharp edge, linear textural 
structures, bi-linear textural structures. Joint affordances are 
defined in terms of more than one part. While detection results 
of the first set (geometrical shape structures) is directly 
available from the superquadrics, results for the second set 
(abstract geometries) can be inferred from the superquadrics. 
Since superquadrics model objects or parts as convex 
structures, presence of a concavity (such as the open cylindrical 
portion of a cup) can also be verified using visibility tests for 
cloud points and normals (for e.g. belonging to the inner 
surface of the cup, in comparison with a solid cylinder). Other 
attributes such as flatness and sharpness, linear and bi-linear 
textures can also be roughly estimated based on measures of 
size, shape and thickness of the quadric 

H. Detection of Grasp Affordances 

Most of the grasp affordances based on the Otto Bock 
Grasping Database, can be uniquely represented in terms of 
geometrical shapes. For e.g., the small diameter affordance can 
be structurally defined as a superquadric with a high linear 
dimension value along one axis and small diameters along the 
others. This also holds true of prismatic affordance, though the 
diameter is much smaller. Power disk is suited for disk type 
structures of the size of the palm, parallel extension for 
cuboidal structures and distal for objects with disjoint ring 
shaped parts. 

I. Query Matching 

In the given scene of interest, the queried object for the 
given task is found using attributed graph matching of the 
concept node built for the query with all geometrical objects 

found in the scene. Among the several attributed graph 
matching approaches [17, 18] available, we use a low 
complexity approach based on Heterogeneous Euclidean 
Overlap Metric (HEOM) using the Hungarian Algorithm [18] 
for the matching process. Each object in the scene is 
represented as a graph with its parts defining nodes along with 
vector attributes that may be symbolic (such as affordances) or 
metric (scales). Given the limited number of objects in a given 
scene, the matching process is fast and accurate. In the case 
that more than one object is found in the scene, the nearest 
object is selected for manipulation. 

III. RESULTS AND EVALUATION 

The performance of the concept evaluation algorithms for a 

given scene is demonstrated using a set of queries.  
For the first scene (Fig. 1), a search query for ‘jug’ is 

presented. It should be noted that the query ‘jug’ is not 

available in our equivalence class database, hence causing the 

search to be non-trivial. Using WordNet based parsing, 

renders the part affordance of ‘containability’ with a weight 

measure of 2 (out of 10), based on frequency scores for 

primary (from definition text) and secondary characteristics 

(from other attributes). ConceptNet also renders the 

‘containability’ affordance along with a ‘HasA’ attribute of 

‘handle’ which provides the grasp affordance for the given 

case. The attributed graph for the given query is simple and is 
composed of nodes for ‘containability’ part affordance and a 

‘handle’ – small diameter grasp affordance with an overall 

weighted confidence score of 1.66/4 (using concept and 

textual unit definitions of 1 and 3 respectively). The range 

image processing algorithms yield both the mugs in scene as 

results (prioritized by the closest object), since these objects 

contain concavities (affordance: containability) and handles 

(grasp affordance) that match the query graph attributes 

exactly (normalized HEOM score of 1). 
For the second scene (Fig. 2), a search query - ‘bag’ is 

presented. Again, since no equivalence class has been defined 
for the term ‘bag’, the computation of the search is non-trivial. 
For the given case, WordNet and ConceptNet render the 
‘containability’ affordances along with the ‘handle’ grasp 
affordance. In addition, ConceptNet renders the scale 
parameter to be ‘large’ and equivalent to that of a ‘box’. The 
confidence score on the resulting affordance description is 
3.64/4 (since WordNet returns a high frequency score of 8). 
Since the queried scene contains 2 true ‘bags’, the range 
processing algorithms return both the bags as query results. 
Again the normalized HEOM score is 1, indicating a perfect 
match for known attributes. It can also be seen that the 
confidence in the result is high for the second scene, as 
compared to the first, since the rate of occurrence of the object 
in typical scenes (reflected in the frequency score from 
WordNet) is higher. The algorithms used for symbol binding 
(from affordances to visual data) include range data 
segmentation, detection of object geometry and evaluation of 
grasp points/ approach vectors. Details of these algorithms and 
their evaluation are presented in [30]. Besides other attributes, 
differences in topological relationships (such as 1v2 for 
bag/basket and 1h2 for cup/mug/jug) enable robust separation 
between the object classes in the demonstrated examples. 



 

Fig. 1. Left to Right: (a) Input Scene, (b) Detected objects and their 
corresponding parts in the point cloud (c) Fitting of a cylinder 
corresponding to the ‘jug’ in the scene  

 
Fig. 2. Left to Right: (a) Input Scene, (b) Detected objects and 
their corresponding parts in the point cloud (c) Fitting of a 
cuboid corresponding to the ‘bag’ in the scene 

IV. CONCLUSION AND FUTURE WORK 

In this paper, we have presented a scalable knowledge 

assimilation and deployment framework for robotic grasping 
that is free of 3D model instance representations. We have 

used the paradigm of ‘Conceptual Equivalence Classes’ and 

uniquely defined them in terms of the minimalistic features of 

Part Functional Affordances and Part Grasp Affordances, 

leading to implicit cognitive processing for successful goal 

attainment. We have also provided a practical pathway for 

symbol binding – from concepts to observables by defining 

functional geometry mappings. The system is also capable of 

knowledge of affordance and interaction modes for unknown/ 

un-modeled objects based on partial information obtained 

from the constituent parts. 

Currently, the number of part functional affordances 
supported by the system is quite limited. We plan to extend the 

number and range of the supported functional affordances in 

the future. This would also necessitate more advanced 

algorithms for the attributed graph matching. Furthermore, the 

current system is geared towards robotic grasping and 

manipulation while being capable of functional class level 

object recognition. As such, it uses only range information for 

the processing, without the need for 2D/3D databases. 

Extension of the scheme to perform instance level object 

recognition will necessitate the use of these databases. 

Moreover, while current system has been evaluated on a stand-
alone system, actual deployment of the system on a robot with 

an arm and gripper for grasping is ongoing research. Finally, 

while the current system is intended to serve as a core 

component for goal-directed object recognition and 

manipulation, it can be used in a more holistic system for 

semantic visual perception such as the K- CoPMan. 
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