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Abstract— Two neural network (NN) based techniques for
building a simulation environment, which is employed for
evolution of modular robots in the Symbrion project, are
presented in this paper. The methods are able to build models
of real world with variable accuracy and amount of stored
information depending upon the performed tasks and evolu-
tionary processes. In this paper, the presented algorithms are
verified via experiments in scenarios designed to demonstrate
the process of autonomous creation of complex artificial organ-
isms. Performance of the methods is compared in experiments
with real data and their employability in modular robotics
is discussed. Beside these, the entire process of environment
data acquisition and pre-processing during the real evolutionary
experiments in the Symbrion project will be briefly described.
Finally, a sketch of integration of gained models of environment
into a simulator, which enables to fasten the evolution of a real
complex modular robot, will be introduced.

I. INTRODUCTION

A valuable representation of environment is an important
part of modular systems aiming to employ evolutionary
principles for creating a complex robot from simple au-
tonomous modules. One can find three main aspects where
such a model of the workspace would be crucial in modular
robotics. First of all, the environment itself affects the
purpose of the evolution. In most of the modular systems
[1], robots are able to form complex structures to be able
to overcome obstacles in the operating environment which
would be impossible for single robots (see Fig. 1 for a
motivation). Secondly, the single robots, but also the complex
organism itself, need a model of the environment to be able
to aggregate to more complex structures to solve their tasks
to navigate to docking stations etc. The third purpose of the
environment modelling in modular robotics arises mainly in
the Symbrion project [2] where a concept of an intensive
evolution via simulations has been proposed and investigated.
It was shown that it is inefficient and possibly dangerous (for
the robots) with existing technologies to leave robots to do
autonomous reconfigurability blindly. Rather a combination
of numerous runs of evolutionary algorithms in simulators
and only a few hardware trials of perspective structures found
in simulated environment is preferred.

Such a close connection of simulations and a real evolution
of robotic organisms brings additional demands on the pro-
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Fig. 1. A modular robot overcoming a pit between two ramps.

cess of simulation environment building. These required fea-
tures will be verified and discussed in the experimental part
of this paper. The first requirement is precision of the gained
model. Only simulations realised with models matching the
reality are meaningful for trials with real robots. Here, one
should mention that important aspects of the model precision
are not limited to shape and size of objects in the robots’
workspace only but also additional properties important for
the simulation of movement and friction of robots on objects’
surfaces need to be considered. Another important aspect
is the possibility to set the resolution of gained models
which may affect the precision. For an initial growing of
the modular organisms via the evolutionary process a spare
model with lower amount of information could be sufficient,
which speed-up the evolution. Contrariwise, an evolution
of robot’s behaviour to properly interact with environment
requires a more precise model. Therefore, relations between
the complexity of models, their quality and computational
efficiency of simulations are discussed in the experimental
section of this paper.

Many projects have appeared in last two decades in the
field of modular robotics. They have addressed problems like
mechanical design, motion planning, self-reconfiguration and
morphology evolution of multi robot organisms [1]. Beside
the construction of mechanical robots, software simulators
have been often developed. They can be used prior to hard-
ware experiments, e.g., for evolving a 3D morphology of an
organism. Several projects developed their own simulators,
like Molecubes [3] or Symbrion/Replicator [4], other use
commercial simulators, e.g., Webots [5]. The simulators
usually provide a simple arena with none or a small number
of elementary obstacles. In Symbrion project, the robots are
designed to survive in more complicated environments with
holes and more complex obstacles. To be able to verify
the results of simulations with real robots, the physical
properties of robots and arena in the simulator have to be
close to parameters of real robots and environment. For more



complex environments it is important to have an automatic
tool for creating the simulation environment. In this study,
we describe how 3D reconstruction techniques can be used
for this task.

Methods for surface reconstruction can be roughly divided
into two categories [6]. Static methods, such as [7], [8], [9],
[10], are based on geometric techniques. As they connect
a set of input points, the size of the resulting mesh corre-
sponds to the number of the input points. Post-processing is
thus needed to get results with desired resolution. Learning
methods and self-organizing structures as their special case
belong to dynamic methods [11], [12]. These approaches
approximate the input point cloud by adaptation of an initial
mesh [13] by modification of geometry, size or/and topology
of the initial mesh.

One of the targets of the Replicator/Symbrion projects
is a long-term robot autonomy in a changing world. Since
the environment model must keep up with the current state
of reality, a mechanism for model refinement and update
must be considered. Using bio-inspired dynamic methods for
surface reconstruction, the proposed model can be updated
with sensory data acquired by the robots, which operate
within the modeled environment. The robots can not only
provide new range measurements, which contribute to pre-
cision and completeness of the generated meshes, but also
might add information which cannot be perceived by range
sensors at all. For example a robot, which is equipped by
a camera, can add texture or color information to the mesh
or recognize, localize and add known objects (e.g., power
plugs) to the map. Taking into account all aforementioned
requirements, we have selected two appropriate methods of
3D modelling which will be adjusted and verified for the
purpose of modular robotics here.

This paper is structured as follows. The core of the
paper is section II describing utilized approaches of en-
vironment scanning and modelling. Particularly, a robotic
platform adjusted for 3D scanning of workspace of modular
robots and a procedure of data collection, followed by a
specification of methods of post-processing for data errors
and noise reduction, is described in subsection II-A. The
algorithms of 3D object reconstruction are described in detail
in subsection II-B with focus on possibility of setting of
different resolution of gained models which is important due
to the required computational time of the simulation. The
usage of obtained models in physical simulations of evolution
of modular robots and approaches solving interactions of
the model of environment with the modular organisms are
described in subsection II-C.1. Experimental results and
comparison of utilized algorithms are presented in section III.
Finally a discussion of applicability of presented approaches
for simulation of evolution of modular robots is included in
section IV.

Fig. 2. The mobile robot equipped with two SICK laser range finders
scanning the environment.

II. APPROACHES FOR BUILDING A SIMULATION
ENVIRONMENT

A. Data collection and pre-processing

The first step of the effort of bringing reality to the
evolution of modular robots lies in the data collecting. We
have utilized a differential drive G2Bot robotic platform
[14]. The robot has been equipped with two perpendicularly
mounted SICK laser range finders (see Fig. 2 for details on
the measurement configuration). While the first horizontal
laser together with odometry is employed for the robot
localization, the second vertical laser pointed to the robot
side is employed for the 3D environment scanning. Although
the robot is localized using the on-board sensors, we plan
to use the Ubisense localization system [15] for the final
experiments.

During the data collection, the robot has to be driven in
the environment in such a way that the vertically mounted
sensor scans obstacles completely. Since the coverage path
planning is not the aim of this paper, we have teleoperated
the robot through the environment during experiments but
one can find plenty of algorithms for autonomous control
of robots [16]. In the presented approach, the collected data
(see Fig. 3(a) for example) has been stored and processed
off-line. Again, the method could be extended for on-line
3D object reconstruction and environment mapping using a
state-of-the-art method, but this would exceed the scope of
this paper.

Several different kind of errors and uncertainties have
been identified in the obtained datasets, which requires a
pre-processing of data before utilization of methods for 3D
object reconstruction. First of all, shaking of the robot during
the scanning need to be compensated. Here, we have taken
advantage of the 180 degree view of the SICK sensor which
ensures that the straight floor of the scanned area is always
included in each scan. Based on the declination of the line-
segment representing the floor in the scan, the data are
transformed to correct the unwanted deviation of sensor
heading. Afterwards, the noise caused by imprecise sensors1

1Resolution of the employed SICK device is 7mm (in distance of 4m)
and the robot is localized with an error less than 1cm and 0.5 degree during
the whole experimental run.



(a) Raw point-data obtained with the vertically
mounted SICK.

(b) Smoothed point-data with the listed pre-
processing methods.

Fig. 3. Dataset obtained during the scanning of the two ramps with the
pit.

is suppressed by a moving average of 5 neighbouring data
samples in each laser scan.

The most significant error occurs due to the so called
mixed pixel problem [17]. This problem is caused by the
integration of light from multiple sources by a single pixel,
particularly around the edges of objects, resulting in erro-
neous range measurements. Fortunately these measurements
can be filtered out using a thresholding of a 3D histogram
which corresponds to number of measurements belonging
to a cell in a 3D grid. Such a segregation is possible
thanks to continuous scanning in both horizontal and vertical
directions where the wrong points are isolated in the space.
The obtained pre-processed dataset (see Fig. 3(b)) is utilized
as an input for the algorithms of 3D object reconstruction
described in the following section.

B. 3D object reconstruction

Due to necessity of numerous runs of evolutionary steps in
the simulator, a crucial feature of algorithms for environment
modelling is the possibility to build models of the real world
with different accuracy and amount of stored information.

Density of information describing objects in simulations
significantly affects the computational complexity of each
evolutionary step. Similarly as in nature, some tasks and
learning processes require only a rough approximation of the
environment and sometimes details of the selected objects in
the neighbourhood are needed. See Fig. 4 and Fig. 5 for
examples of obtained models with different resolution.

Finally, the concept of Symbrion robots being able to form
complex 3D structures requires to form a 3D model of their
workspace. In Symbrion Grand Challenge [18], which should
demonstrate the ability of self-reconfigurability of modular
robots, the organisms are not limited to a planar scene. Two
methods for 3D reconstruction are described in this paper:

1) GSRM-based method: Standard self-organizing maps
typically represent an input point cloud by a graph containing
a set of vertices connected with edges, i.e., they don’t explic-
itly find faces. This is a crucial issue, as these approaches
can not guarantee geometric consistence of produced results
and therefore their use in simulators is either problematic
or impossible. Rêgo et al. [6] introduced Growing self-
reconstructions maps (GSRM) that reconstruct surface in the
form of a triangular mesh where faces of the mesh form a
two-manifold (i.e., every point on the surface must have a
neighborhood homeomorphic to a disk). The method is based
on growing neural gas (GNG) [19] where the number of
neurons and topology of the network change during the self-
organization process. Competitive Hebbian learning used in
GNG is extended in GSRM so that faces are created together
with new points and edges. Moreover, removal of edges and
incident faces is proposed in [6] in order to keep the two-
manifold property during the whole learning process. After
the learning process finishes, positions of the neurons are
learned but the topology is still incomplete.

Topology learning is therefore performed by presenting
all input data are to fixed neurons once again. This leads to
creation of almost all necessary edges but some faces remain
non-triangular and thus triangulation of these faces is done in
final post-processing. The stopping criteria for the learning
process is the desired number of neurons.

Due to insufficient description of post-processing in [6] we
developed another post-processing method. During the post-
processing, all nodes in the mesh are visited and checked
if there are exactly two edges emanating from node that
have each exactly one incident face. A new face is then
created between those two edges and edge connecting the
opposite nodes which is created if not already present in
the mesh. These steps are repeated until new faces can be
created. This approach patches almost all holes that remained
in the mesh after geometry and topology learning performed
by GSRM. The resulting triangular mesh was then used in
the experiments.

2) GG - based method: Growing grid (GG) is another
self-organizing feature map that adapts according to Hebbian
rule [20]. Similarly to GSRM, GG is a growing structure, i.e.,
the number of neurons changes (increases) during learning.
On the other hand (and in contrast to GSRM), GG has a
fixed structure, which has a form of a rectangular grid. The



Fig. 6. Simple ”hand-made” 3D model.

process of adaptation has two distinct phases: a growth phase
and a fine-tuning phase.

The growth phase starts with 2x2 structure forming a
rectangle. A random sample from the training set is gen-
erated and the nearest neuron together with its topological
neighborhood is adapted to it. If the number of generated
samples reaches a defined constant (derived from the actual
network size), a whole new row or column is added into the
grid. In order to determine a correct position for insertion,
a local counter of each neuron is maintained storing the
number of samples for which the neuron was a winner.
A new column/row is inserted between the neuron with
the highest counter and its direct neighbor having also the
highest counter. After the insertion, local counters of all
neurons are reset. The adaptation process continues until the
desired network size is achieved.

After the growth phase finishes, the size of the network
as well as raw estimate of neurons positions is determined.
The purpose of the fine-tuning phase is then to tune neurons
positions more precisely. The process is similar to the one in
the growth phase. In each step, a random signal is generated
and the winning neuron together with its neighborhood is
adapted. The number of steps is determined with respect to
the network size.

C. Simulation

To speed up the evolution of robots, a simulator can
be used. Nowadays, several different simulators, suited for
different types of multi-robot systems, exits. For swarm
robotics, where the multi-robot teams move independently,
sensor inputs are simulated more precisely than a physical
motion of the robots, as discussed in details in [21]. Also,
the realistic models of the robot environment is crucial in
this type of simulations. Contrariwise, for evolving a motion
of multi-robot organisms (already joined swarm robots into
a complex body), the sensor simulation is not so important,
however, an accurate simulation of motion of such complex
organisms is required. In this case, a physic engine needs to
be used to simulate the motion of the organism.

In the presented project, where the simple swarm robots
are subsequently integrated to the complex organism, also
the employed models of the environment and the simulator

itself have to be adapted as the multi-robot system converts
from the swarm into a complex body and back from the
complex robot into the simple units. The simulation needs
to be simplified to provide only such a set of functions, which
is important for studding of current behaviours of the system.

1) Robot3D simulator: The Robot3D simulator provide
simulation of both robotic swarms and organisms [4]. The
simulator is based on Delta3D framework which allows
both physical and sensor simulations. To model the 3D
environment, the gained 3D models constructed by the above
described methods can be loaded in to simulator.

To represent the geometry of robots and arena in the sim-
ulator, two approaches can be used: represent the geometry
by a set of primitives (e.g., spheres, boxes or cylinders) or
using a 3D triangular mesh. The geometric primitives are
suitable for modelling simple robots and scenes. Moreover,
they allows to easily detect collision between objects. This
is very important in physical simulation where the collision
detection is frequently used to determine the forces which
have to be applied to the objects in order to remove the
collision. The 3D triangular mesh representation is suitable
for robots and environments with more complex shapes. To
represent a robot geometry using 3D meshes, one can create
the mesh based on a CAD model of the robot. This ensures
that the robot geometry properties will be the same as for
real robots. Although an arbitrary shape can be modelled by
the 3D mesh, it is more difficult to detect collisions between
a general (usually nonconvex) shapes. This can slowdown
the performance of the collision detection as well as the
performance of physical simulation.

The geometry of robots in the simulator is also used to for
simulation of sensors like IR-based distance sensors or laser
range finders. These sensors are simulated by computing
collision between a ray emitted from the sensor and other
objects. The selection of proper 3D models, which will be
used in the simulator, is therefore crucial.

III. EXPERIMENTAL RESULTS

In this section, the meshes obtained by the aforementioned
methods are used to measure performance of the simulator.
Two metrics are used to evaluate how the meshes influence
the simulation : the speed of physical simulation and the
speed of sensors simulation.

The influence of various meshes on the performance of the
simulator was verified in following sets of experiments. The
3D meshes constructed by GSRM and Growing grid methods
have been used. The properties of the meshes are described
in Tab. I. The number in the brackets in GSRM methods
denotes the desired number of neurons; for GG method, this
denotes how many times one point from the input 3D point
cloud was used for learning. To compare the performance
with various meshes, a simple hand-made 3D model of the
arena was created, see Fig. 6. This model contains much
less faces than if employing the approaches using real sensor
point-datasets.



(a) 50k of steps; the obtained model consists
of 210 triangles.

(b) 200k of steps; the obtained model consists
of 576 triangles.

(c) 20M of steps; the obtained model consists
of 13860 triangles.

Fig. 4. GG-based method applied for a scene reconstruction with different number of learning steps.

(a) 800 steps; the obtained model consists of
1011 triangles.

(b) 2200 steps; the obtained model consists of
4175 triangles.

(c) 5000 steps; the obtained model consists of
5895 triangles.

Fig. 5. GSRM-based method applied for a scene reconstruction with different number of learning steps.

(a) (b) (c)

(d) (e) (f)

Fig. 7. An insufficiently evolved robot for overcoming the pit (a)-(c). A sufficiently evolved robot overcoming the pit (d)-(f).

Name Method Triangles Computation time [s]
GSRM GSRM (2200) 4175 20

GG-based Growing grid (20 · 106) 13860 270
Simple hand-made 39 N/A

TABLE I
PROPERTIES OF SELECTED 3D MESHES, WHICH ARE USED IN

EXPERIMENTS. NUMBER OF TRIANGLES FORMING THE MODEL AND

COMPUTATIONAL TIME REQUIRED FOR ITS CREATING.

A. Snake organism outstepping a pit

In the first scenario, a snake made of several Scout robots
[18] is supposed to outstep a pit. The snake moves using
wheels of the Scout robots whose velocity is constant. To
enable the snake to go up the descent, the main hinges

of the robots are controlled to form a U shaped snake
(Fig. 7(f)). The average times needed for computing the
physical simulation step and collision detection computed
from 100 runs are described in Tab. II. In each run where
the snake out-steps the pit, a 3500 measurements of collision
detection and physical simulation were made.

The speed of the physical simulation step is not influenced
by the used mesh because the kinematics of the snake was
constant during outstepping of the pit. The number of forces
and constraints for integration of forces are the same in
each step which does not influence the computation time.
The meshes constructed by the presented methods slightly
influence the speed of the collision detection. However, this
is caused by the roughness of the meshes rather than by
the number of triangles in the meshes. The triangles in the



Mesh name Physical step [µs] Collision detection [µs]
mean dev mean dev

GG-based 147 73 825 280
GSRM 150 75 830 283
Simple 152 77 846 285

TABLE II
SIMULATION AND COLLISION DETECTION TIME FOR SNAKE ORGANISM

OUTSTEPPING THE PIT.

Mesh name mean [ms] dev [ms]
GG-based 362 134

GSRM 119 44
Simple 5.45 1.31

TABLE III
PERFORMANCE OF A LASER RANGE FINDER SIMULATION. REQUIRED

TIME FOR SIMULATION OF ONE SCAN OF LASER.

meshes are represented by a hierarchical bounding box tree
which allows to quickly determine possible collisions, thus
the number of triangles does not influence the computation
time significantly.

B. Simulation of sensors

Beside the physical simulation of modular robots, the
Robot3D provides sensor simulation. The speed of the sen-
sors simulation is determined by laser range finder sensors
simulation which is computed by detecting collision between
laser rays and objects. To determine the distance from sensors
to objects, a ray is emitted from the sensors and a collision
between this ray and objects is detected. Unlike in the
previous case, the triangular mesh is not organized in a tree
structure, and therefore, it increases the computation time
needed to compute nearest collision of a ray. The speed
of this process is influenced by the number and type of
geometric primitives of the objects and angular resolution of
the laser rangefinder. The influence of various meshes to the
speed of range finder simulation is summarized in Tab. III.
It can be seen, that the computation of laser beams on large
meshes is more time consuming than on a simple mesh. The
presented experiments show, that while the larger meshes
can be used in physical simulations, they are not suitable for
sensor simulations as implemented in the Symbrion project.

To speed up the sensor simulation, the used 3D meshes
should have less number of triangles. Another approach
is to use a mixed 3D model, which consists of meshes
and other geometric primitives (planes, spheres). To detect
the geometric primitives in the 3D meshes, the approach
presented in [22] can be used.

IV. CONCLUSION

We have presented an approach for automatic building of
simulation environment from a laser data for evolution of
modular robots. Two methods for 3D reconstruction have
been described. The 3D meshes obtained by these methods
differ mainly in number of triangles and consequently in
computational time required for model building.

The performance of the physical and sensor simulations
with various meshes have been investigated. It has been
shown that for the physical simulation the number of trian-
gles in meshes does not influence the speed of physical simu-
lations. Nevertheless, it has been identified (via an empirical
observation of various simulations) that the growing-grid
method produces smoother results and it is more suitable to
build the simulation environment. Contrariwise, the GSRM
method is faster, and therefore, it is suitable for varying
environment or if a frequent update of models is required.
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