The Assemble and Animate Control Framework for
Modular Reconfigurable Robots

David Johan Christensen, Ulrik Pagh Schultz, and Mikael Maigim

Abstract— This paper describes the “Assemble and Animate” platforms (physical or simulated) by utilizing a module
(ASE) control framework. The objective of ASE is to provide abstraction layer.

a fI_emee and extendable control framework, which fa_cnltates In the rest of this paper we first review related work
rapid development and deployment of modular reconfigurable | . . .)
robots. ASE includes a simple event-driven application frame- N Section Il, then provide an overview of the design and

work, a library of common control and adaptation strategies, implementation status of ASE in Section Ill, and finally
and a module abstraction layer which allows ASE to be describe four example applications created utilizing tI8£A
cross-compiled for a number of different modular robotic framework in Section V.
platforms and easily ported to new platforms. In this paper we
describe the design of ASE and present example applications
utilizing ASE for planetary contingency, adaptive locomotion, Il. RELATED WORK
self-reconfiguration, and tangible behavior-based programming.
Numerous robotic development environment, frameworks,

and middleware have been developed for different areas
of robotics such as mobile robots and manipulators [8],
Reconfigurable robots consist of robotic modules whicli4]. In several aspects the ASE framework is similar to
can be assembled or can self-reconfigure into numerous rokeich systems since it provides an event-driven publish-
configurations [6], [24], [21]. Developing a control progra subscribe infrastructure to facilitate responsive intéom
for a modular robotic application is particular complex dughetween otherwise decoupled components (e.g. similar to
to its distributed nature and the many potential sources &fOS [16]). Further, unlike most such systems ASE requires
errors and limitations related to modules hardware, intefo advanced OS features and can fits and runs on resource
module communication, and embedded software. ASE is @onstrained embedded devices such as most modular robots
open-source control framework designed to facilitate this (e.g. unlike Player [22] which requires a TCP stack and
development with the following design objectives: threads). Also, ASE provides hardware abstraction forcaipi
Flexible: The polymorphic nature of modular robotsmodular robots equipped with simple neighbor-to-neighbor
makes their mechatronics flexible, but this is generally nalommunication and a library of common algorithms for
true for the control which is often designed on a case-bwistributed coordination, adaptation, and control of madu
case basis. ASE is designed to be flexible so that it can bebots. Finally, ASE is much more limited than systems
used and easily adapted to control very different robots isuch as ROS, Player/Stage, and Webots [11] since it does
different application scenarios. not provide support for multiple programming languages
Extendable: Modular robotics is an active research areavith higher-level abstractions, visualization/debugginols,
and new platforms and control strategies are continuousilitegrated simulation environments, or powerful algerish
proposed. ASE is therefore designed to be simple to extefgr conventional monolithic robots such as vision, plagpin
with new control strategies and simple to port to new modulagLAM, etc. In short ASE is designed as a minimalistic
robotic platforms. embedded distributed control framework for modular ropots
Limited Resources:Most modular robot are controlled by while other systems are more powerful and generic they
small microcontrollers with limited computation and memor might not currently be a good match for such autonomous
resources. ASE is designed to fit and run on microcontrollerg@source constrained modular robots.
having few kilobytes of RAM and at clock speeds of only a Several domain specific languages (DSL) have been pro-
few MHz. posed for self-reconfigurable modular robots. DynaRole is
Code Reuse:In modular robotics research a controla DSL which introduces abstractions for module roles and
strategy must often be reimplemented for evaluation on negfrycture and compiles to virtual machine byte code for
platforms or applications. ASE supports code reuse bolbntrol diffusion [17], [18]. Meld [1] and LDP [5] are two
between different applications and between different nrerdu programming language made primarily to program large
D. J. Christensen and M. Moghadam is with the Center for Plagw ensembles Of. self—reconfiguraple .Catom modules. M?Id also
Department of Electrical Engineering, Technical Universif Denmark, compiles to TinyOS nesC applications. ASE does not impose
DK-2800 Lyngby, DenmarKdj chr, ni kmj@l ektro.dtu.dk a new programming language but does therefore also not
iy Wl o, Unhersy o St ek 3550 ganse PIOVIdE the same level of abstraction as these DSL, nstead
Denmarkups @mi . sdu. dk ASE is written in C (C99) to maximize portability and
1Available from https:/github.com/mimog/Assemble-and-Artiena integration with existing and new platforms.

I. INTRODUCTION

TinyOS [11] is an event-driven operating system designed App. Layer
for sensor networks, a similar operating system is not yet
available for modular robots, several existing systemsethe
fore use TinyOS [7], [15], [2]. ASE can run on top of TinyOS
as it has been done for several versions of the ATRON. ASE Laver i !

Simulators can facilitate control development and enable P I : :
scale and optimization experiments not feasible on a physic L

. . i ! Abstract Control Application
platform. Often a custom simulator is created each time a ! APL Y Libray [*] Framework
new modular robot is developed. However, several simugator v 7y

Module
Controller |

il

are able to simulate several different systems. The open- __p| Target E
source Unified Simulator for Self-Reconfigurable Robots A,” i
(USSR) is an physics-based simulator designed to simulate | i
a number of different platforms [3]. Also the commercial Borl Lager |\--~---~-"~"~ ;
Webots simulator by Cyberbotics Ltd [23] is able to simulate v v '
several existing modular robotic systems and can be extende O = A ﬁﬁg
to simulate new systems without modifying its source code. :
B_oth of these simul_at_ors are ba_sed on tr_le_Open Dynami(_: En- Wl T
gine (ODE) for collision detection and rigid body dynamics T v "
[19]. ASE applications have previously controlled modular Actnators Comm. Sensors
robots in both of these simulators. Devices

IIl. THE ASE CONTROL FRAMEWORK Fig. 1. Layered architecture of a modular robot using the AGEEwork.

A. Overview of Architecture

The objective of ASE is to provide a flexible and extendIn most cases module controllers developed in ASE will
able control framework which enables rapid development ari¢be the Target API for application specific hardware ac-
deployment of modular reconfigurable robots. To fulfill thiscess. Therefore, to maintain application portability kestw
objective, the ASE control framework is designed with arthe physical and simulated robots the Target APl must be
layered architecture (illustrated in Figure 1). The amttitre identical for both the physical and simulated target and the
separates the “Hardware Layer” from the “Kernel Layer'application should only access the “Kernel Layer” through
which might be everything from a full OS, simple firmware,the Target API.
to a physics-based simulator. ASE interfaces to the “Kernel
Layer” through a “Target API” component which is the onlyC: Abstract Module API
part of the “ASE Layer” that contains target specific code. The Abstract Module API uses the Target Module API to
The “Application Layer” contains a “Module Controller” implement a number of functions required by the Control
which can be target independent if it does not use theibrary and Application Framework in a target independent
specific “Target API”. The “ASE Layer” itself consist of the fashion. For example the following functions are part of the
following parts: 1) Target Module API, 2) Abstract Module Abstract Module API:

API, 3) Application Framework and 4) Control Library. , .
. . | ong get Local MsTi me();
Below we explain the design of each of these parts ar]cﬂt get Har dwar el D() ;

explain how to utilize ASE and how to port it to newint getNunber Of Nei ghbor Channel s();

int sendMessageToNei ghbor (char* msg, ...);
platforms. int setActuatorPosition(float pos, int actlD);
float getActuatorPosition(int actlD);

B. Target Module API

The Target Module API is used by the Abstract ModuleAs a general rule, to keep the interface generic, every
API and the Module Controller to provide access to th@ctuator, sensor and communication channel is indexed (O,
module’s actuators, sensors, and communication devices by2, ...) and return values for sensors and actuators positi
utilizing the kernel layer. In order to port the ASE framewor are scaled from 0.0-1.0.
to a new modular platform a Target Module APl must o
therefore be implemented. As an example, the following- APplication Framework
functions are part of the Target API for the ATRON system: The Application Framework provides an event-driven

long atronApi _get MsTi me() ; intra-module publish-subscribe infrastructure f_or bolte t
int atronApi _sendMessage(...); Module Controller as well as for the Control Library. The
void atronApi rotateToDegree(float rad); Framework imposes an initialization phase followed by a
voi d atronApi _connect (i nt channel I D); . h H ill d ibe the F K th h
int atronApi getBatterylevel (); runtime phase. Here we will describe the Framework throug

a couple of small controller examples.

The first step in the initialization phase is for the KerneE. Control Library
Layer to initialize ASE by invokingrse_init(...). Thisin
turns invokes the Module Controllerntrolter init(), gyategies which are self-contained, self-driven, andetar

which will potentially initialize parts of the ASE Control independent code that can be combined into specific module

!"br"f%l orf SUb.SC“ble fo:jal number"of Evr?_nths. TITe fgllowt')ngcontrollers to produce the desired robot behavior. Thediff
is a fully functional module controller which will subsceb . categories are:

to anACT_EVENT and therefore receive a callback periodically Control: Numerous ways to control modular robots have
which is used to drive a sine-based control of actuato[geen proposed. ASE provides generic implementations of

The Control Library part of ASE provides a number of

indexed 0: some of the most common.
#i nclude <mat h. h> Adaptation: Modular robots are more than conventional
#i nclude <ase/lInfrastructure. h>
#i ncl ude <ase/targets/Abstract Modul eApi . h> robots required to be ada_ptwe due to their metamorphlc na-
ture. Therefore, ASE provides a number of machine learning
void ctrl_act(char* topic, Event_t* event) ({ i i ; inati i
float pos = (1 + sin(got Local Trme()))/ 4. of algorithms t.o h'elp-|mplement' adaptive appllcatlops in ASE.
set Act uat or Posi ti on(pos, 0): Comm_um(_:atlon. ASE_ prowde_s a_number pf d_|str|buted
} communication strategies to simplify coordination of the
. . different modules within a robot.
void controller_init() {
Event Manager _subscri be(ACT_EVENT, ctrl _act); Behaviors: Several control strategies and machine learn-
} ing strategies have been combined into behaviors which are

In the runtime phase the Kernel Layer periodically evokegmluo'_ed |-n ASE.))]
ase_act () which will cause the Framework to publish an A.rbltratlon.: Mecha_lmsms to arbitrate several active be-
ACT_EVENT. Generally, events are used throughout ASE botP@viors are included in ASE. _

in the Application Framework and Control Library as a way Tools: Various tools a_nd utilities, which _are_used by ASE
to decouple components and ensure responsiveness. Wif!f; or can be used directly by the application.

respect to inter-module data communication, ASE imposes aln order to simplify the controller development the strate-

specific 3 byte message header: gies are self-contained and self-driven when appropriate.
Type T Tabel | B The self-driven behavior is implemented through the use of
Thyte 2 bytes N bytes special components which manage a particular strategy. The

?é)ntroller will initialize and start a strategy, which withen

The message header consists of a Type and a Label fier i independently by using the event-driven infrastrietur
The Type field enables ASE to route a message (currentlu indep y by using v ven 1 Y

only intra-module) to the specific strategy type which is:[}F ovided.by the ASE applicat?ons framework. The c;ontroller
subscribing for that message type. The Label field allow an modify the strategy's runtime behavior through its AP1 0

several strategies of the same type but with different E\bei e strategy may publish an event or use a call back function
. 10 interact with the module controller. Further, to make a

to communicate directly. Usually a particular communizati trateav selfi-contained its data is encapsulated in aesinal

stack provided by the target platform requires another me§- gy P g

sage format, and then ASE messages are simply wrapp ta structure which allows the controller to concurrently

inside such a message at the Target API. The foIIowingt' ize several strategies of the same type. As an example

) . onsider the following simple controller:
example illustrates the use of timers and how a controllet 9 P

can subscribe to a particular message type MSG. G adient _t *g0;
. voi d handl er(char* topic, Event_t=* event) {
#define LED_MSG 128 Gradient t* g = (Gadient_t*)event->val prt;
Timer_tx timer;) ase_printf("Gradient=%\n", Gadient_getValue(g));
void timer_fired(int id) { //evoked every 200 ns }
char msg[4] = {LED MsG 0, 0, atronApi_getLeds()};
sendMessageToAl | Nei ghbors(nsg, sizeof (nsg)); void controller_init() {
} Event Manager _subscri be(
) GRADI ENT_UPDATED_EVENT, handl er);
void handl e_msg(Msg_t+ msg) { g0 = Gradi ent Manager _cr eat eG adi ent (99, 1.0f);
atronApi _set Leds(nsg- >nessage| 3] +1) ; G adi ent Manager _st art Gr adi ent (g0) ;
} i f (get Har dwar el D() ==3) {
) o Gradi ent _set Seed(g0, true, 5);
void controller_init() { }
MsgManager _subscri be(LED_MSG handl e_nsg); }
timer = TinerManager _createPeri odi cTi mer (
200, 0, tiner_fired); This controller creates a gradient with label 99 which sisite

} transmitted to the neighbor modules at a rate of 1.0 Hz. The
This ATRON controller creates a periodic timer to sendyradient on module with id = 3 is set to seed with a value of
messages contaning its LEDs state to neighbor modules. Theo that its neighbors will get gradient value 4, and so forth
LEDs will count if the modules are able to communicate. Th&ach time a gradient value is changed an event is triggered
same mechanisms for message routing and timers are usedising the handler function to print out the current gnaidie
by the strategies in the Control Library. value.

Module Simulator Kernel MCU

ATRON [15] USSR TinyOS Atmegalzs d!ffere_nt objectives. The purpose here is t_q _|Ilustrate the
ATRON-FPGA [2] | USSR TinyOS MicroBlaze diversity of ASE and the advantages of utilizing a multi-
LocoKit [10] - USB2Dynamixel | Remote control| target framework.
PlayTiles [12] - Custom Firmware| Atmegal280
Bioloid - CM510 Firmware | Atmega2561 ;
Roombots [20] Webots) PC only A. Planetary Contingency Challenge
Odin [13] USSR - PC only An ASE application was developed and utilized by the
M-TRAN [9] USSR - PC only winning ATRON team at the Planetary Contingency Chal-
TABLE | lenge at ICRA 2010. In this competition a robotic solution
MODULAR ROBOTICSTARGETS INCLUDED INASE to an unforeseen problem must quickly be developed and
deployed using only available materials. See Figure 2.
IV. CURRENTIMPLEMENTATION STATUS To address this challenge a user interface called “modu-
A. Implemented Targets lar commander” was developed for flexible remote control

The currently available modular robotic targets in ASE ardfOM @ laptop. The laptop communicated wireless with the
listed in Table I. In addition ASE has been used on sever4ll RON robot by utilizing an XBee dongle. The ATRON-
not-yet-public platforms. The most resource constrained §~GA modules main processor is a softcore MicroBlaze
these microcontrollers is the Atmegal28, which has 4KgINnIng on an FPGA: The softcore was running TlnyO__S _and
SRAM. 128 KB Flash and runs at 16 MHz, however, wdhe Target APl was implemented directly in nesC utilizing
expect no issues with running ASE on even more resourddnyOs to cgntrol the actuators, communication etc. Before
constrained systems. ASE has been made to run as a stilg competition started each ATRON-FPGA module was
dalone kernel with the hardware drivers implemented diyect Programmed with identical ASE controliers developed to
in the Module Target API or on top of TinyOS which provide flexible and reliable remote control and monitoring
provides communication stacks, drivers, etc. In addition {of the state O_f the module. A special RC strategy part of_the
the physical platforms ASE has been used to control modul&SE control library would enable the controller to subserib

robots both in the USSR and the Webots simulators. to specific events triggered by received command messages.
Command messages sent from the PC could be broadcasted
B. Implemented Control or addressed to specific module IDs. The RC strategy would

The Control Library is partly developed to support thehandle the potential routing of messages between modules
authors own research in modular robotics control. The irand invoke handlers part of the controller when the module
cluded strategies are therefore somewhat biased. Howev&ceived a new command. The control handler would then
even if an application requires different strategies thasé implement the appropriate response by controlling the, leds
induded, the ASE framework will support the deve|opmen§enter actuator, or connectors. A timer would periodically
of event-driven applications which are easily ported betwe trigger a message to be sent back containing the status
simulated and physical platforms. The strategies cuyent(COmmunication event counts, battery level, motor posjtio
implemented in ASE include: etc.) for monitoring on the laptop.

Control: Distributed strategies include average consensu
artificial gradients, distributed state machines, and raént
pattern generators. Centralized strategies include caatifi ~ T0 study morphology independent adaptive locomotion of
neural networks and record/p|ayback control. modular robots we dEVEIOF)ed an ASE application UtlllZIng

Adaptation: Machine learning techniques to enable adapcentral pattern generators and a stochastic optimizagen a
tation includes random search, simultaneous perturbatidoach (SPSA). A CPG network of coupled oscillators would
stochastic approxima’[ion, genetic a|g0ritth, partiWam] control the galt of a robot. Each DOF would be controlled
optimization, k-nearest-neighbors algorithm, and distied by @ single oscillator part of the CPG network. Based
reinforcement learning. on velocity feedback the oscillators parameters (ampitud

Communication: Strategies to enable remote controlPhase, and offset) would be optimized online. The control
information broadcast and gossip as well as shared timeggplication is fully distributed utilizing only neighbomot
and state sharing are included. neighbor communication with each module computing its

Behaviors: Generic behaviors include locomotion basedocal subset of the CPG network and optimizing its own
on central pattern generators and adaptive CPG gaits. Sd¥arameters based on SPSA.
reconfiguration behaviors are currently included exciigiv ~ The ASE framework enabled us to develop the application

8. Distributed Online Learning

for ATRON (based on DynaRole scripting). largely independent on the particular robotic platform. We
Arbitration: Subsumption architecture. therefore evaluated the strategy on two different plat®rm
Tools: Timers, protothreads, as well as several domaify only modifying the top-level platform specific part of

specific data structures. the application. Most of the active code could be used on

both platforms. The control strategy was first evaluated on

V. EXAMPLE APPLICATIONS simulated Roombots robots [4] and later on the physical

This section describes four different example applicationLocoKit robot. The Roombots was simulated with the We-
which are using the ASE control framework to achievébots simulator which can be programmed in C which allows

Fig. 2. (Left) ATRON robot equipped with several ad hoc tofssolving a problem during the 2010 ICRA Planetary Corgincy Challenge. (Center)
and (Right) Roombot simulated in Webots simulator and physioabKit robot, both controlled with the same adaptive sgggtenplemented in the ASE
control framework.

. rotat eFroniroBy(0, 180, f al se, 150) |
. rotat eFroniroBy(0, 180, true, 150) |
. rot at eFroniloBy(0, 180, true, 150);

. Connector[4].extend() |

. Connector[6].extend() |

. Connector[4] . extend();

\.' @9 sequence snake2shift8 {
- .rotat eFroniroBy(0, 180, f al se, 150) |

Fig. 3. ATRON self-reconfiguration sequence controlledhviltynaRole
script compiled to ASE application.

§EE355R8

us to directly implement the Target API by utilizing the}
Webots API. The physical LocoKit quadruped was mounteglequence shift82snake = reverse snake2shift8;
on a boom which made the robot move in a circle. The -

rotation of the boom was measured by an encoder read by-gy;re 3 shows the corresponding self-reconfiguration se-
microcontroller and sent using ZigBee to a PC. The PC W ence in the USSR simulator. Note how DynaRole allows

running the adaptive locomotion ASE controller which useg,in, parallel and sequential actions using syntax|'cénd
the velocity feedback to optimize the open parameters of the respectively.

coupled oscillators comprising the central pattern gdoera

The Target API for the LocoKit would utilize a USB to D. P|ayte - Programming with Behaviors

RS485 communication converter to remote control the robots This ASE licati d | hvsical
Dynamixel actuators. We observed from these experiments IS . fapptljcelttlon \l;vas n?l'i € tg, expiore physical pro-
that the same control strategy with only minor parameteg?ramrmng of modular robots. The objective was to create a

adjustments was able to optimize the gait of both types gy simple inFerface for kids to play with Fhe behavior qf
robots. The two robots are show in Figure 2. modular robotic creatures that they potentially could dbuil

themselves.
C. DynaRole - Scripting ATRON Self-Reconfiguration To explore this objective we designed a tangible interface

DynaRole is a domain specific language which amongg,fellled Playtg. Playte allows a user to contro! a robot with
other things provide the possibility to script ATRON seli-Small behavior programs represented by special Lego behav-
reconfiguration sequences [18]. Such scripts compile 18" bricks containing an resistor for identification (segu¥e _
distributed control programs which use a distributed stat®)- The Playte has ten slots where the user can place behavior
machine to coordinate the sequence of self-reconfiguratic'?{‘i'CkS- The first row of five slots selects which behaviors are
steps. This scripting approach is much simpler that havir@ctive in the robot. The last row of five slots allows the
to write and debug the distributed control program by hand!Ser to delete a behavior, record a behavior, train a behavio
We have therefore made a backend for DynaRole whicnd combine several behaviors into a new behavior using

compiles to ASE control strategies that can be utilized b{faining. Training is performed with a gamepad controlling
a controller. In this way ASE can for example provide thdhe robots actuators. The state of the Playte is repeatedly

locomotion control for several ATRON morphologies whiler®ad by a microcontrolier which sends the brick IDs through
the DynaRole scripts will enable the robot to self-reconfigu @ PC to the ASE application running on the robot.

between the different morphologies. ASE enables a Dyna- The ASE application provides the required functionality
Role script to first be debugged in the USSR simulator befoi@ the robot to allow it to be controlled by the state of
it is cross-compiled and downloaded to the physical ATRONh€ Playte and the gamepad. A number of simple behaviors
modules. As an example the following DynaRole scrip@'® implemented and a subsumption architecture provides
allows self-reconfiguration from an eight-module ATRONthe arbitration between several active behaviors. Trgifgn
snake to a standard ATRON configuration called “Shift-8”implemented by utilizing a k-nearest neighbor algorithm (k
and moreover automatically provides the reverse sequend®). When a behavior brick is trained the system samples

needed to reconfigure the robot back to the snake shape:training data as a mapping from the robot's sensor input
to the motor output controlled with the gamepad. When

the trained behavior brick is made active on the Playte
the system uses the k-NN algorithm to find the appropriate

role ML extends Module { require (self.id==1); }
role M2 extends Mddule { require (self.id==2); }

Fig. 4.

Example Bioloid robots that can be controlled from the Playte

motor output in the given sensory situation. Similarly, for [6]
combining behaviors the behaviors are selected using numbe
buttons on the gamepad (1-5) and a k-NN is trained to mapy,
the current sensory state to a selection of behaviors.

In this paper we presented the “Assemble and Animate’
control framework for modular reconfigurable robots. ASE

VI. CONCLUSION AND FUTURE WORK (8]

(9]

can, by utilizing an Abstract Module API, be cross-compiled
for multiple different targets and new targets can be add(? by
simply by providing a Target Module API. To enable rapid
development, ASE includes a Control Library containing
common communication, control, and adaptation strategieﬁl]
Further, an Application Framework provides an event-drive
infrastructure to the application. Finally, ASE is desidne

to run on resource constrained modular robots. We hal#?]
described the design of ASE and presented several appli-
cations on planetary contingency, adaptive locomotiolf; se
reconfiguration, and tangible behavior-based programmig%]
to illustrate its range of use. For future work, we plan t
continue to maintain, extend, and improve the ASE control
framework as part of our ongoing research on moduIaH4]
robotics control.

VIlI. ACKNOWLEDGEMENTS [15]

The “Assemble and Animate” project was funded by the

Danish Council for Independent Research.

(1]

(2]

(3]

(4]

(5]

[16]

REFERENCES [17]
M. P. Ashley-Roliman, P. Lee, S. C. Goldstein, P. Pillandal. D.
Campbell. A language for large ensembles of independentigutixg

nodes. InProceedings of the 25th International Conference on Logiq18]
Programming ICLP '09, pages 265-280, Berlin, Heidelberg, 2009.
Springer-Verlag.

D. Brandt, J. C. Larsen, D. J. Christensen, R. F. G. Meadoz [19]
D. Shaikh, U. P. Schultz, and K. Stoy. Flexible, fpga-badedteonics [20]
for modular robots. InProceedings of the IROS'08 Workshop on
Self-Reconfigurable Robots & Systems and Applicatidite, France,
September 22 2008.

D. J. Christensen, U. P. Schultz, D. Brandt, and K. Stoyurfified [21]
simulator for self-reconfigurable robots. Rroceedings of IEEE/RSJ
International Conference on Intelligent Robots and Systgmages
870-876, 2008. [22]
D. J. Christensen, A. Sproewitz, and A. J. ljspeert. fbsted
online learning of central pattern generators in modulaot®b In [23]
Proceedings of the 11th International Conference on Sitiariaof
Adaptive Behavior (SAB2010paris, France, August 2010. [24]

M. De Rosa, S. C. Goldstein, P. Lee, J. D. Campbell, and IRi Pi
Programming modular robots with locally distributed predésat In
Proceedings of the IEEE International Conference on Rakoéind
Automation ICRA '082008.

(Left) The Playte: an tangible interface for behasibased robot control. (Center) Different predefined aathable behavior-bricks. (Right)

T. Fukuda and S. Nakagawa. Dynamically reconfigurableotich
system. InProceedings of the IEEE International Conference on
Robotics & Automation (ICRA'88pages 1581-1586, 1988.

B. T. Kirby, M. Ashley-Rollman, and S. C. Goldstein. Blipklocks: a
physical ensemble programming platform.Rroceedings of the 2011
annual conference extended abstracts on Human factorsritpating
systemsCHI EA '11, pages 1111-1116, NY, USA, 2011. ACM.

J. Kramer and M. Scheutz. Development environments forantmus
mobile robots: A surveyAutonomous Robat®2(2):101-132, 2007.
H. Kurokawa, K. Tomita, K. Kamimura, S. Kokaji, T. Hasuo, and
S. Murata. Distributed self-reconfiguration of M-TRAN Il rdolar
robotic system. International Journal of Robotics Research7(3-
4):373-386, 2008.

J. C. Larsen, R. F. M. Garcia, and K. Stoy. Increasedatsity of
modular robots through layered heterogeneity.Ploceedings of the
ICRA Workshop on Modular Robots, State of the, petges 2429,
Anchorage, Alaska, May 2010.

P. Levis, S. Madden, J. Polastre, R. Szewczyk, A. Wodz8y, J. Hill,

M. Welsh, E. Brewer, and D. Culler. Tinyos: An operating systfor
sensor networks. Ilmbient IntelligenceSpringer Verlag, 2004.

H. H. Lund. Modular interactive tiles for rehabilitati: evidence and
effect. In Proceedings of the 10th WSEAS international conference
on Applied computer sciencACS’10, pages 520-525, Stevens Point,
Wisconsin, USA, 2010. World Scientific and Engineering Aeag
and Society (WSEAS).

A. Lyder, R. F. M. Garcia, and K. Stoy. Mechanical desajrodin, an
extendable heterogeneous deformable modular roboRrdneedings
of the IEEE/RSJ International Conference on Intelligenb&s and
Systems (IROS’2008)ages 883—-888, Nice, France, September 2008.
N. Mohamed, J. Al-Jaroodi, and |. Jawhar. Middleware ribotics:

A survey. InlEEE Conference on Robotics, Automation and Mecha-
tronics pages 736—-742. IEEE, 2008.

E. H. Ostergaard, K. Kassow, R. Beck, and H. H. Lund. Besif the
ATRON lattice-based self-reconfigurable rob@&utonomous Robats
21:165-183, 2006.

M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, Xils,

E. Berger, R. Wheeler, and A. Ng. Ros: an open-source roboatipe
system. InNICRA Workshop on Open Source Softw&09.

U. P. Schultz, D. J. Christensen, and K. Stoy. A domaieetic
language for programming self-reconfigurable robots. Warkshop
on Automatic Program Generation for Embedded Systems (ARGE
pages 28-36, October 2007.

U.P. Schultz, M. Bordignon, and K. Stoy. Robust and rsige
execution of self-reconfiguration sequenceskobotica 29:35-57,
2011.

R. Smith. Open dynamics engine. www.ode.org, 2005.

A. Sproewitz, A. Billard, P. Dillenbourg, and A. J. ljsprt. Roombots-
Mechanical design of Self-Reconfiguring modular robots fhaive
furniture. In 2009 IEEE International Conference on Robotics and
Automation pages 4259—4264, Kobe, Japan, 2009.

K. Stoy, D. Brandt, and D. J. Christenseé3elf-Reconfigurable Robots:
An Introduction Intelligent Robotics and Autonomous Agents series.
The MIT Press, 2010.

R. Vaughan. Massively multi-robot simulation in stageSwarm
Intelligence 2(2):189—-208, 2008.

Webots. http://www.cyberbotics.com. Commercial MobR@bot
Simulation Software.

M. Yim, W-M Shen, B Salemi, Daniela Rus, M. Moll, H Lipsoma

E Klavins. Modular self-reconfigurable robot systems: Grajes and
opportunities for the futurelEEE Robotics & Automation Magazine
14(1):43-52, March 2007.

