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Abstract— This paper describes the “Assemble and Animate”
(ASE) control framework. The objective of ASE is to provide
a flexible and extendable control framework, which facilitates
rapid development and deployment of modular reconfigurable
robots. ASE includes a simple event-driven application frame-
work, a library of common control and adaptation strategies,
and a module abstraction layer which allows ASE to be
cross-compiled for a number of different modular robotic
platforms and easily ported to new platforms. In this paper we
describe the design of ASE and present example applications
utilizing ASE for planetary contingency, adaptive locomotion,
self-reconfiguration, and tangible behavior-based programming.

I. I NTRODUCTION

Reconfigurable robots consist of robotic modules which
can be assembled or can self-reconfigure into numerous robot
configurations [6], [24], [21]. Developing a control program
for a modular robotic application is particular complex due
to its distributed nature and the many potential sources of
errors and limitations related to modules hardware, inter-
module communication, and embedded software. ASE is an
open-source1 control framework designed to facilitate this
development with the following design objectives:

Flexible: The polymorphic nature of modular robots
makes their mechatronics flexible, but this is generally not
true for the control which is often designed on a case-by-
case basis. ASE is designed to be flexible so that it can be
used and easily adapted to control very different robots in
different application scenarios.

Extendable: Modular robotics is an active research area
and new platforms and control strategies are continuously
proposed. ASE is therefore designed to be simple to extend
with new control strategies and simple to port to new modular
robotic platforms.

Limited Resources:Most modular robot are controlled by
small microcontrollers with limited computation and memory
resources. ASE is designed to fit and run on microcontrollers
having few kilobytes of RAM and at clock speeds of only a
few MHz.

Code Reuse: In modular robotics research a control
strategy must often be reimplemented for evaluation on new
platforms or applications. ASE supports code reuse both
between different applications and between different modular
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platforms (physical or simulated) by utilizing a module
abstraction layer.

In the rest of this paper we first review related work
in Section II, then provide an overview of the design and
implementation status of ASE in Section III, and finally
describe four example applications created utilizing the ASE
framework in Section V.

II. RELATED WORK

Numerous robotic development environment, frameworks,
and middleware have been developed for different areas
of robotics such as mobile robots and manipulators [8],
[14]. In several aspects the ASE framework is similar to
such systems since it provides an event-driven publish-
subscribe infrastructure to facilitate responsive interaction
between otherwise decoupled components (e.g. similar to
ROS [16]). Further, unlike most such systems ASE requires
no advanced OS features and can fits and runs on resource
constrained embedded devices such as most modular robots
(e.g. unlike Player [22] which requires a TCP stack and
threads). Also, ASE provides hardware abstraction for typical
modular robots equipped with simple neighbor-to-neighbor
communication and a library of common algorithms for
distributed coordination, adaptation, and control of modular
robots. Finally, ASE is much more limited than systems
such as ROS, Player/Stage, and Webots [11] since it does
not provide support for multiple programming languages
with higher-level abstractions, visualization/debugging tools,
integrated simulation environments, or powerful algorithms
for conventional monolithic robots such as vision, planning,
SLAM, etc. In short ASE is designed as a minimalistic
embedded distributed control framework for modular robots,
while other systems are more powerful and generic they
might not currently be a good match for such autonomous
resource constrained modular robots.

Several domain specific languages (DSL) have been pro-
posed for self-reconfigurable modular robots. DynaRole is
a DSL which introduces abstractions for module roles and
structure and compiles to virtual machine byte code for
control diffusion [17], [18]. Meld [1] and LDP [5] are two
programming language made primarily to program large
ensembles of self-reconfigurable Catom modules. Meld also
compiles to TinyOS nesC applications. ASE does not impose
a new programming language but does therefore also not
provide the same level of abstraction as these DSLs. Instead,
ASE is written in C (C99) to maximize portability and
integration with existing and new platforms.



TinyOS [11] is an event-driven operating system designed
for sensor networks, a similar operating system is not yet
available for modular robots, several existing systems there-
fore use TinyOS [7], [15], [2]. ASE can run on top of TinyOS
as it has been done for several versions of the ATRON.

Simulators can facilitate control development and enable
scale and optimization experiments not feasible on a physical
platform. Often a custom simulator is created each time a
new modular robot is developed. However, several simulators
are able to simulate several different systems. The open-
source Unified Simulator for Self-Reconfigurable Robots
(USSR) is an physics-based simulator designed to simulate
a number of different platforms [3]. Also the commercial
Webots simulator by Cyberbotics Ltd [23] is able to simulate
several existing modular robotic systems and can be extended
to simulate new systems without modifying its source code.
Both of these simulators are based on the Open Dynamic En-
gine (ODE) for collision detection and rigid body dynamics
[19]. ASE applications have previously controlled modular
robots in both of these simulators.

III. T HE ASE CONTROL FRAMEWORK

A. Overview of Architecture

The objective of ASE is to provide a flexible and extend-
able control framework which enables rapid development and
deployment of modular reconfigurable robots. To fulfill this
objective, the ASE control framework is designed with an
layered architecture (illustrated in Figure 1). The architecture
separates the “Hardware Layer” from the “Kernel Layer”
which might be everything from a full OS, simple firmware,
to a physics-based simulator. ASE interfaces to the “Kernel
Layer” through a “Target API” component which is the only
part of the “ASE Layer” that contains target specific code.
The “Application Layer” contains a “Module Controller”
which can be target independent if it does not use the
specific “Target API”. The “ASE Layer” itself consist of the
following parts: 1) Target Module API, 2) Abstract Module
API, 3) Application Framework and 4) Control Library.
Below we explain the design of each of these parts and
explain how to utilize ASE and how to port it to new
platforms.

B. Target Module API

The Target Module API is used by the Abstract Module
API and the Module Controller to provide access to the
module’s actuators, sensors, and communication devices by
utilizing the kernel layer. In order to port the ASE framework
to a new modular platform a Target Module API must
therefore be implemented. As an example, the following
functions are part of the Target API for the ATRON system:

long atronApi_getMsTime();
int atronApi_sendMessage(...);
void atronApi_rotateToDegree(float rad);
void atronApi_connect(int channelID);
int atronApi_getBatteryLevel();
...

Fig. 1. Layered architecture of a modular robot using the ASE framework.

In most cases module controllers developed in ASE will
use the Target API for application specific hardware ac-
cess. Therefore, to maintain application portability between
the physical and simulated robots the Target API must be
identical for both the physical and simulated target and the
application should only access the “Kernel Layer” through
the Target API.

C. Abstract Module API

The Abstract Module API uses the Target Module API to
implement a number of functions required by the Control
Library and Application Framework in a target independent
fashion. For example the following functions are part of the
Abstract Module API:

long getLocalMsTime();
int getHardwareID();
int getNumberOfNeighborChannels();
int sendMessageToNeighbor(char* msg, ...);
int setActuatorPosition(float pos, int actID);
float getActuatorPosition(int actID);
...

As a general rule, to keep the interface generic, every
actuator, sensor and communication channel is indexed (0,
1, 2, ...) and return values for sensors and actuators positions
are scaled from 0.0-1.0.

D. Application Framework

The Application Framework provides an event-driven
intra-module publish-subscribe infrastructure for both the
Module Controller as well as for the Control Library. The
Framework imposes an initialization phase followed by a
runtime phase. Here we will describe the Framework through
a couple of small controller examples.



The first step in the initialization phase is for the Kernel
Layer to initialize ASE by invokingase_init(...). This in
turns invokes the Module Controller’scontroller_init(),
which will potentially initialize parts of the ASE Control
Library or subscribe for a number of Events. The following
is a fully functional module controller which will subscribe
to anACT_EVENT and therefore receive a callback periodically
which is used to drive a sine-based control of actuator
indexed 0:

#include <math.h>
#include <ase/Infrastructure.h>
#include <ase/targets/AbstractModuleApi.h>

void ctrl_act(char* topic, Event_t* event) {
float pos = (1 + sin(getLocalTime()))/4.0f;
setActuatorPosition(pos, 0);

}

void controller_init() {
EventManager_subscribe(ACT_EVENT, ctrl_act);

}

In the runtime phase the Kernel Layer periodically evokes
ase_act() which will cause the Framework to publish an
ACT_EVENT. Generally, events are used throughout ASE both
in the Application Framework and Control Library as a way
to decouple components and ensure responsiveness. With
respect to inter-module data communication, ASE imposes a
specific 3 byte message header:

Type Label Data
1 byte 2 bytes N bytes

The message header consists of a Type and a Label field.
The Type field enables ASE to route a message (currently
only intra-module) to the specific strategy type which is
subscribing for that message type. The Label field allows
several strategies of the same type but with different labels
to communicate directly. Usually a particular communication
stack provided by the target platform requires another mes-
sage format, and then ASE messages are simply wrapped
inside such a message at the Target API. The following
example illustrates the use of timers and how a controller
can subscribe to a particular message typeLED_MSG:

#define LED_MSG 128
Timer_t* timer;
void timer_fired(int id) { //evoked every 200 ms

char msg[4] = {LED_MSG, 0, 0, atronApi_getLeds()};
sendMessageToAllNeighbors(msg, sizeof(msg));

}

void handle_msg(Msg_t* msg) {
atronApi_setLeds(msg->message[3]+1);

}

void controller_init() {
MsgManager_subscribe(LED_MSG, handle_msg);
timer = TimerManager_createPeriodicTimer(

200, 0, timer_fired);
}

This ATRON controller creates a periodic timer to send
messages contaning its LEDs state to neighbor modules. The
LEDs will count if the modules are able to communicate. The
same mechanisms for message routing and timers are used
by the strategies in the Control Library.

E. Control Library

The Control Library part of ASE provides a number of
strategies which are self-contained, self-driven, and target-
independent code that can be combined into specific module
controllers to produce the desired robot behavior. The differ-
ent categories are:

Control: Numerous ways to control modular robots have
been proposed. ASE provides generic implementations of
some of the most common.

Adaptation: Modular robots are more than conventional
robots required to be adaptive due to their metamorphic na-
ture. Therefore, ASE provides a number of machine learning
algorithms to help implement adaptive applications in ASE.

Communication: ASE provides a number of distributed
communication strategies to simplify coordination of the
different modules within a robot.

Behaviors: Several control strategies and machine learn-
ing strategies have been combined into behaviors which are
included in ASE.

Arbitration: Mechanisms to arbitrate several active be-
haviors are included in ASE.

Tools: Various tools and utilities, which are used by ASE
itself, or can be used directly by the application.

In order to simplify the controller development the strate-
gies are self-contained and self-driven when appropriate.
The self-driven behavior is implemented through the use of
special components which manage a particular strategy. The
controller will initialize and start a strategy, which willthen
run independently by using the event-driven infrastructure
provided by the ASE applications framework. The controller
can modify the strategy’s runtime behavior through its API or
the strategy may publish an event or use a call back function
to interact with the module controller. Further, to make a
strategy self-contained its data is encapsulated in a single
data structure which allows the controller to concurrently
utilize several strategies of the same type. As an example
consider the following simple controller:

Gradient_t *g0;
void handler(char* topic, Event_t* event) {

Gradient_t* g = (Gradient_t*)event->val_prt;
ase_printf("Gradient=%i\n", Gradient_getValue(g));

}

void controller_init() {
EventManager_subscribe(

GRADIENT_UPDATED_EVENT, handler);
g0 = GradientManager_createGradient(99, 1.0f);
GradientManager_startGradient(g0);
if(getHardwareID()==3) {
Gradient_setSeed(g0, true, 5);

}
}

This controller creates a gradient with label 99 which stateis
transmitted to the neighbor modules at a rate of 1.0 Hz. The
gradient on module with id = 3 is set to seed with a value of
5 so that its neighbors will get gradient value 4, and so forth.
Each time a gradient value is changed an event is triggered
causing the handler function to print out the current gradient
value.



Module Simulator Kernel MCU
ATRON [15] USSR TinyOS Atmega128

ATRON-FPGA [2] USSR TinyOS MicroBlaze
LocoKit [10] - USB2Dynamixel Remote control
PlayTiles [12] - Custom Firmware Atmega1280

Bioloid - CM510 Firmware Atmega2561
Roombots [20] Webots - PC only

Odin [13] USSR - PC only
M-TRAN [9] USSR - PC only

TABLE I

MODULAR ROBOTICSTARGETS INCLUDED IN ASE

IV. CURRENT IMPLEMENTATION STATUS

A. Implemented Targets

The currently available modular robotic targets in ASE are
listed in Table I. In addition ASE has been used on several
not-yet-public platforms. The most resource constrained of
these microcontrollers is the Atmega128, which has 4KB
SRAM, 128 KB Flash and runs at 16 MHz, however, we
expect no issues with running ASE on even more resource
constrained systems. ASE has been made to run as a stan-
dalone kernel with the hardware drivers implemented directly
in the Module Target API or on top of TinyOS which
provides communication stacks, drivers, etc. In addition to
the physical platforms ASE has been used to control modular
robots both in the USSR and the Webots simulators.

B. Implemented Control

The Control Library is partly developed to support the
authors own research in modular robotics control. The in-
cluded strategies are therefore somewhat biased. However,
even if an application requires different strategies than those
included, the ASE framework will support the development
of event-driven applications which are easily ported between
simulated and physical platforms. The strategies currently
implemented in ASE include:

Control: Distributed strategies include average consensus,
artificial gradients, distributed state machines, and central-
pattern generators. Centralized strategies include artificial
neural networks and record/playback control.

Adaptation: Machine learning techniques to enable adap-
tation includes random search, simultaneous perturbation
stochastic approximation, genetic algorithms, particle swarm
optimization, k-nearest-neighbors algorithm, and distributed
reinforcement learning.

Communication: Strategies to enable remote control,
information broadcast and gossip as well as shared timers
and state sharing are included.

Behaviors: Generic behaviors include locomotion based
on central pattern generators and adaptive CPG gaits. Self-
reconfiguration behaviors are currently included exclusively
for ATRON (based on DynaRole scripting).

Arbitration: Subsumption architecture.
Tools: Timers, protothreads, as well as several domain

specific data structures.

V. EXAMPLE APPLICATIONS

This section describes four different example applications
which are using the ASE control framework to achieve

different objectives. The purpose here is to illustrate the
diversity of ASE and the advantages of utilizing a multi-
target framework.

A. Planetary Contingency Challenge

An ASE application was developed and utilized by the
winning ATRON team at the Planetary Contingency Chal-
lenge at ICRA 2010. In this competition a robotic solution
to an unforeseen problem must quickly be developed and
deployed using only available materials. See Figure 2.

To address this challenge a user interface called “modu-
lar commander” was developed for flexible remote control
from a laptop. The laptop communicated wireless with the
ATRON robot by utilizing an XBee dongle. The ATRON-
FPGA modules main processor is a softcore MicroBlaze
running on an FPGA. The softcore was running TinyOS and
the Target API was implemented directly in nesC utilizing
TinyOS to control the actuators, communication etc. Before
the competition started each ATRON-FPGA module was
programmed with identical ASE controllers developed to
provide flexible and reliable remote control and monitoring
of the state of the module. A special RC strategy part of the
ASE control library would enable the controller to subscribe
to specific events triggered by received command messages.
Command messages sent from the PC could be broadcasted
or addressed to specific module IDs. The RC strategy would
handle the potential routing of messages between modules
and invoke handlers part of the controller when the module
received a new command. The control handler would then
implement the appropriate response by controlling the leds,
center actuator, or connectors. A timer would periodically
trigger a message to be sent back containing the status
(communication event counts, battery level, motor position,
etc.) for monitoring on the laptop.

B. Distributed Online Learning

To study morphology independent adaptive locomotion of
modular robots we developed an ASE application utilizing
central pattern generators and a stochastic optimization ap-
proach (SPSA). A CPG network of coupled oscillators would
control the gait of a robot. Each DOF would be controlled
by a single oscillator part of the CPG network. Based
on velocity feedback the oscillators parameters (amplitude,
phase, and offset) would be optimized online. The control
application is fully distributed utilizing only neighbor to
neighbor communication with each module computing its
local subset of the CPG network and optimizing its own
parameters based on SPSA.

The ASE framework enabled us to develop the application
largely independent on the particular robotic platform. We
therefore evaluated the strategy on two different platforms
by only modifying the top-level platform specific part of
the application. Most of the active code could be used on
both platforms. The control strategy was first evaluated on
simulated Roombots robots [4] and later on the physical
LocoKit robot. The Roombots was simulated with the We-
bots simulator which can be programmed in C which allows



Fig. 2. (Left) ATRON robot equipped with several ad hoc toolsfor solving a problem during the 2010 ICRA Planetary Contingency Challenge. (Center)
and (Right) Roombot simulated in Webots simulator and physicalLocoKit robot, both controlled with the same adaptive strategy implemented in the ASE
control framework.

Fig. 3. ATRON self-reconfiguration sequence controlled with DynaRole
script compiled to ASE application.

us to directly implement the Target API by utilizing the
Webots API. The physical LocoKit quadruped was mounted
on a boom which made the robot move in a circle. The
rotation of the boom was measured by an encoder read by a
microcontroller and sent using ZigBee to a PC. The PC was
running the adaptive locomotion ASE controller which used
the velocity feedback to optimize the open parameters of the
coupled oscillators comprising the central pattern generator.
The Target API for the LocoKit would utilize a USB to
RS485 communication converter to remote control the robots
Dynamixel actuators. We observed from these experiments
that the same control strategy with only minor parameter
adjustments was able to optimize the gait of both types of
robots. The two robots are show in Figure 2.

C. DynaRole - Scripting ATRON Self-Reconfiguration

DynaRole is a domain specific language which amongst
other things provide the possibility to script ATRON self-
reconfiguration sequences [18]. Such scripts compile to
distributed control programs which use a distributed state
machine to coordinate the sequence of self-reconfiguration
steps. This scripting approach is much simpler that having
to write and debug the distributed control program by hand.
We have therefore made a backend for DynaRole which
compiles to ASE control strategies that can be utilized by
a controller. In this way ASE can for example provide the
locomotion control for several ATRON morphologies while
the DynaRole scripts will enable the robot to self-reconfigure
between the different morphologies. ASE enables a Dyna-
Role script to first be debugged in the USSR simulator before
it is cross-compiled and downloaded to the physical ATRON
modules. As an example the following DynaRole script
allows self-reconfiguration from an eight-module ATRON
snake to a standard ATRON configuration called “Shift-8”,
and moreover automatically provides the reverse sequence
needed to reconfigure the robot back to the snake shape:

role M1 extends Module { require (self.id==1); }
role M2 extends Module { require (self.id==2); }
...

sequence snake2shift8 {
M2.rotateFromToBy(0,180,false,150) |
M3.rotateFromToBy(0,180,false,150) |
M6.rotateFromToBy(0,180,true,150) |
M7.rotateFromToBy(0,180,true,150);
M1.Connector[4].extend() |
M1.Connector[6].extend() |
M5.Connector[4].extend();

}
sequence shift82snake = reverse snake2shift8;
...

Figure 3 shows the corresponding self-reconfiguration se-
quence in the USSR simulator. Note how DynaRole allows
both parallel and sequential actions using syntax of ‘|’ and
‘;’ respectively.

D. Playte - Programming with Behaviors

This ASE application was made to explore physical pro-
gramming of modular robots. The objective was to create a
very simple interface for kids to play with the behavior of
modular robotic creatures that they potentially could build
themselves.

To explore this objective we designed a tangible interface
called Playte. Playte allows a user to control a robot with
small behavior programs represented by special Lego behav-
ior bricks containing an resistor for identification (see Figure
4). The Playte has ten slots where the user can place behavior
bricks. The first row of five slots selects which behaviors are
active in the robot. The last row of five slots allows the
user to delete a behavior, record a behavior, train a behavior,
and combine several behaviors into a new behavior using
training. Training is performed with a gamepad controlling
the robots actuators. The state of the Playte is repeatedly
read by a microcontroller which sends the brick IDs through
a PC to the ASE application running on the robot.

The ASE application provides the required functionality
of the robot to allow it to be controlled by the state of
the Playte and the gamepad. A number of simple behaviors
are implemented and a subsumption architecture provides
the arbitration between several active behaviors. Training is
implemented by utilizing a k-nearest neighbor algorithm (k-
NN). When a behavior brick is trained the system samples
training data as a mapping from the robot’s sensor input
to the motor output controlled with the gamepad. When
the trained behavior brick is made active on the Playte
the system uses the k-NN algorithm to find the appropriate



Fig. 4. (Left) The Playte: an tangible interface for behaviors-based robot control. (Center) Different predefined and trainable behavior-bricks. (Right)
Example Bioloid robots that can be controlled from the Playte.

motor output in the given sensory situation. Similarly, for
combining behaviors the behaviors are selected using number
buttons on the gamepad (1-5) and a k-NN is trained to map
the current sensory state to a selection of behaviors.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented the “Assemble and Animate”
control framework for modular reconfigurable robots. ASE
can, by utilizing an Abstract Module API, be cross-compiled
for multiple different targets and new targets can be added
simply by providing a Target Module API. To enable rapid
development, ASE includes a Control Library containing
common communication, control, and adaptation strategies.
Further, an Application Framework provides an event-driven
infrastructure to the application. Finally, ASE is designed
to run on resource constrained modular robots. We have
described the design of ASE and presented several appli-
cations on planetary contingency, adaptive locomotion, self-
reconfiguration, and tangible behavior-based programming
to illustrate its range of use. For future work, we plan to
continue to maintain, extend, and improve the ASE control
framework as part of our ongoing research on modular
robotics control.
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