IROS 2014 Program At A Glance

	Track 1 Grand Ballroom	Track 2 State Ballroom	Track 3 Red Lacguer Room	Interactive Salons	Crystal Room	Exhibit Hall
8:30-17:00		Sunday September 1 Workshops and Tutorials	4			Setup
18:00-19:30	Welcome	Reception				
			-			
8:00-8:20	Conference	Welcome Monday September 1	.5			
8.20-9.10	Plenary I: The Ques	it for Robotic Vision				
0.20 5.10	Peter Corke, Queens	and U of Technology	Mada	7		
9:20-10:40	MOA1 Manipulation and Grasping I	Localization and Mapping I	Bioinspired Robots I			
	Robust and Optimal Control	Motion and Path Planning I	Multi-Robot Coordination			
10:40-11:10		Coffee Break		_		
11.10 12.20	MoB1	MoB2	MoB3			
11.10-12.50	Kinematics and Mechanism Design I	Robot Learning I	Visual Servoing	IVIUA TAIKS		
12:30-13:50		Lunch; RSJ Power Lunch				Exhibits
	MoC1	MoC2	MoC3			
13:50-15:10	Micro-Nano Robots I	Humanoids and Bipeds I	Bioinspired Robots II	MoB Talks		
	MoD1	MoD2	Distributed Robotics		Government Forum	
15:20-16:40	Haptics	Human-Robot Interaction I	Formal Methods	MoC Talks		
	Surgical Robotics I Robot Learning II Software and Architecture					
Evening Explore Chicago Social Events						
Tuaday Santambar 16						
Plenary II: Development of Neural Interfaces for Robotic Prosthetic Limbs						
8:00-8:50	Todd Kuiken, Rehab Inst of Ch	icago and Northwestern Univ				
0.00 10.20	TuA1 Manipulation and Grasping III	TuA2 Motion and Path Planning II	TuA3	MoD Talks		
9.00-10.20	Parallel Robotics	Localization and Mapping II	Field Robotics	WIOD TAIKS		
10:20-10:50		Coffee Break				
	TuB1	TuB2	TuB3			
10:50-12:10	Medical Robots and Systems I	Human-Robot Interaction II	Marine Robotics	TuA Talks	Inductor	
12.10-13.30	Rehabilitation Robotics I	RODOT Learning III	space Robotics		Forum:	
12:10-13:30 Lunch; IEEE RAS Women in Engineering Lunch Persp			ectives			
	TuC1	TuC2	TuC3		Perspectives	e 1 11 11
13:30-14:50	TuC1 Dynamics and Control	TuC2 Humanoids and Bipeds II	TuC3 Localization and Mapping III	TuB Talks	Perspectives on Entrepre- neurship in	Exhibits
13:30-14:50	TuC1 Dynamics and Control Manipulation and Grasping IV	TuC2 Humanoids and Bipeds II Domestic and Interactive Robots	TuC3 Localization and Mapping III Visual Servoing and Tracking	TuB Talks	Perspectives on Entrepre- neurship in Robotics and	Exhibits
13:30-14:50	TuC1 Dynamics and Control Manipulation and Grasping IV TuD1 Actuators	TuC2 Humanoids and Bipeds II Domestic and Interactive Robots TuD2 Reasoning and Al Planning	TuC3 Localization and Mapping III Visual Servoing and Tracking TuD3 Sensing I	TuB Talks	Perspectives on Entrepre- neurship in Robotics and Automation	Exhibits
13:30-14:50 15:00-16:20	TuC1 Dynamics and Control Manipulation and Grasping IV TuD1 Actuators Kinematics and Mechanism Design II	TuC2 Humanoids and Bipeds II Domestic and Interactive Robots TuD2 Reasoning and AI Planning Path and Task Planning	TuC3 Localization and Mapping III Visual Servoing and Tracking TuD3 Sensing I Sensing for Human Environments	TuB Talks TuC Talks	Perspectives on Entrepre- neurship in Robotics and Automation	Exhibits
13:30-14:50 15:00-16:20 16:20-16:50	TuC1 Dynamics and Control Manipulation and Grasping IV TuD1 Actuators Kinematics and Mechanism Design II	TuC2 Humanoids and Bipeds II Domestic and Interactive Robots TuD2 Reasoning and AI Planning Path and Task Planning Coffee Break	TuC3 Localization and Mapping III Visual Servoing and Tracking TuD3 Sensing I Sensing for Human Environments	TuB Talks TuC Talks	Perspectives on Entrepre- neurship in Robotics and Automation	Exhibits
13:30-14:50 15:00-16:20 16:20-16:50	TuC1 Dynamics and Control Manipulation and Grasping IV TuD1 Actuators Kinematics and Mechanism Design II TuE1	TuC2 Humanoids and Bipeds II Domestic and Interactive Robots TuD2 Reasoning and Al Planning Path and Task Planning Coffee Break TuE2	TuC3 Localization and Mapping III Visual Servoing and Tracking TuD3 Sensing I Sensing for Human Environments TuE3	TuB Talks TuC Talks	Perspectives on Entrepre- neurship in Robotics and Automation	Exhibits
13:30-14:50 15:00-16:20 16:20-16:50 16:50-17:55	TuC1 Dynamics and Control Manipulation and Grasping IV TuD1 Actuators Kinematics and Mechanism Design II TuE1 Constrained and Underactuated Robots	TuC2 Humanoids and Bipeds II Domestic and Interactive Robots TuD2 Reasoning and AI Planning Path and Task Planning Coffee Break TuE2 Human-Robot Interaction III Graso Learning	TuC3 Localization and Mapping III Visual Servoing and Tracking TuD3 Sensing I Sensing for Human Environments TuE3 Unmanned Aerial Systems I Localization and Pose Estimation	TuB Talks TuC Talks TuD Talks	Perspectives on Entrepre- neurship in Robotics and Automation	Exhibits
13:30-14:50 15:00-16:20 16:20-16:50 16:50-17:55 18:30-21:30	TuC1 Dynamics and Control Manipulation and Grasping IV TuD1 Actuators Kinematics and Mechanism Design II TuE1 Constrained and Underactuated Robots Legged Robots I Banque	TuC2 Humanoids and Bipeds II Domestic and Interactive Robots TuD2 Reasoning and AI Planning Path and Task Planning Coffee Break TuE2 Human-Robot Interaction III Grasp Learning t at the Art Institute of Chicago. 111 S Michi	TuC3 Localization and Mapping III Visual Servoing and Tracking TuD3 Sensing I Sensing for Human Environments TuE3 Unmanned Aerial Systems I Localization and Pose Estimation	TuB Talks TuC Talks TuD Talks	Perspectives on Entrepre- neurship in Robotics and Automation	Exhibits
13:30-14:50 15:00-16:20 16:20-16:50 16:50-17:55 18:30-21:30	TuC1 Dynamics and Control Manipulation and Grasping IV TuD1 Actuators Kinematics and Mechanism Design II TuE1 Constrained and Underactuated Robots Legged Robots I Banque	TuC2 Humanoids and Bipeds II Domestic and Interactive Robots TuD2 Reasoning and Al Planning Path and Task Planning Coffee Break TuE2 Human-Robot Interaction III Grasp Learning t at the Art Institute of Chicago, 111 S Michig	TuC3 Localization and Mapping III Visual Servoing and Tracking TuD3 Sensing I Sensing for Human Environments TuE3 Unmanned Aerial Systems I Localization and Pose Estimation gan Ave	TuB Talks TuC Talks TuD Talks	Perspectives on Entrepre- neurship in Robotics and Automation	Exhibits
13:30-14:50 15:00-16:20 16:20-16:50 16:50-17:55 18:30-21:30	TuC1 Dynamics and Control Manipulation and Grasping IV TuD1 Actuators Kinematics and Mechanism Design II TuE1 Constrained and Underactuated Robots Legged Robots I Banque	TuC2 Humanoids and Bipeds II Domestic and Interactive Robots TuD2 Reasoning and Al Planning Path and Task Planning Coffee Break TuE2 Human-Robot Interaction III Grasp Learning t at the Art Institute of Chicago, 111 S Michig Wednesday September	TuC3 Localization and Mapping III Visual Servoing and Tracking TuD3 Sensing I Sensing for Human Environments TuE3 Unmanned Aerial Systems I Localization and Pose Estimation gan Ave	TuB Talks TuC Talks TuD Talks	Perspectives on Entrepre- neurship in Robotics and Automation	Exhibits
13:30-14:50 15:00-16:20 16:20-16:50 16:50-17:55 18:30-21:30 8:00-8:50	TuC1 Dynamics and Control Manipulation and Grasping IV TuD1 Actuators Kinematics and Mechanism Design II TuE1 Constrained and Underactuated Robots Legged Robots I Banque Plenary III: From Visual SLAM to Ge	TuC2 Humanoids and Bipeds II Domestic and Interactive Robots TuD2 Reasoning and Al Planning Path and Task Planning Coffee Break TuE2 Human-Robot Interaction III Grasp Learning t at the Art Institute of Chicago, 111 S Michig Wednesday September heric Real-time 3D Scene Perception herical College London	TuC3 Localization and Mapping III Visual Servoing and Tracking TuD3 Sensing I Sensing for Human Environments TuE3 Unmanned Aerial Systems I Localization and Pose Estimation gan Ave	TuB Talks TuC Talks TuD Talks	Perspectives on Entrepre- neurship in Robotics and Automation	Exhibits
13:30-14:50 15:00-16:20 16:20-16:50 16:50-17:55 18:30-21:30 8:00-8:50	TuC1 Dynamics and Control Manipulation and Grasping IV TuD1 Actuators Kinematics and Mechanism Design II TuE1 Constrained and Underactuated Robots Legged Robots I Banque Plenary III: From Visual SLAM to Ge Andrew Davison, Imp WeA1	TuC2 Humanoids and Bipeds II Domestic and Interactive Robots TuD2 Reasoning and Al Planning Path and Task Planning Coffee Break TuE2 Human-Robot Interaction III Grasp Learning t at the Art Institute of Chicago, 111 S Michig Wednesday September heric Real-time 3D Scene Perception herial College London WeA2	TuC3 Localization and Mapping III Visual Servoing and Tracking TuD3 Sensing I Sensing for Human Environments TuE3 Unmanned Aerial Systems I Localization and Pose Estimation gan Ave	TuB Talks TuC Talks TuD Talks	Perspectives on Entrepre- neurship in Robotics and Automation	Exhibits
13:30-14:50 15:00-16:20 16:20-16:50 16:50-17:55 18:30-21:30 8:00-8:50 9:00-10:20	TuC1 Dynamics and Control Manipulation and Grasping IV TuD1 Actuators Kinematics and Mechanism Design II TuE1 Constrained and Underactuated Robots Legged Robots I Banque Plenary III: From Visual SLAM to Ge Andrew Davison, Imp WeA1 Medical Robots and Systems II	TuC2 Humanoids and Bipeds II Domestic and Interactive Robots TuD2 Reasoning and Al Planning Path and Task Planning Coffee Break TuE2 Human-Robot Interaction III Grasp Learning t at the Art Institute of Chicago, 111 S Michig Wednesday September neric Real-time 3D Scene Perception berial College London WeA2 Motion and Path Planning III	TuC3 Localization and Mapping III Visual Servoing and Tracking TuD3 Sensing I Sensing for Human Environments TuE3 Unmanned Aerial Systems I Localization and Pose Estimation gan Ave	TuB Talks TuC Talks TuD Talks TuD Talks TuE Talks	Perspectives on Entrepre- neurship in Robotics and Automation	Exhibits
13:30-14:50 15:00-16:20 16:20-16:50 16:50-17:55 18:30-21:30 8:00-8:50 9:00-10:20	TuC1 Dynamics and Control Manipulation and Grasping IV TuD1 Actuators Kinematics and Mechanism Design II TuE1 Constrained and Underactuated Robots Legged Robots I Banque Plenary III: From Visual SLAM to Ge Andrew Davison, Imp WeA1 Medical Robots and Systems II Rehabilitation Robotics II	TuC2 Humanoids and Bipeds II Domestic and Interactive Robots TuD2 Reasoning and Al Planning Path and Task Planning Coffee Break TuE2 Human-Robot Interaction III Grasp Learning t at the Art Institute of Chicago, 111 S Michig Wednesday September neric Real-time 3D Scene Perception berial College London WeA2 Motion and Path Planning III Planning, Failure Detection and Recovery	TuC3 Localization and Mapping III Visual Servoing and Tracking TuD3 Sensing I Sensing for Human Environments TuE3 Unmanned Aerial Systems I Localization and Pose Estimation gan Ave 17 WeA3 Networked Robots Swarm Robotics	TuB Talks TuC Talks TuD Talks TuE Talks	Perspectives on Entrepre- neurship in Robotics and Automation	Exhibits
13:30-14:50 15:00-16:20 16:20-16:50 16:50-17:55 18:30-21:30 8:00-8:50 9:00-10:20 10:20-10:50	TuC1 Dynamics and Control Manipulation and Grasping IV TuD1 Actuators Kinematics and Mechanism Design II TuE1 Constrained and Underactuated Robots Legged Robots I Banque Plenary III: From Visual SLAM to Ge Andrew Davison, Imp WeA1 Medical Robots and Systems II Rehabilitation Robotics II	TuC2 Humanoids and Bipeds II Domestic and Interactive Robots TuD2 Reasoning and Al Planning Path and Task Planning Coffee Break TuE2 Human-Robot Interaction III Grasp Learning t at the Art Institute of Chicago, 111 S Michig Wednesday September neric Real-time 3D Scene Perception berial College London WeA2 Motion and Path Planning III Planning, Failure Detection and Recovery Coffee Break WeA2	TuC3 Localization and Mapping III Visual Servoing and Tracking TuD3 Sensing I Sensing for Human Environments TuE3 Unmanned Aerial Systems I Localization and Pose Estimation gan Ave 17 WeA3 Networked Robots Swarm Robotics	TuB Talks TuC Talks TuD Talks TuE Talks	Perspectives on Entrepre- neurship in Robotics and Automation	Exhibits
13:30-14:50 15:00-16:20 16:20-16:50 16:50-17:55 18:30-21:30 8:00-8:50 9:00-10:20 10:20-10:50 10:50-12:10	TuC1 Dynamics and Control Manipulation and Grasping IV TuD1 Actuators Kinematics and Mechanism Design II TuE1 Constrained and Underactuated Robots Legged Robots I Banque Plenary III: From Visual SLAM to Ge Andrew Davison, Imp WeA1 Medical Robots and Systems II Rehabilitation Robotics II WeB1 Mechanisms and Actuators	TuC2 Humanoids and Bipeds II Domestic and Interactive Robots TuD2 Reasoning and Al Planning Path and Task Planning Coffee Break TuE2 Human-Robot Interaction III Grasp Learning t at the Art Institute of Chicago, 111 S Michig Wednesday September neric Real-time 3D Scene Perception berial College London WeA2 Motion and Path Planning III Planning, Failure Detection and Recovery Coffee Break WeB2 Humanoids and Bipeds III	TuC3 Localization and Mapping III Visual Servoing and Tracking TuD3 Sensing I Sensing for Human Environments TuE3 Unmanned Aerial Systems I Localization and Pose Estimation gan Ave 17 WeA3 Networked Robots Swarm Robotics WeB3 Collision Detection and Avoidance	TuB Talks TuC Talks TuD Talks TuE Talks WeA Talks	Perspectives on Entrepre- neurship in Robotics and Automation	Exhibits
13:30-14:50 15:00-16:20 16:20-16:50 16:50-17:55 18:30-21:30 8:00-8:50 9:00-10:20 10:20-10:50 10:50-12:10	TuC1 Dynamics and Control Manipulation and Grasping IV TuD1 Actuators Kinematics and Mechanism Design II TuE1 Constrained and Underactuated Robots Legged Robots I Banque Plenary III: From Visual SLAM to Ge Andrew Davison, Imp WeA1 Medical Robots and Systems II Rehabilitation Robotics II WeB1 Mechanisms and Actuators Force and Tactile Sensing	TuC2 Humanoids and Bipeds II Domestic and Interactive Robots TuD2 Reasoning and Al Planning Path and Task Planning Coffee Break TuE2 Human-Robot Interaction III Grasp Learning t at the Art Institute of Chicago, 111 S Michig Wednesday September neric Real-time 3D Scene Perception berial College London WeA2 Motion and Path Planning III Planning, Failure Detection and Recovery Coffee Break WeB2 Humanoids and Bipeds III Human Detection and Tracking	TuC3 Localization and Mapping III Visual Servoing and Tracking TuD3 Sensing I Sensing for Human Environments TuE3 Unmanned Aerial Systems I Localization and Pose Estimation gan Ave 17 WeA3 Networked Robots Swarm Robotics WeB3 Collision Detection and Avoidance Sensing II	TuB Talks TuC Talks TuD Talks TuE Talks WeA Talks	Perspectives on Entrepre- neurship in Robotics and Automation	Exhibits
13:30-14:50 15:00-16:20 16:20-16:50 16:50-17:55 18:30-21:30 8:00-8:50 9:00-10:20 10:20-10:50 10:50-12:10 12:10-13:10	TuC1 Dynamics and Control Manipulation and Grasping IV TuD1 Actuators Kinematics and Mechanism Design II TuE1 Constrained and Underactuated Robots Legged Robots I Banque Plenary III: From Visual SLAM to Ge Andrew Davison, Imp WeA1 Medical Robots and Systems II Rehabilitation Robotics II WeB1 Mechanisms and Actuators Force and Tactile Sensing Lunch; IEEE RAS You	TuC2 Humanoids and Bipeds II Domestic and Interactive Robots TuD2 Reasoning and Al Planning Path and Task Planning Coffee Break TuE2 Human-Robot Interaction III Grasp Learning t at the Art Institute of Chicago, 111 S Michig Wednesday September neric Real-time 3D Scene Perception berial College London WeA2 Motion and Path Planning III Planning, Failure Detection and Recovery Coffee Break WeB2 Humanoids and Bipeds III Human Detection and Tracking ung Professional Lunch and IEEE RAS Student	TuC3 Localization and Mapping III Visual Servoing and Tracking TuD3 Sensing I Sensing for Human Environments TuE3 Unmanned Aerial Systems I Localization and Pose Estimation gan Ave 17 WeA3 Networked Robots Swarm Robotics WeB3 Collision Detection and Avoidance Sensing II Lunch with Leaders	TuB Talks TuC Talks TuD Talks TuE Talks WeA Talks	Perspectives on Entrepre- neurship in Robotics and Automation	Exhibits
13:30-14:50 15:00-16:20 16:20-16:50 16:50-17:55 18:30-21:30 8:00-8:50 9:00-10:20 10:20-10:50 10:50-12:10 12:10-13:10 13:10-13:50	TuC1 Dynamics and Control Manipulation and Grasping IV TuD1 Actuators Kinematics and Mechanism Design II TuE1 Constrained and Underactuated Robots Legged Robots I Banque Plenary III: From Visual SLAM to Ge Andrew Davison, Imp WeA1 Medical Robots and Systems II Rehabilitation Robotics II WeB1 Mechanisms and Actuators Force and Tactile Sensing Lunch; IEEE RAS You Awards C	TuC2 Humanoids and Bipeds II Domestic and Interactive Robots TuD2 Reasoning and Al Planning Path and Task Planning Coffee Break TuE2 Human-Robot Interaction III Grasp Learning t at the Art Institute of Chicago, 111 S Michig Wednesday September neric Real-time 3D Scene Perception berial College London WeA2 Motion and Path Planning III Planning, Failure Detection and Recovery Coffee Break WeB2 Humanoids and Bipeds III Human Detection and Tracking ung Professional Lunch and IEEE RAS Student eremony	TuC3 Localization and Mapping III Visual Servoing and Tracking TuD3 Sensing I Sensing for Human Environments TuE3 Unmanned Aerial Systems I Localization and Pose Estimation gan Ave 17 WeA3 Networked Robots Swarm Robotics WeB3 Collision Detection and Avoidance Sensing II Lunch with Leaders	TuB Talks TuC Talks TuD Talks TuE Talks WeA Talks	Perspectives on Entrepre- neurship in Robotics and Automation	Exhibits
13:30-14:50 15:00-16:20 16:20-16:50 16:50-17:55 18:30-21:30 8:00-8:50 9:00-10:20 10:20-10:50 10:50-12:10 12:10-13:10 13:10-13:50 14:00-15:20	TuC1 Dynamics and Control Manipulation and Grasping IV TuD1 Actuators Kinematics and Mechanism Design II TuE1 Constrained and Underactuated Robots Legged Robots I Banque Plenary III: From Visual SLAM to Ge Andrew Davison, Imp WeA1 Medical Robots and Systems II Rehabilitation Robotics II WeB1 Mechanisms and Actuators Force and Tactile Sensing Lunch; IEEE RAS You Awards C WeC1 Surgizal Robotics II	TuC2 Humanoids and Bipeds II Domestic and Interactive Robots TuD2 Reasoning and AI Planning Path and Task Planning Coffee Break TuE2 Human-Robot Interaction III Grasp Learning t at the Art Institute of Chicago, 111 S Michig Wednesday September neric Real-time 3D Scene Perception berial College London WeA2 Motion and Path Planning III Planning, Failure Detection and Recovery Coffee Break WeB2 Humanoids and Bipeds III Human Detection and Tracking ung Professional Lunch and IEEE RAS Student eremony WeC2 Learning hy Demonstration	TuC3 Localization and Mapping III Visual Servoing and Tracking TuD3 Sensing I Sensing for Human Environments TuE3 Unmanned Aerial Systems I Localization and Pose Estimation gan Ave 17 WeA3 Networked Robots Swarm Robotics WeB3 Collision Detection and Avoidance Sensing II Lunch with Leaders WeC3 Localization and Mapping IV	TuB Talks TuC Talks TuD Talks TuE Talks WeA Talks	Perspectives on Entrepre- neurship in Robotics and Automation	Exhibits
13:30-14:50 15:00-16:20 16:20-16:50 16:50-17:55 18:30-21:30 8:00-8:50 9:00-10:20 10:20-10:50 10:50-12:10 12:10-13:10 13:10-13:50 14:00-15:20	TuC1 Dynamics and Control Manipulation and Grasping IV TuD1 Actuators Kinematics and Mechanism Design II TuE1 Constrained and Underactuated Robots Legged Robots I Banque Plenary III: From Visual SLAM to Ge Andrew Davison, Imp WeA1 Medical Robots and Systems II Rehabilitation Robotics II WeB1 Mechanisms and Actuators Force and Tactile Sensing Lunch; IEEE RAS You Awards C WeC1 Surgical Robotics II Teleoperation and Telerobotics	TuC2 Humanoids and Bipeds II Domestic and Interactive Robots TuD2 Reasoning and Al Planning Path and Task Planning Coffee Break TuE2 Human-Robot Interaction III Grasp Learning t at the Art Institute of Chicago, 111 S Michig Wednesday September neric Real-time 3D Scene Perception berial College London WeA2 Motion and Path Planning III Planning, Failure Detection and Recovery Coffee Break WeB2 Humanoids and Bipeds III Human Detection and Tracking ung Professional Lunch and IEEE RAS Student eremony WeC2 Learning by Demonstration Industrial and Manufacturing Robots	TuC3 Localization and Mapping III Visual Servoing and Tracking TuD3 Sensing I Sensing for Human Environments TuE3 Unmanned Aerial Systems I Localization and Pose Estimation gan Ave 17 WeA3 Networked Robots Swarm Robotics WeB3 Collision Detection and Avoidance Sensing II Lunch with Leaders WeC3 Localization and Mapping IV Locomtion, Navigation, and Mobility	TuB Talks TuC Talks TuD Talks TuE Talks WeA Talks WeB Talks	Perspectives on Entrepre- neurship in Robotics and Automation	Exhibits
13:30-14:50 15:00-16:20 16:20-16:50 16:50-17:55 18:30-21:30 8:00-8:50 9:00-10:20 10:20-10:50 10:50-12:10 12:10-13:10 13:10-13:50 14:00-15:20 15:20-15:50	TuC1 Dynamics and Control Manipulation and Grasping IV TuD1 Actuators Kinematics and Mechanism Design II TuE1 Constrained and Underactuated Robots Legged Robots I Banque Plenary III: From Visual SLAM to Ge Andrew Davison, Imp WeA1 Medical Robots and Systems II Rehabilitation Robotics II WeB1 Mechanisms and Actuators Force and Tactile Sensing Lunch; IEEE RAS You Awards C WeC1 Surgical Robotics II Teleoperation and Telerobotics	TuC2 Humanoids and Bipeds II Domestic and Interactive Robots TuD2 Reasoning and Al Planning Path and Task Planning Coffee Break TuE2 Human-Robot Interaction III Grasp Learning t at the Art Institute of Chicago, 111 S Michig Wednesday September neric Real-time 3D Scene Perception berial College London WeA2 Motion and Path Planning III Planning, Failure Detection and Recovery Coffee Break WeB2 Humanoids and Bipeds III Human Detection and Tracking ung Professional Lunch and IEEE RAS Student eremony WeC2 Learning by Demonstration Industrial and Manufacturing Robots Coffee Break	TuC3 Localization and Mapping III Visual Servoing and Tracking TuD3 Sensing I Sensing for Human Environments TuE3 Unmanned Aerial Systems I Localization and Pose Estimation gan Ave 17 WeA3 Networked Robots Swarm Robotics WeB3 Collision Detection and Avoidance Sensing II Lunch with Leaders WeC3 Localization and Mapping IV Loccalization and Mapping IV Loccalization, Navigation, and Mobility	TuB Talks TuC Talks TuD Talks TuE Talks WeA Talks WeB Talks	Perspectives on Entrepre- neurship in Robotics and Automation	Exhibits
13:30-14:50 15:00-16:20 16:20-16:50 16:50-17:55 18:30-21:30 8:00-8:50 9:00-10:20 10:20-10:50 10:50-12:10 12:10-13:10 13:10-13:50 14:00-15:20 15:20-15:50	TuC1 Dynamics and Control Manipulation and Grasping IV TuD1 Actuators Kinematics and Mechanism Design II TuE1 Constrained and Underactuated Robots Legged Robots I Banque Plenary III: From Visual SLAM to Ge Andrew Davison, Imp WeA1 Medical Robots and Systems II Rehabilitation Robotics II WeB1 Mechanisms and Actuators Force and Tactile Sensing Lunch; IEEE RAS You Awards C WeC1 Surgical Robotics II Teleoperation and Telerobotics WeD1	TuC2 Humanoids and Bipeds II Domestic and Interactive Robots TuD2 Reasoning and Al Planning Path and Task Planning Coffee Break TuE2 Human-Robot Interaction III Grasp Learning t at the Art Institute of Chicago, 111 S Michig Wednesday September neric Real-time 3D Scene Perception berial College London WeA2 Motion and Path Planning III Planning, Failure Detection and Recovery Coffee Break WeB2 Humanoids and Bipeds III Human Detection and Tracking ung Professional Lunch and IEEE RAS Student eremony WeC2 Learning by Demonstration Industrial and Manufacturing Robots Coffee Break WeD2	TuC3 Localization and Mapping III Visual Servoing and Tracking TuD3 Sensing I Sensing for Human Environments TuE3 Unmanned Aerial Systems I Localization and Pose Estimation gan Ave 17 WeA3 Networked Robots Swarm Robotics WeB3 Collision Detection and Avoidance Sensing II Lunch with Leaders WeC3 Localization and Mapping IV Loccanization, Navigation, and Mobility WeD3	TuB Talks TuC Talks TuD Talks TuE Talks WeA Talks WeB Talks	Perspectives on Entrepre- neurship in Robotics and Automation	Exhibits
13:30-14:50 15:00-16:20 16:20-16:50 16:50-17:55 18:30-21:30 8:00-8:50 9:00-10:20 10:20-10:50 10:20-10:50 10:50-12:10 13:10-13:50 14:00-15:20 15:50-17:10	TuC1 Dynamics and Control Manipulation and Grasping IV TuD1 Actuators Kinematics and Mechanism Design II TuE1 Constrained and Underactuated Robots Legged Robots I Banque Plenary III: From Visual SLAM to Ge Andrew Davison, Imp WeA1 Medical Robots and Systems II Rehabilitation Robotics II WeB1 Mechanisms and Actuators Force and Tactile Sensing Lunch; IEEE RAS You Awards C WeC1 Surgical Robotics II Teleoperation and Telerobotics WeD1 Micro-Nano Robots II Lanchane Compliance and Four Control	TuC2 Humanoids and Bipeds II Domestic and Interactive Robots TuD2 Reasoning and Al Planning Path and Task Planning Coffee Break TuE2 Human-Robot Interaction III Grasp Learning t at the Art Institute of Chicago, 111 S Michig Wednesday September neric Real-time 3D Scene Perception berial College London WeA2 Motion and Path Planning III Planning, Failure Detection and Recovery Coffee Break WeB2 Humanoids and Bipeds III Human Detection and Tracking ung Professional Lunch and IEEE RAS Student eremony WeC2 Learning by Demonstration Industrial and Manufacturing Robots Coffee Break WeD2 Unmanned Aerial Systems II Longed Detact III	TuC3 Localization and Mapping III Visual Servoing and Tracking TuD3 Sensing I Sensing for Human Environments TuE3 Unmanned Aerial Systems I Localization and Pose Estimation gan Ave 17 WeA3 Networked Robots Swarm Robotics WeB3 Collision Detection and Avoidance Sensing II Lunch with Leaders WeC3 Localization and Mapping IV Loccalization and Mapping IV Loccalization, Navigation, and Mobility WeD3 Computer Vision II Decensivier	TuB Talks TuC Talks TuD Talks TuE Talks WeA Talks WeB Talks WeC Talks	Perspectives on Entrepre- neurship in Robotics and Automation	Exhibits
13:30-14:50 15:00-16:20 16:20-16:50 16:50-17:55 18:30-21:30 8:00-8:50 9:00-10:20 10:20-10:50 10:50-12:10 12:10-13:10 13:10-13:50 14:00-15:20 15:20-15:50 15:50-17:10 17:20-19:00	TuC1 Dynamics and Control Manipulation and Grasping IV TuD1 Actuators Kinematics and Mechanism Design II TuE1 Constrained and Underactuated Robots Legged Robots I Banque Plenary III: From Visual SLAM to Ge Andrew Davison, Imp WeA1 Medical Robots and Systems II Rehabilitation Robotics II WeB1 Mechanisms and Actuators Force and Tactile Sensing Lunch; IEEE RAS You Awards C WeC1 Surgical Robotics II Teleoperation and Telerobotics WeD1 Micro-Nano Robots II Impedance, Compliance, and Force Control Final Interactive Prese	TuC2 Humanoids and Bipeds II Domestic and Interactive Robots TuD2 Reasoning and Al Planning Path and Task Planning Coffee Break TuE2 Human-Robot Interaction III Grasp Learning t at the Art Institute of Chicago, 111 S Michig Wednesday September neric Real-time 3D Scene Perception berial College London WeA2 Motion and Path Planning III Planning, Failure Detection and Recovery Coffee Break WeB2 Humanoids and Bipeds III Human Detection and Tracking ung Professional Lunch and IEEE RAS Student eremony WeC2 Learning by Demonstration Industrial and Manufacturing Robots Coffee Break WeD2 Unmanned Aerial Systems II Legged Robots II entations (WeD Talks) and Farewall Partu in	TuC3 Localization and Mapping III Visual Servoing and Tracking TuD3 Sensing I Sensing for Human Environments TuE3 Unmanned Aerial Systems I Localization and Pose Estimation gan Ave 17 WeA3 Networked Robots Swarm Robotics WeB3 Collision Detection and Avoidance Sensing II Lunch with Leaders WeC3 Localization and Mapping IV Loccalization and Mapping IV Loccalization, Navigation, and Mobility WeD3 Computer Vision II Recognition the Interactive Salons	TuB Talks TuC Talks TuD Talks TuE Talks WeA Talks WeB Talks WeC Talks	Perspectives on Entrepre- neurship in Robotics and Automation	Exhibits
13:30-14:50 15:00-16:20 16:20-16:50 16:50-17:55 18:30-21:30 8:00-8:50 9:00-10:20 10:20-10:50 10:50-12:10 12:10-13:10 13:10-13:50 14:00-15:20 15:20-15:50 15:50-17:10 17:20-19:00	TuC1 Dynamics and Control Manipulation and Grasping IV TuD1 Actuators Kinematics and Mechanism Design II TuE1 Constrained and Underactuated Robots Legged Robots I Banque Plenary III: From Visual SLAM to Ge Andrew Davison, Imp WeA1 Medical Robots and Systems II Rehabilitation Robotics II WeB1 Mechanisms and Actuators Force and Tactile Sensing Lunch; IEEE RAS You Awards C WeC1 Surgical Robotics II Teleoperation and Telerobotics WeD1 Micro-Nano Robots II Impedance, Compliance, and Force Control Final Interactive Prese	TuC2 Humanoids and Bipeds II Domestic and Interactive Robots TuD2 Reasoning and Al Planning Path and Task Planning Coffee Break TuE2 Human-Robot Interaction III Grasp Learning t at the Art Institute of Chicago, 111 S Michig Wednesday September neric Real-time 3D Scene Perception berial College London WeA2 Motion and Path Planning III Planning, Failure Detection and Recovery Coffee Break WeB2 Humanoids and Bipeds III Human Detection and Tracking ung Professional Lunch and IEEE RAS Student eremony WeC2 Learning by Demonstration Industrial and Manufacturing Robots Coffee Break WeD2 Unmanned Aerial Systems II Legged Robots II entations (WeD Talks) and Farewell Party in	TuC3 Localization and Mapping III Visual Servoing and Tracking TuD3 Sensing I Sensing for Human Environments TuE3 Unmanned Aerial Systems I Localization and Pose Estimation gan Ave 17 WeA3 Networked Robots Swarm Robotics WeB3 Collision Detection and Avoidance Sensing II Lunch with Leaders WeC3 Localization and Mapping IV Locomotion, Navigation, and Mobility WeD3 Computer Vision II Recognition the Interactive Salons	TuB Talks TuC Talks TuD Talks TuE Talks WeA Talks WeB Talks WeC Talks	Perspectives on Entrepre- neurship in Robotics and Automation	Exhibits
13:30-14:50 15:00-16:20 16:20-16:50 16:50-17:55 18:30-21:30 8:00-8:50 9:00-10:20 10:20-10:50 10:50-12:10 12:10-13:10 13:10-13:50 14:00-15:20 15:20-15:50 15:50-17:10 17:20-19:00	TuC1 Dynamics and Control Manipulation and Grasping IV TuD1 Actuators Kinematics and Mechanism Design II TuE1 Constrained and Underactuated Robots Legged Robots I Banque Plenary III: From Visual SLAM to Ge Andrew Davison, Imp WeA1 Medical Robots and Systems II Rehabilitation Robotics II WeB1 Mechanisms and Actuators Force and Tactile Sensing Lunch; IEEE RAS You Awards C WeC1 Surgical Robotics II Teleoperation and Telerobotics WeD1 Micro-Nano Robots II Impedance, Compliance, and Force Control Final Interactive Prese	TuC2 Humanoids and Bipeds II Domestic and Interactive Robots TuD2 Reasoning and Al Planning Path and Task Planning Coffee Break TuE2 Human-Robot Interaction III Grasp Learning t at the Art Institute of Chicago, 111 S Michig Wednesday September neric Real-time 3D Scene Perception berial College London WeA2 Motion and Path Planning III Planning, Failure Detection and Recovery Coffee Break WeB2 Humanoids and Bipeds III Human Detection and Tracking umg Professional Lunch and IEEE RAS Student eremony WeC2 Learning by Demonstration Industrial and Manufacturing Robots Coffee Break WeD2 Unmanned Aerial Systems II Legged Robots II entations (WeD Talks) and Farewell Party in	TuC3 Localization and Mapping III Visual Servoing and Tracking TuD3 Sensing I Sensing for Human Environments TuE3 Unmanned Aerial Systems I Localization and Pose Estimation gan Ave 17 WeA3 Networked Robots Swarm Robotics WeB3 Collision Detection and Avoidance Sensing II Lunch with Leaders WeC3 Localization and Mapping IV Locomotion, Navigation, and Mobility WeD3 Computer Vision II Recognition the Interactive Salons	TuB Talks TuC Talks TuD Talks TuE Talks WeA Talks WeB Talks WeC Talks	Perspectives on Entrepre- neurship in Robotics and Automation	Exhibits
13:30-14:50 15:00-16:20 16:20-16:50 16:50-17:55 18:30-21:30 8:00-8:50 9:00-10:20 10:20-10:50 10:20-10:50 10:50-12:10 13:10-13:50 14:00-15:20 15:50-17:10 17:20-19:00 8:30-17:00	TuC1 Dynamics and Control Manipulation and Grasping IV TuD1 Actuators Kinematics and Mechanism Design II TuE1 Constrained and Underactuated Robots Legged Robots I Banque Plenary III: From Visual SLAM to Ge Andrew Davison, Imp WeA1 Medical Robots and Systems II Rehabilitation Robotics II WeB1 Mechanisms and Actuators Force and Tactile Sensing Lunch; IEEE RAS You Awards C WeC1 Surgical Robotics II Teleoperation and Telerobotics WeD1 Micro-Nano Robots II Impedance, Compliance, and Force Control Final Interactive Prese	TuC2 Humanoids and Bipeds II Domestic and Interactive Robots TuD2 Reasoning and Al Planning Path and Task Planning Coffee Break TuE2 Human-Robot Interaction III Grasp Learning t at the Art Institute of Chicago, 111 S Michig Wednesday September neric Real-time 3D Scene Perception berial College London WeA2 Motion and Path Planning III Planning, Failure Detection and Recovery Coffee Break WeB2 Humanoids and Bipeds III Human Detection and Tracking ung Professional Lunch and IEEE RAS Student eremony WeC2 Learning by Demonstration Industrial and Manufacturing Robots Coffee Break WeD2 Unmanned Aerial Systems II Legged Robots II entations (WeD Talks) and Farewell Party in Thursday September 3	TuC3 Localization and Mapping III Visual Servoing and Tracking TuD3 Sensing I Sensing for Human Environments TuE3 Unmanned Aerial Systems I Localization and Pose Estimation gan Ave 17 WeA3 Networked Robots Swarm Robotics WeB3 Collision Detection and Avoidance Sensing II Lunch with Leaders WeC3 Localization and Mapping IV Locomotion, Navigation, and Mobility WeD3 Computer Vision II Recognition the Interactive Salons	TuB Talks TuC Talks TuD Talks TuE Talks WeA Talks WeB Talks WeC Talks	Perspectives on Entrepre- neurship in Robotics and Automation	Exhibits Exhibits

Welcome from the General and Program Chairs

Dear IROS 2014 Attendees,

Welcome to Chicago! We are honored to host you at the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. We hope you enjoy the technical excellence and innovation on display at IROS 2014.

We received over 1600 paper submissions and nearly 50 workshop and tutorial submissions. Ultimately 750 papers and 27 workshops and tutorials were selected for the final program, with authors from nearly 50 countries from around the world.

This year, for the first time, IROS is experimenting with a new format, where each paper is assigned a 3-minute oral presentation and an 80-minute interactive presentation. Each oral session consists of up to 20 3-minute presentations along with one session keynote. In the session immediately following an oral presentation, the presenter presents the work in an interactive session, with the aid of their laptop and an LCD screen, to any attendee whose interest was piqued by the oral presentation. This format allows the number of parallel oral sessions to be shrunk to three, potentially providing larger audiences for the oral presentation, while creating an opportunity for more significant interaction with attendees with related interests.

This "pitch plus interactive" format has been used with success in the smaller, single-track RSS conference. It was also experimented with for a subset of papers at IROS 2011. At ICRA 2012 and ICRA 2013, some papers were chosen for purely interactive presentations (no oral presentations) while others were purely oral presentations. As the robotics community continues to experiment with formats to best serve conference-goers, we decided to try the experiment of treating all papers identically, as "pitch plus interactive." This contrasts with ICRA 2014, which used up to 19 parallel sessions in the "traditional" format. Feedback on the merits of these approaches will be sought from the robotics community, and this feedback will influence future conference organization.

Potential benefits of the "pitch plus interactive" format include a conference that is more physically compact and easier to navigate; potentially wider exposure for presenters' work; encouraging concise and effective presentations; a possibility to see a wider cross-section of current work in robotics; and greater opportunity for significant interaction and networking, particularly for more junior researchers. It also allows each paper to be treated identically, instead of some papers being selected for interactive presentations and some for oral presentations. Challenges include greater A/V support and technical and timing requirements; less in-depth technical presentations on topics that are of interest to you; moving between rooms during talks; and predicting attendance at oral vs. interactive presentations.

In addition to the new conference format, IROS 2014 features 39 session keynotes by leaders in the field; three plenary speeches; a vibrant industrial exhibition and talks from sponsors; special forums and panels on industry and entrepreneurship and government policy as it relates to robotics; and a number of other special events including lunches sponsored by the Robotics Society of Japan and the IEEE Robotics and Automation Society.

Time to socialize with colleagues and potential collaborators is also vital to a good conference, and IROS 2014 provides plenty of opportunities. In addition to the welcome and farewell receptions, the coffee breaks in the Exhibit Hall, and the banquet at the Art Institute of Chicago, the Monday night *Explore Chicago* social events allow attendees to customize their Chicago experience to their own interests. You can experience one of a variety of uniquely Chicago events: a river and lake architecture cruise, a Chicago Cubs baseball game, a show at the Second City Comedy Club, a blues show at Buddy Guy's Legends, or a bicycle ride along the Chicago lakefront, among others.

Putting together an event like this requires a tremendous amount of volunteer effort. We are fortunate to have an outstanding Organizing Committee. If you see one of them, please thank them for their effort!

Special recognition must go to the Conference Paper Review Board, which handled over 5000 reviews of the submitted papers and helped the Senior Program Committee pick the very best contributions for IROS 2014. The technical expertise of the CPRB was invaluable. Our deepest gratitude goes to Wolfram Burgard, the Editor-in-Chief of the CPRB, for his ethical, efficient, and professional handling of the entire review process.

Again, welcome to Chicago. We hope you find IROS 2014 both professionally and personally rewarding!

Kein M. Lynch

Kevin Lynch Northwestern University IROS 2014 General Chair

Program Co-Chairs Seth Hutchinson (UIUC) Jose Neira (U Zaragoza) Dong Sun (City U Hong Kong) **Conference Paper Review Board EiC** Wolfram Burgard (U Freiburg) Workshops and Tutorials Tim Bretl (UIUC) Interactive Sessions Ani Hsieh (Drexel U) **Speaking Sessions** Siddhartha Srinivasa (Carnegie Mellon U) Exhibits Chair Martin Buehler (Covidien) **Exhibits Co-Chairs** Raj Madhavan (University of Maryland) Xiaorui Zhu (Harbin Inst. of Tech) Nobuto Matsuhira (Shibaura Inst of Tech) Tamás Haidegger (Óbuda University) Tamim Asfour (KIT) Nicola Tomatis (BlueBotics) Nick Gans (University of Texas at Dallas) Aaron King (DTI Robotics) Publications Nikos Papanikolopoulos (U Minnesota) Information Technology Torsten Kroeger (Google) Social Media Andrea Zanchettin (Politecnico di Milano) Finance Venkat Krovi (SUNY Buffalo)

Ayme & bark

Lynne Parker University of Tennessee IROS 2014 Program Chair

Awards

Oussama Khatib (Stanford U) Brad Nelson (ETH Zurich) Kazuhito Yokoi (AIST) **Publicity and Media** Richard Voyles (Purdue U) Howie Choset (Carnegie Mellon U) Competitions Daniel Lee (U Penn) Local Arrangements Todd Murphey (Northwestern U) Brenna Argall (Northwestern U) Matthew Spenko (Illinois Inst Technology) Paul Umbanhowar (Northwestern U) Senior Program Committee Bill Hamel (U Tennessee) Ayanna Howard (Georgia Tech) Seth Hutchinson (UIUC) Oussama Khatib (Stanford U) Vijay Kumar (U Penn) George Lee (Purdue U) Matt Mason (Carnegie Mellon U) Jose Neira (U Zaragoza) Brad Nelson (ETH Zurich) Paul Oh (UNLV) Dong Sun (City U Hong Kong) Satoshi Tadokoro (Tohoku U) Richard Vaughan (Simon Fraser U) Jing Xiao (UNC Charlotte) Kazuhito Yokoi (AIST) Jianwei Zhang (U Hamburg)

Sessions and Exhibits

Oral Sessions

Each oral session track is broken into two, possibly unrelated, half-sessions of approximately 10 papers. Each oral session is kicked off by an invited keynote not tied to a particular paper.

There are three parallel tracks for oral "pitches" in the Grand Ballroom, State Ballroom, and Red Lacquer Room. Speakers should sit at the front of the room during their session. Speakers with odd-numbered talks (talks 1, 3, 5, etc.) speak from the podium on the left side from the audience's viewpoint. Speakers with even-numbered talks (2, 4, 6, etc.) speak from the podium on the right side. While the previous person is speaking, the next speaker has three minutes to connect their laptop to the projector. The projector and microphone inputs switch to the other podium after 3 minutes. Each talk must complete in three minutes, and there will be no time for questions.

Speakers can test their laptops on a simulated setup in the Ashland Room (see the hotel map) to make sure everything is working properly.

Interactive Sessions

In the session immediately following an oral presentation (or the next morning if the talk is in the last session of the day), speakers present their work in the Interactive Salons, as shown on the hotel map. Speakers have an LCD screen to connect to their laptops and 80 minutes.

Exhibits

Many thanks to our sponsors and exhibitors for their support of IROS 2014. You can see the latest robot products and services in the Exhibits Hall.

Plenaries

Plenary I **The Quest for Robotic Vision** Peter Corke, Queensland University of Technology Monday, September 15, 8:20-9:10 Grand/State Ballroom

Plenary II **Development of Neural Interfaces for Robotic Prosthetic Limbs** Todd Kuiken, Rehabilitation Inst of Chicago and Northwestern University Tuesday, September 16, 8:00-8:50 Grand/State Ballroom

Plenary III **From Visual SLAM to Generic Real-time 3D Scene Perception** Andrew Davison, Imperial College London Wednesday, September 17, 8:00-8:50 Grand/State Ballroom

Government Forum Monday September 15, 13:50-16:40 Crystal Room

Chair: Vijay Kumar, University of Pennsylvania

Policy makers from funding agencies in Asia, North America and Europe will talk about government funding priorities and government policy as it relates to robotics, and leaders in academia will outline new opportunities for engaging with government agencies to promote robotics research and development. The forum will consist of two sessions. Each session will consist of opening statements and a moderated question and answer session in which active audience participation is encouraged.

Panelists include Herman Bruyninckx (SPARC Initiative, Europe), Greg Hager (Computing Community Consortium, USA), Juha Heikkila (European Commission), Zexiang Li (Hong Kong University of Science and Technology), Atsushi Mano (NEDO, Japan), Sang-Rok Oh (KAIST, Korea), Jeff Trinkle (National Science Foundation, USA), Richard Voyles (White House Office of Science and Technology, USA), and Alex Zelinsky (Chief Defense Scientist, Australia).

Industry Forum: Perspectives on Entrepreneurship in Robotics and Automation

Tuesday September 16, 9:00-17:55

Crystal Room

Chairs: Raj Madhavan, University of Maryland and Torsten Kroeger, Google

This forum brings together leading robotics companies and startups to formulate an action plan on the topic of entrepreneurship. This forum will provide a platform for stakeholders from academia, industry, government, and end-user communities to share their experiences, failures, suggestions, and wishlists. The forum will consist of 12-15 speakers and a panel discussion with participation from all attendees.

Speakers include Brandon Basso (3D Robotics, USA), Francois Boucher (Kinova, Canada), Guy Caverot (BA Systemes, France), Renaud Champion (Robolution Capital, France), Shahin Farshchi (Lux Capital, USA), Ryan Gariepy (Clearpath Robotics, Canada), SK Gupta (National Science Foundation, USA), Ayanna Howard (Zyrobotics, USA), Christopher Parlitz (SCHUNK, Germany), Michael Peshkin (Northwestern U, USA), Erwin Prassler (euRobotics TG Entrepreneurship), and Shafa Wala (Tarsier Inc., USA).

Special Events

Welcome Reception

Sunday September 14, 18:00-19:30 Grand/State Ballrooms Meet some friends, have a drink, and kickoff IROS 2014 in style.

Conference Welcome

Monday September 15, 8:00-8:20 Grand/State Ballrooms Chair: Kevin Lynch The official conference welcome will be just in advance of Plenary I.

Coffee Breaks

Most coffee breaks will take place in the Exhibit Hall.

Sponsored Lunches

The Robotics Society of Japan and the IEEE Robotics and Automation Society are sponsoring several lunches at the Palmer House during IROS 2014.

- **RSJ Power Lunch (Monday)**: Hear about new technologies and products from representatives of IROS 2014 exhibitors and sponsors while you eat lunch. Lunch is complimentary but first-come first-served. Grand, State, and Red Lacquer Rooms.
- **IEEE RAS Women in Engineering Luncheon (Tuesday)**: The WiE luncheon provides an opportunity for all female and male professionals who are interested in women engineering education to discuss the subjects of career path, career/family choices, and other topics. Chicago Room, 5th floor. \$5 USD registration required; see http://www.iros2014.org/program/luncheons.
- IEEE RAS Lunch with Leaders (LwL) Student Luncheon (Wednesday): Lunch with Leaders (LwL) offers IEEE student members an opportunity to network with RAS leaders, and get advice and mentoring on their career and research. Crystal Room. \$5 USD registration required; see http://www.iros2014.org/program/luncheons.
- **IEEE RAS Young Professionals Lunch (Wednesday)**: This luncheon is open to recent IEEE graduates, so that they can network with peers and find out more about the benefits of RAS. Chicago Room, 5th floor. \$5 USD registration required; see http://www.iros2014.org/program/luncheons.

Explore Chicago Social Events

Monday evening, September 15

More information on the Monday night *Explore Chicago* social events can be found on the next pages.

Conference Banquet

Tuesday September 16, 18:30-21:30

Art Institute of Chicago, 111 S Michigan Ave

The world-famous collection of the Art Institute of Chicago is just a two-block walk from the Palmer House Hilton. Some of the galleries will be open for viewing, and there will be multiple indoor and outdoor food and drink stations.

Awards Ceremony

Wednesday September 17, 13:10-13:50 Grand/State Ballrooms IROS 2014 will present the following awards at a ceremony after lunch on Wednesday:

- IROS Harashima Award for Innovative Technologies
- Best Paper Award
- ABB Best Student Paper Award
- ICROS Best Application Paper Award
- NTF Award for Entertainment Robots and Systems
- JTCF Novel Technology Paper Award for Amusement Culture
- RoboCup Best Paper Award
- CoTeSys Cognitive Robotics Best Paper Award

Farewell Party

Wednesday September 17, 17:20-19:00 Interactive Salons The Farewell Party will be in conjunction

The Farewell Party will be in conjunction with the final interactive session. Robots, beer, and wine, not bad!

Kinect Autonomous Mobile Robot Navigation Contest

Thursday September 18, 8:00-17:00

Exhibit Hall

On Thursday September 18, the Exhibit Hall transforms into the site for this day-long mobile robot navigation contest, sponsored by Microsoft and Adept Mobile Robots. Ten pre-qualified teams will compete for navigation supremacy in a natural café-like environment.

Technical Tour of the Rehabilitation Inst of Chicago and Northwestern University

Thursday September 18, 15:30-17:30

345 East Superior St

This tour will visit robotics labs of the Rehabilitation Institute of Chicago (RIC), the world's leading hospital and research enterprise in physical medicine and rehabilitation, and Northwestern University's Neuroscience and Robotics Lab (NxR). The tour will take place entirely on the downtown campus (no trip to Northwestern's main campus in Evanston). Attendees are responsible for their own transportation to RIC. Tickets are purchased through the registration site.

Hops 'n Bots at the Adler Planetarium

Thursday September 18, 18:00-22:00

Adler Planetarium, 1300 S Lake Shore Drive

In honor of IROS 2014, the Adler Planetarium will be holding an after-hours robot-themed craft beer party on Thursday night. This is part of the *Adler After Dark* series, a monthly social event popular with young Chicagoans. See the planetarium, listen to bands, try the featured craft beers, and get the best views of the Chicago skyline, while members of the IROS community participate in a panel discussion and other events. The Adler Planetarium sits on the easternmost point of the Museum Campus, right on Lake Michigan, and is a pleasant 3 km walk from the Palmer House through Grant Park. Tickets are \$20 at the door. You can find more information at http://www.adlerplanetarium.org/adler-after-dark/.

Explore Chicago Social Events Monday September 15

On Monday night, there will be eight social events at various spots around Chicago. Each conference registration comes with a ticket to one event. All transit to the social events will be by walking or public transportation (the L). To take the L, use a single-ride ticket when you enter (available for purchase at all stations for \$3 if you don't have one); it's not needed at the exit.

It is highly recommended that you meet your group in the Palmer House lobby or near the registration desks at the times indicated below. Further information on the social event locations is given below in case you get separated from your group. Remember the Palmer House is at 17 E Monroe St, at the corner of Monroe St and Wabash Ave.

Bicycling the Lakefront Trail (meet at 5:00 PM in lobby): Bicycles will be leaving from the Bike and Roll storefront at 239 E Randolph St in Millennium Park. This is a 1 km walk from the Palmer House. Go east on Monroe St to Michigan Ave, north on Michigan Ave to Randolph St, and east on Randolph St to 239 E Randolph.

Blues Show at Buddy Guy's Legends (meet at 7:00 PM at the registration desks): Buddy Guy's is at 700 S Wabash Ave, a 1 km walk from the Palmer House. Walk south on Wabash Ave. Dinner will be provided at the show.

Chicago Cubs Baseball Game at Wrigley Field (meet at 5:50 PM in lobby): Wrigley Field is a 20-minute ride on the CTA L Red Line (10 km by taxi). Take the Red Line toward Howard from the Monroe station at the corner of State St and Monroe St (½ block west of the Palmer House) and get off at the Addison stop. To return, you can take the Red Line back from Addison, but the station may be very crowded at the end of the game. In that case, it is recommended you make a group of three or four people and take a taxi back to the Palmer House (approximately \$20). You may need to walk east on Addison a couple of blocks to get away from the crowds to find an open taxi. Alternatively, leave before the end of the game or hit a Wrigleyville bar after the game until the crowds dissipate. Bars on Clark St are especially popular.

Chicago River and Lake Michigan Cruise (meet at 5:30 PM in lobby): The cruise boats will leave from the dock east of the Trump Tower north of the Chicago River. It is a 1 km walk north on Wabash Ave. After crossing the river, go down to the walkway along the river and go east to the Wendella dock. Drinks will be provided on the boat, but no food.

Chocolate Tasting Tour of Chicago (meet at 5:10 PM in lobby): The tour will start at the Visitor Information Center in the lower level of the Macy's building at 111 N State St. Walk west a half block and then north on State St (less than ½ km).

Goose Island Brew Pub and Brewery Tour (meet at 6:20 PM in lobby): Goose Island is at 1800 N Clybourn Ave, 5 km from the Palmer House. To get there, take the CTA L Red Line toward from the Monroe station at the corner of State St and Monroe St (½ block west of the Palmer House) and get off at the North/Clybourn stop. Walk ½ km northwest on Clybourn. Reverse the directions to get back.

Observation Deck at the Willis Tower (meet at 5:30 PM at the registration desks): Enter the Willis Tower for the Skydeck on Jackson Ave between Franklin St and Wacker Dr, a 1 km walk. Go west on Monroe St to Franklin St, south on Franklin St, then west on Jackson Ave.

Second City Comedy Show (meet at 6:45 PM in lobby): Second City is at 1616 N Wells St, 4.5 km from the Palmer House. Take the CTA L Brown Line toward Kimball from the Madison/Wabash station (1 block north on Wabash) to the Sedgwick station. Then walk 1 block north to North Ave, east on North Ave to Wells St, then north on Wells St (about a ½ km walk). To go back to the Palmer House, you can take the Brown Line in the other direction, but it will loop around the downtown Loop before returning to Madison/Wabash, adding 5 minutes to your trip.

Social Event Map

For the Monday night Explore Chicago events, please meet your group in the lobby or registration desk as indicated on the previous page; do not go directly to the event site.

Inexpensive (\$)

- 1. Which Wich (Sandwiches)
- 4. Pittsfield Café (Diner, Brunch)
- 5. Oasis Café (Mediterranean)
- 9. Jimmy John's (Sandwiches)
- 10. Chipotle (Mexican, Fast Food)
- 13. Popeye's (Chicken, Fast Food)
- 18. I Dream of Falafel (Middle Eastern)
- 19. Pret A Manger (Café, Sandwiches)
- 20. Potbelly Sandwich Shop (Sandwiches)
- 22. Corner Bakery Café (Café, Bakery)
- 26. Max's Take Out (Fast Food)
- 27. McDonalds (Fast Food)
- 28. Zoup! (Café, Sandwiches)
- 30. America's Dog (Hot Dogs, Fast Food)
- 31. Halo Asian Mix (Asian Fusion)
- 32. Panda Express (Chinese, Fast Food)
- 36. Abou Andre (Middle Eastern, Mediterranean)
- 38. Osaka Express (Japanese)

Moderate (\$\$)

- 2. Heaven on Seven (Southern, Cajun/Creole)
- 6. Park Grill (New American)
- 7. Rosebud Theater District (Italian)
- 12. Pizano's Pizza & Pasta (Pizza, Italian)
- 16. Hot Woks Cool Sushi (Japanese, Asian)
- 17. Flat Top Stir-Fry Grill (Asian Fusion, Grill)
- 21. The Grillroom (Steakhouse)
- 23. Freshii (Vegetarian, New American)
- 24. Beef and Brandy (Traditional American)
- 25. Miller's Pub (Pub, Traditional American)
- 29. Berghoff Restaurant (German)
- 34. Native Foods Café (Vegetarian)
- 35. Exchequer (Pub, Pizza, Steakhouse)
- 37. Pazzo's Cucina Italiana (Italian)

Expensive (\$\$\$)

- Lockwood Palmer House (New American)
- 3. Atwood Café (New American)
- 8. Trattoria No. 10 (Italian)
- 11. Rosebud Prime (Steakhouse)
- 14. Henri (French)
- 15. The Gage (New American, Gastropub)
- 33. Russian Tea Time (Russian)

Restaurant Name	Price	Style	≥
Lockwood (Palmer House)	\$\$\$	American (New)	
1 Which Wich	θ	Sandwiches	2
2 Heaven on Seven	\$\$	Southern, Cajun/Creole	⇒
3 Atwood	\$\$\$	American (New)	<u> </u>
4 Pittsfield Cafe	θ	Diner, Brunch	ប៊ួ
5 Oasis Cafe	θ	Mediterranean	N
6 Park Grill	\$\$	American (New)	<u>+</u>
7 Rosebud Theater District	\$\$	Italian	7
8 Trattoria No. 10	\$\$\$	Italian	10
9 Jimmy John's	÷	Sandwiches, Deli	თ
10 Chipotle	↔	Mexican, Fast Food	ω
11 Rosebud Prime	\$\$\$	Steakhouse	<u> </u>
12 Pizano's Pizza & Pasta	\$\$	Pizza, Italian	<u>م</u>
13 Popeye's	÷	Fast Food, Chicken	1
14 Henri	\$\$\$	French	7
15 The Gage	\$\$\$	American (New), Gastropub	24
16 Hot Woks Cool Sushi	\$\$	Japanese, Chinese, Thai	ω
17 Flat Top Stir-Fry Grill	\$\$	Asian Fusion, Grill	g
18 I Dream of Falafel	÷	Middle Eastern	=
19 Pret A Manger	÷	Cafe, Sandwiches	7
20 Potbelly Sandwich Shop	÷	Sandwiches, Deli	ភូ
21 The Grillroom	\$\$	Steakhouse	ယ္လ
22 Corner Bakery Cafe	÷	Cafe, Bakery	ä
23 Freshii Palmer House	\$\$	Vegetarian, American (New)	-1
24 Beef and Brandy	\$\$	American (Traditional)	<u></u>
25 Miller's Pub	\$\$	Pub, American (Traditional)	긊
26 Max's Take Out	÷	Fast Food	20
27 McDonalds	÷	Fast Food	-
28 Zoup!	÷	Cafe, Sandwiches	62
29 Berghoff Restaurant	\$\$	German	-1
30 America's Dog	θ	Hot Dogs, Fast Food	N
31 Halo Asian Mix	θ	Asian Fusion	20
32 Panda Express	θ	Chinese, Fast Food	7
33 Russian Tea Time	\$\$\$	Russian	77
34 Native Foods Cafe	\$\$	Vegetarian	2
35 Exchequer	\$\$	Pub, Pizza, Steakhouse	22
36 Abou Andre	θ	Middle Eastern, Mediterranean	6
37 Pazzo's Cucina Italiana	\$\$	Italian	N
38 Osaka Express	÷	Japanese	40

4 South Michigan Avenue 8 South Michigan Avenue 5 East Washington Street 7 East Monroe Street 00 South Michigan Avenue 3 East Jackson Boulevard D East Jackson Boulevard 26 South Wabash Avenue 7 East Adams Street 7 East Adams Street 9 East Adams Street 2 West Adams Street 44 South Wabash Avenue 0 East Adams Street 34 South Wabash Avenue 27 South State Street 7 East Monroe Street #10 5 East Monroe Street 3 West Monroe Stree 5 West Monroe Street 3 West Monroe Street 0 South Wabash Avenue 0 South Michigan Avenue 7 South Wabash Avenue 0 North Dearborn Street #1 0 West Madison Street 1 North Wabash Avenue #11 West Washington Street 11 North Wabash Avenue 08 North State Street #002 ddress 18 South Clark Street 2 West Monroe Street East Madison Street East Madison Street North Michigan Avenue East Madison Street South Dearborn Stree East Adams Street 'West Adams Street

www.haloasianmix.com www.theberghoff.com www.osaka2go.com www.pazzoscucina.com www.abouandre.com www.exchequerpub.com www.nativefoods.com www.russianteatime.com www.pandaexpress.com www.americasdog.com www.zoup.com www.mcdonalds.com www.maxstakeoutchicago.com www.millerspub.com www.beefbrandy.net www.freshii.com www.cornerbakerycafe.com www.grillroom-chicago.com www.potbelly.com www.pret.com www.idreamoffalafel.com www.flattopgrill.com www.hotwokscoolsushi.com www.thegagechicago.com www.henrichicago.com www.popeyes.com www.pizanoschicago.com www.rosebudrestaurants.com www.chipotle.com www.jimmyjohns.com www.trattoriaten.com www.rosebudrestaurants.com www.parkgrillchicago.com www.oasiscafeone.com www.pittsfield55.com www.atwoodcafe.com www.heavenonseven.com www.whichwich.com www.lockwoodrestaurant.com Website (312) 332-6332 (312) 360-0000 (312) 986-1043 (312) 360-1111 (312) 427-3170 (312) 470-9797 (773) 218-8516 (312) 553-0170 (312) 263-4988 (312) 372-3451 (312) 419-1777 (312) 372-0072 (312) 960-0000 (312) 577-0070 (312) 260-4301 (312) 263-4363 (312) 726-8400 (312) 345-1234 (312) 372-4243 (312) 578-0763 (312) 372-8855 (312) 236-1777 (312) 384-1900 (312) 629-3662 (312) 368-4444 (312) 984-1718 (312) 332-9500 (312) 521-7275 (312) 443-9534 (312) 641-1806 (312) 368-1900 (312) 263-6443 (312) 917-3404 (312) 386-1300 (312) 939-5633 (312) 786-0100 (312) 658-0030 (312) 386-9400 312) 566-0118 Phone Numbe

IROS 2014 Workshops and Tutorials

Coffee breaks are at 10:00-10:30 and 15:00-15:30.

Sunday September 14					
			An Open-source Recipe for Teaching (and Learning) Robotics with a Simulator:		
C A N 4 1	8:30-	Crand	Setup a Laptop in 5 Minutes, Write a Control, Navigation, Vision or Manipulation		
SUAIVIT	12:00	Granu	Program in 100 Lines of Code		
			Renaud Detry, Peter Corke, Marc Andreas Freese		
Su ΔΜ2	8:30-	State	Taxonomies of Interconnected Systems: Topology in Distributed Robotics		
JUANIZ	12:00	State	Ryan Williams, Andrea Gasparri, Gaurav Sukhatme		
	13:30-		How to Use MATLAB-ROS Interface to Prototype Robotics Algorithms for ROS-		
SuPM1	17:00	Grand	powered Robots		
	42.20		Yanliang Zhang		
SuPM2	13:30-	State	Aerial Open Source Robotics		
	17:00		Lorenz Meler, Markus W. Achtelik, Brandon Basso		
SHED2	8:30-	Salon 1	Human-robot Collaboration in Standardization and R&D Activities		
5ui D5	17:00	301011 1	Eahio Paolo Ronsianorio, Federico Vicentini, Paolo Barattini		
			The 2014 IROS Workshop on Al and Robotics		
SuFD4	8:30-	Salon 2	Lorenzo Riano, Alessandro Saffiotti, Moritz Tenorth, Georae Dimitri Konidaris.		
	17:00		Nick Hawes, Siddharth Srivastava		
	0.20		Machine Learning in Planning and Control of Robot Motion Workshop		
SuFD5	8:30- 17:00	Salon 3	Maria Gini, Marco Morales, Angela P. Schoellig, Lydia Tapia, Aleksandra Faust,		
	17.00		Farbod Farshidian		
SuFD6	8:30-	Salon 5	Modular and Swarm Systems — from Nature to Robotics		
00.100	17:00	•	Roderich Gross, Rico Moeckel, Michael Rubenstein, Kasper Stoy		
SuFD7	8:30-	Salon 6	Micro-Nano Robotic Swarms for Biomedical Applications		
	17:00		Spring Berman, Sabine Hauert, Sangeeta Bhatia, Bradley Nelson, Vijay Kumar		
CED0	8:30-	8:30-	From Active Impedance to Intrinsically Compliant and Variable Impedance		
SUFD8	17:00	Salon 7	Actuators: Pros, cons and Trade-ons		
	8.30-		Assistive Robots for Individuals with Disabilities: HRI Issues and Beyond		
SuFD9	17:00	Salon 8	Hae Won Park. Momotaz Beaum. Chuna Hyuk Park		
			Assistance and Service Robotics in a Human Environment		
SuFD10	8:30-	Salon 9	Anne Spalanzani, David Daney, Samer Mohammed, Yacine Amirat, Ren Luo,		
	17:00		Rachid Alami, Christian Laugier		
SUED11	8:30-	Salon 10	Robot Manipulation: What Has Been Achieved and What Remains to Be Done?		
SUFDII	17:00	291011 10	Erol Sahin, Siddhartha Srinivasa		
SuED12	8:30-	Salon 12	6th Workshop on Planning, Perception and Navigation for Intelligent Vehicles		
JULDIZ	17:00	Salon 12	Philippe Martinet, Christian Lauaier, Christoph Stiller, Urbano Nunes		

ľ	Thursday September 18					
		8:30-	Stato	3rd Workshop on Visual Control of Mobile Robots		
	IIIAIVII	12:00	State	Gonzalo Lopez-Nicolas, Youcef Mezouar		
		12.30-		Standardized Knowledge Representations and Ontologies for Robotics and		
	ThPM1	17.00	State	Automation		
		17.00		Paulo Gonçalves, Craig Schlenoff, Edson Prestes, Tamas Haidegger		
		8.30-		Rehabilitation and Assistive Robotics: Bridging the Gap Between Clinicians and		
	ThFD2	17.00	Grand	Roboticists		
		17.00		Brenna Argall, Siddhartha Srinivasa		
	ThED3	8:30-	Salon 1	Towards Horizon 2020: Trends and Challenges in Micro/Nanorobotics		
	111 05	17:00	Salon I	Michael Gauthier, Fumihito Arai, Metin Sitti, Bradley J. Nelson		
		8.30-		Real-time Motion Generation and Control — Constraint-based Robot		
	ThFD4	17.00	Salon 2	Programming		
		17.00		Andrea Maria Zanchettin, Gianni Borghesan, Torsten Kroeger		
	ThFD5	8:30-	Salon 3	3rd Workshop on Robots in Clutter: Perception and Interaction in Clutter		
		17:00	0410110	Michael Zillich, Dejan Pangercic, Maren Bennewitz, Justus Piater, Maria Fox		
		8:30-		Community Consensus Benchmarks and Systems for Clinical Translation of		
	ThFD6	17:00	Salon 4	Medical Robots		
				Nabil Simaan, Venkat Krovi, Peter Kazanzides, Simon P. DiMaio		
	ThFD7	8:30-	Salon 5	The Role of Human Sensorimotor Control in Surgical Robotics		
		17:00		Ilana Nisky, Tony Jarc		
		8:30-		Telerobotics for Real-Life Applications: Opportunities, Challenges, and New		
	ThFD8	17:00	Salon 6	Developments		
				Dongjun Lee, Jordi Artigas, Shahin Sirouspour, Selichiro Katsura		
	ThFD9	8:30-	Salon 7	Compliant Manipulation: Challenges in Learning and Control		
		17:00		Klas Kronander, Aude Billard, Etienne Burdet, Jonas Buchli		
	ThFD10	8:30-	Salon 8	Workshop on Active Touch Sensing in Robots and Animals		
		17:00		Yon Visell, Vincent Hayward, Mitra Hartmann, Nathan Lepora		
	ThFD11	8:30-	Salon 10	The Future of Multiple Robot Research and its Multiple Identities		
		17:00		Lorenzo Subattini, Antonio Franchi, Dylan Sheli, Nora Ayanian Whele Dedu Centrel for Debate in the Deel World		
	ThFD12	ð:3U-	Salon 12	whole-body Control for Robots In the Real World		
		T\:00		reaerico Lorenzo ivioro, iviicnaei Gienger, Oussama Knatib, EliChi Yoshida		

Monday Session A, 09:20 - 10:40

		Grand Ballroom	State Ballroom	Red Lacquer Room
		MoA1 Manipulation and Grasping I &	MoA2 Localization and Mapping I &	MoA3 Bioinspired Robots I &
		Robust and Optimal Control	Motion and Path Planning I	Multi-Robot Coordination
	Chair	Khatib, Oussama (Stanford University)	Oriolo, Giuseppe (Sapienza University of Rome)	Gini, Maria (University of Minnesota)
#	Time	Session Keynote	Session Keynote	Session Keynote
1	09:20- 09:40	Keynote: What is Manipulation? <i>Mason, Matthew T.</i> Carnegie Mellon University	Keynote: Dense, Object-based 3D SLAM <i>Leonard, John</i> MIT	Keynote: Bio-inspired Multi-modal Flying Robots <i>Floreano, Dario</i> EPFL
		Manipulation and Grasping I	Localization and Mapping I	Bioinspired Robots I
2	09:40- 09:43	Robotic Manipulation in Object Composition Space Pajarinen, Joni; Kyrki, Ville	Mining Visual Phrases for Long-Term Visual SLAM Tanaka, Kanji; chokushi, yuuto; ando, masatoshi	Modeling of Underwater Snake Robots Moving in a Vertical Plane in 3D Kelasidi, Eleni; Pettersen, Kristin Y.; Gravdahl, Jan Tommy
3	09:43- 09:46	6D Proximity Servoing for Preshaping and Haptic Exploration Using Capacitive Tactile Proximity Sensors Escaida Navarro, Stefan; Schonert, Martin; Hein, Björn; Woern, Heinz	Towards Indoor Localization Using Visible Light Communication for Consumer Electronic Devices Liu, Ming; Qiu, Kejie; Che, Fengyu; Li, Shaohua; Hussain, Babar; Wu, Liang; Yue, C. Patrick	Actuation Strategy for Underactuated Anthropomorphic Hands Tavakoli, Mahmoud; Enes, Baptiste; Marques, Lino; de Almeida, Anibal
4	09:46- 09:49	Multi-Joint Gripper with Differential Gear System Tamamoto, Takumi; Sayama, Kazuhiro; Koganezawa, Koichi	Network Localization from Relative Bearing Measurements Kennedy, Ryan; Taylor, Camillo Jose	New Rolling and Crawling Gaits for Snake-Like Robots Primerano, Richard; Wolfe, Stephen
5	09:49- 09:52	Artificial Hand with Stiffness Adjuster Koganezawa, Koichi; Ito, Akira	2D-3D Camera Fusion for Visual Odometry in Outdoor Environments Paudel, Danda Pani; Demonceaux, Cédric; Habed, Adlane; Vasseur, Pascal; Kweon, In So	iSplash-MICRO: A 50mm Robotic Fish Generating the Maximum Velocity of Real Fish <i>Clapham, Richard James; Hu, Huosheng</i>
6	09:52- 09:55	Design and Implementation of a Low-Cost and Lightweight Inflatable Robot Finger <i>QI, Ronghuai; Lam, Tin Lun; Xu, Yangsheng</i>	Position Control of a Robot End-Effector Based on Synthetic Aperture Wireless Localization Vossiek, Martin; Konigorski, Ulrich; Marschall, Albert; Li, Gang; Voigt, Thorsten	Mamba - A Waterproof Snake Robot with Tactile Sensing Liljebäck, Pål; Stavdahl, Øyvind; Pettersen, Kristin Y.; Gravdahl, Jan Tommy
7	09:55- 09:58	Design of Hands for Aerial Manipulation: Actuator Number and Routing for Grasping and Perching Backus, Spencer; Odhner, Lael; Dollar, Aaron	Static forces weighted Jacobian motion models for improved Odometry Hidalgo-Carrio, Javier; Babu, Ajish; Kirchner, Frank	Multi-Arm Robotic Swimming with Octopus-Inspired Compliant Web Sfakiotakis, Michael; Kazakidi, Asimina; Chatzidaki, Avgousta; Evdaimon, Theodoros; Tsakiris, Dimitris
8	09:58- 10:01	Robust Model Free Control of Robotic Manipulators with Prescribed Transient and Steady State Performance Bechlioulis, Charalampos; Liarokapis, Minas; Kyriakopoulos, Kostas	Visual Localization within LIDAR Maps for Automated Urban Driving Wolcott, Ryan; Eustice, Ryan	ReBiS - Reconfigurable Bipedal Snake Robot Thakker, Rohan; Kamat, Ajinkya; Bharambe, Sachin; Chiddarwar, Shital; BHURCHANDI, KISHOR
9	10:01- 10:04	Dual Execution of Optimized Contact Interaction Trajectories Toussaint, Marc; Ratliff, Nathan; Bohg, Jeannette; Righetti, Ludovic; Englert, Peter; Schaal, Stefan	Decentralized Cooperative Trajectory Estimation for Autonomous Underwater Vehicles Paull, Liam; Seto, Mae; Leonard, John	Role of Compliant Leg in the Flea-Inspired Jumping Robot Jung, Gwang-Pil; Kim, Ji-Suk; Koh, Je-Sung; Jung, Sunpill; Cho, Kyu-Jin
10	10:04- 10:07	Quasi-Static Manipulation of a Planar Elastic Rod Using Multiple Robotic Grippers Mukadam, Mustafa; Borum, Andy; Bretl, Timothy	Vision Based Robot Localization by Ground to Satellite Matching in GPS-Denied Situations Viswanathan, Anirudh; Pires, Bernardo; Huber, Daniel	Optimal Dynamic Force Mapping for Obstacle-Aided Locomotion in 2D Snake Robots Holden, Christian; Stavdahl, Øyvind; Gravdahl, Jan Tommy
11	10:07- 10:10	Garment Perception and its Folding Using a Dual-arm Robot Stria, Jan; Prusa, Daniel; Hlavac, Vaclav; Wagner, Libor; Petrík, Vladimír; Krsek, Pavel; Smutny, Vladimír	Hybridization of Monte Carlo and Set-Membership Methods for the Global Localization of Underwater Robots Neuland, Renata; Nicola, Jeremy; Maffei, Renan; Jaulin, Luc; Prestes, Edson; Kolberg, Mariana	Empirical Investigation of Closed-Loop Control of Extensible Continuum Manipulators <i>Kapadia, Apoorva; Fry, Katelyn; Walker, Ian</i>

Monday Session A, 09:20 - 10:40 (Continued)

		Grand Ballroom	State Ballroom	Red Lacquer Room
		MoA1	MoA2	MoA3
#	Time	Robust and Optimal Control	Motion and Path Planning I	Multi-Robot Coordination
12	10:10- 10:13	Numerical Approximation for Visibility Based Pursuit Evasion Game Bhattacharya, Sourabh; Basar, Tamer; Falcone, Maurizio	A Novel RRT Extend Function for Efficient and Smooth Mobile Robot Motion Planning Palmieri, Luigi; Arras, Kai Oliver	Reactive Switching Protocols for Multi-Robot High- Level Tasks <i>Raman, Vasumathi</i>
13	10:13- 10:16	Visibility-Based Motion Planning for Active Target Tracking and Localization Wei, Hongchuan; Lu, Wenjie; Zhu, Pingping; Huang, Guoquan; Leonard, John; Ferrari, Silvia	Guiding Sampling-Based Tree Search for Motion Planning with Dynamics Via Probabilistic Roadmap Abstractions Le, Duong; Plaku, Erion	Correlated Orienteering Problem and Its Application to Informative Path Planning for Persistent Monitoring Tasks Yu, Jingjin; Schwager, Mac; Rus, Daniela
14	10:16- 10:19	Pursuit-Evasion Game for Normal Distributions Jun, Chanyoung; Bhattacharya, Subhrajit; Ghrist, Robert	Planning Agile Motions for Quadrotors in Constrained Environments Boeuf, Alexandre; Cortes, Juan; Alami, Rachid; Simeon, Thierry	Cooperative Control of a Heterogeneous Multi-Robot System based on Relative Localization Cognetti, Marco; Oriolo, Giuseppe; Peliti, Pietro; Rosa, Lorenzo; Stegagno, Paolo
15	10:19- 10:22	Optimal control for robot-hand manipulation of an object using dynamic visual servoing Jara, Carlos; Pomares, Jorge; Candelas Herías, Francisco Andrés; Torres, Fernando	Optimal Navigation Functions for Nonlinear Stochastic Systems Horowitz, Matanya; Burdick, Joel	Three-Dimensional Multirobot Formation Control for Target Enclosing Aranda, Miguel; Lopez-Nicolas, Gonzalo; Sagues, Carlos; Zavlanos, Michael M.
16	10:22- 10:25	Camera Control for Learning Nonlinear Target Dynamics Via Bayesian Nonparametric Dirichlet- Process Gaussian-Process (DP-GP) Models Wei, Hongchuan; Lu, Wenjie; Zhu, Pingping; Ferrari, Silvia; Klein, Robert H; Omidshafiei, Shayegan; How, Jonathan Patrick	A Lattice-Based Approach to Multi-Robot Motion Planning for Non-Holonomic Vehicles Cirillo, Marcello; uras, tansel; Koenig, Sven	Finding Optimal Routes for Multi-Robot Patrolling in Generic Graphs Portugal, David; Pippin, Charles; Rocha, Rui P.; Christensen, Henrik Iskov
17	10:25- 10:28	Remote Operated Vehicle Tether Disturbances Analysis and Target Tracking Control Huang, hai; sheng, ming-wei; Li, Yue-ming; Wan, Lei; Pang, Yongjie; di, wang	Multi-Cost Robotic Motion Planning under Uncertainty Simpson, Richard; Revell, James; Johansson, Anders; Richards, Arthur	Fleet Size of Multi-Robot Systems for Exploration of Structured Environments Cabrera-Mora, Flavio; Xiao, Jizhong
18	10:28- 10:31	Reactive Phase and Task Space Adaptation for Robust Motion Execution Englert, Peter; Toussaint, Marc	Constrained Path Optimization with Bezier Curve Primitives Choi, Ji-wung; Huhtala, Kalevi	Stable Formation of Groups of Robots Via Synchronization Valbuena, Luis; Cruz, Patricio; Figueroa, Rafael; Sorrentino, Francesco; Fierro, Rafael
19	10:31- 10:34	Synchronization and Consensus of a Robot Network on an Underactuated Dynamic Platform <i>Nguyen, Kim Doang; Dankowicz, Harry</i>	Distance Metric Approximation for State-Space RRTs Using Supervised Learning Bharatheesha, Mukunda; Caarls, Wouter; Wolfslag, Wouter; Wisse, Martijn	The RoboCup 2013 Drop-In Player Challenges: Experiments in Ad Hoc Teamwork MacAlpine, Patrick; Genter, Katie; Barrett, Samuel; Stone, Peter
20	10:34- 10:37	Robust Fixed Point Transformation Based Design for Model Reference Adaptive Control of a Modified TORA System Tar, József Kázmér; Várkonyi, Teréz Anna; Kovács, Levente; Rudas, Imre J.; Haidegger, Tamas	State Lattice with Controllers: Augmenting Lattice- Based Path Planning with Controller-Based Motion Primitives Butzke, Jonathan; Sapkota, Krishna; Prasad, Kush; MacAllister, Brian; Likhachev, Maxim	Aligning Coordinate Frames in Multi-Robot Systems with Relative Sensing Information Nagavalli, Sasanka; Lybarger, Andrew; Luo, Lingzhi; Chakraborty, Nilanjan; Sycara, Katia
21	10:37- 10:40	Receding Horizon Optimization of Robot Motions Generated by Hierarchical Movement Primitives Mühlig, Manuel; Hayashi, Akinobu; Gienger, Michael; Iba, Soshi; Yoshiike, Takahide	Sponsor Talk: Motion Planning for Collaborative Robots Barry, Jennifer Rethink Robotics	A Mathematical Programming Approach to Collaborative Missions with Heterogeneous Teams FEO, EDUARDO; Gambardella, Luca; Di Caro, Gianni A.

Monday Session B, 11:10 - 12:30

		Grand Ballroom MoB1 Calibration and Identification & Kinematics and Mechanism Design I	State Ballroom MoB2 Soft-Bodied Robotics & Robot Learning I	Red Lacquer Room MoB3 Navigation & Visual Servoing
	Chair	Maciejewski, Anthony A. (Colorado State University)	Paik, Jamie (EPFL)	Hutchinson, Seth (University of Illinois)
#	Time	Session Keynote	Session Keynote	Session Keynote
1	11:10- 11:30	Keynote: Innovative Mechanical Systems to Address Current Robotics Challenges Gosselin, Clement Laval University	Keynote: Soft Robotics <i>Laschi, Cecilia</i> Scuola Superiore Sant'Anna di Pisa	Keynote: From Robotics to VR and Back <i>LaValle, Steven M</i> University of Illinois
		Calibration and Identification	Soft-Bodied Robotics	Navigation
2	11:30- 11:33	Locally-Weighted Homographies for Calibration of Imaging Systems Ranganathan, Pradeep; Olson, Edwin	A New Coefficient-Adaptive Orthonormal Basis Function Model Structure for Identifying a Class of Pneumatic Soft Actuators Wang, Xiaochen; Geng, Tao; Elsayed, Yahya; Ranzani, Tommaso; Saaj, Chakravarthini; Lekakou, Constantina	Environment-Based Trajectory Clustering to Extract Principal Directions for Autonomous Vehicles Tanzmeister, Georg; Wollherr, Dirk; Buss, Martin
3	11:33- 11:36	Towards Simultaneous Coordinate Calibrations for Cooperative Multiple Robots Wang, Jiaole; Wu, Liao; Meng, Max QH.; Ren, Hongliang	Design of paper mechatronics: Towards a fully printed robot Shigemune, Hiroki; Maeda, Shingo; Hara, Yusuke; Hashimoto, Shuji	Wide-Field Optical Flow Aided Inertial Navigation for Unmanned Aerial Vehicles Rhudy, Matthew; Chao, Haiyang; Gu, Yu
4	11:36- 11:39	Force Calibration of the the KUKA Lightweight Robot Including Embedded Joint Torque Sensors and Robot Structure Gautier, Maxime; Jubien, Anthony	Development of a Meal Assistive Exoskeleton Made of Soft Materials Koo, Inwook; Yun, Chang-ho; Viana de Oliveira e Costa, Mateus; Scognamiglio, Joao; Yangali, Teodoro Andree; Park, Daegeun; Cho, Kyu-Jin	Experimental Study of Odometry Estimation Methods Using RGB-D Cameras fang, zheng; Scherer, Sebastian
5	11:39- 11:42	Calibrating a Pair of Inertial Sensors at Opposite Ends of an Imperfect Kinematic Chain Birbach, Oliver; Bäuml, Berthold	Spatial Parallel Soft Robotic Architectures Rivera, Jordan; Kim, Charles	Precise Vision-Aided Aerial Navigation Chiu, Han-Pang; Das, Aveek; Miller, Philip; Samarasekera, Supun; Kumar, Rakesh
6	11:42- 11:45	Extrinsic calibration of a set of range cameras in 5 seconds without any pattern Fernández-Moral, Eduardo; González-Jiménez, Javier; Rives, Patrick; Arevalo, Vicente	Whole Arm Planning for a Soft and Highly Compliant 2D Robotic Manipulator Marchese, Andrew; Katzschmann, Robert; Rus, Daniela	Real-Time Autonomous 3D Navigation for Tracked Vehicles in Rescue Environments Menna, Matteo; Gianni, Mario; Ferri, Federico; Pirri, Fiora
7	11:45- 11:48	Extrinsic Calibration of Non-Overlapping Camera- Laser System Using Structured Environment Bok, Yunsu; Choi, Dong - Geol; Vasseur, Pascal; Kweon, In So	An Untethered Jumping Soft Robot Tolley, Michael Thomas; Shepherd, Robert; Karpelson, Michael; Bartlett, Nicholas; Galloway, Kevin; Wehner, Michael; Nunes, Rui; Whitesides, George; Wood, Robert	Interactive Navigation of Humans from a Game Theoretic Perspective Turnwald, Annemarie; Olszowy, Wiktor; Wollherr, Dirk; Buss, Martin
8	11:48- 11:51	Magnetometer Bias Calibration Based on Relative Angular Position: Theory and Experimental Comparative Evaluation <i>Troni, Giancarlo; Eustice, Ryan</i>	Motion Pattern Discrimination for Soft Robots with Morphologically Flexible Sensors Culha, Utku; Wani, Umar; Nurzaman, Surya G.; Clemens, Frank; Iida, Fumiya	Layered Costmaps for Context-Sensitive Navigation Lu, David V.; Hershberger, Dave; Smart, William
9	11:51- 11:54	Automatic Calibration of RGBD and Thermal Cameras Lussier, Jake; Thrun, Sebastian	An Active Compliant Control Mode for Interaction with a Pneumatic Soft Robot Queisser, Jeffrey; Neumann, Klaus; Rolf, Matthias; Reinhart, Rene Felix; Steil, Jochen J.	Omnidirectional 3D Reconstruction in Augmented Manhattan Worlds Schönbein, Miriam; Geiger, Andreas
10	11:54- 11:57	Spatio-Temporal Laser to Visual/Inertial Calibration with Applications to Hand-Held, Large Scale Scanning <i>Rehder, Joern; Furgale, Paul Timothy; Beardsley,</i> <i>Paul; Siegwart, Roland</i>	Conformable Actuation and Sensing with Robotic Fabric Yuen, Michelle; Cherian, Arun; Case, Jennifer; Seipel, Justin; Kramer, Rebecca	Semantic Mapping for Object Category and Structural Class Zhao, Zhe; Chen, Xiaoping
11	11:57- 12:00	A Catadioptric Extension for RGB-D Cameras Endres, Felix; Sprunk, Christoph; Kuemmerle, Rainer; Burgard, Wolfram	Kinematics of a New Class of Smart Actuators for Soft Robots Based on Generalized Pneumatic Artificial Muscles <i>Krishnan, Girish</i>	Anytime Navigation with Progressive Hindsight Optimization Godoy, Julio; Karamouzas, Ioannis; Guy, Stephen J.; Gini, Maria

Monday Session B, 11:10 - 12:30 (Continued)

		Grand Ballroom	State Ballroom	Red Lacquer Room
		MoB1	MoB2	MoB3
#	Timo	Kinomatics and Mochanism Dosign I	Pohot Loarning L	Visual Sonvoing
12	12:00- 12:03	A Dual-Motor Robot Joint Mechanism Design A Dual-Motor Robot Joint Mechanism with Epicyclic Gear Train Babin, Vincent; Gosselin, Clement; Allan, Jean- Francois	Unsupervised and Online Non-Stationary Obstacle Discovery and Modeling Using a Laser Range Finder Duceux, Guillaume; Filliat, David	6D Image-Based Visual Servoing Manipulators with uncalibrated Stereo Cameras Cai, Caixia; Dean Leon, Emmanuel; Somani, Nikhil; Knoll, Alois
13	12:03- 12:06	Kinematic Design and Analysis for a Macaque Upper- Limb Exoskeleton with Shoulder Joint Alignment Haninger, Kevin; Lu, Junkai; Chen, Wenjie; Tomizuka, Masayoshi	Mutual Learning of an Object Concept and Language Model Based on MLDA and NPYLM Nakamura, Tomoaki; Nagai, Takayuki; Funakoshi, Kotaro; Nagasaka, Shogo; Taniguchi, Tadahiro; Iwahashi, Naoto	Weakly Calibrated Stereoscopic Visual Servoing for Laser Steering: Application to Microphonosurgery TAMADAZTE, Brahim; Andreff, Nicolas
14	12:06- 12:09	An Alternative Approach to Robot Safety Parmiggiani, Alberto; Randazzo, Marco; Natale, Lorenzo; Metta, Giorgio	Object Manifold Learning with Action Features for Active Tactile Object Recognition Tanaka, Daisuke; Matsubara, Takamitsu; Ichien, Kentaro; Sugimoto, Kenji	Novel Two-Stage Control Scheme for Robust Constrained Visual Servoing Assa, Akbar; Janabi-Sharifi, Farrokh
15	12:09- 12:12	On the Performance Evaluation and Analysis of General Robots with Mixed DoFs SHAYYA, Samah; Krut, Sebastien; Company, Olivier; Baradat, Cédric; Pierrot, François	Entropy Based Strategies for Physical Exploration of the Environment's Degrees of Freedom Otte, Stefan; Kulick, Johannes; Toussaint, Marc; Brock, Oliver	Lyapunov-Stable Eye-In-Hand Kinematic Visual Servoing with Unstructured Static Feature Points Navarro-Alarcon, David; Liu, Yunhui
16	12:12- 12:15	Closed-Loop Inverse Kinematics under Inequality Constraints: Application to Concentric-Tube Manipulators Azimian, Hamidreza; Looi, Thomas; Drake, James	Knowledge Propagation and Relation Learning for Predicting Action Effects Szedmak, Sandor; Ugur, Emre; Piater, Justus	A Sequence of Micro-Assembly for Irregular Objects Based on a Multiple Manipulator Platform <i>Xing, Dengpeng; Xu, De; Li, Hai peng</i>
17	12:15- 12:18	Novel Three-DOF Ankle Mechanisms for Lower-Limb Exoskeleton: Kinematic Analysis and Design of Passive-Type Ankle Module Hong, Man Bok; Shin, Young June; Wang, Ji-Hyeun	Learning to Reach into the Unknown: Selecting Initial Conditions When Reaching in Clutter PARK, DAEHYUNG; Kapusta, Ariel; Kim, You Keun; Rehg, James; Kemp, Charlie	Visual Servoing Based Trajectory Tracking of Underactuated Water Surface Robots without Direct Position Measurement WANG, Kai; Liu, Yunhui; Li, Luyang
18	12:18- 12:21	Robust Solution of Prioritized Inverse Kinematics Based on Hestenes-Powell Multiplier Method Sugihara, Tomomichi	Learning Haptic Representation for Manipulating Deformable Food Objects Gemici, Mevlana Celaleddin; Saxena, Ashutosh	Image Jacobian Estimation Using Structure from Motion on a Centralized Point Nevarez, Victor; Lumia, Ron
19	12:21- 12:24	Analytical Inverse Kinematic Solution for Modularized 7-DoF Redundant Manipulators with Offsets at Shoulder and Wrist Luo, Ren; Lin, Tsung-Wei; Tsai, Yun-Hsuan	A Neural Dynamics Architecture for Grasping That Integrates Perception and Movement Generation and Enables On-Line Updating Knips, Guido; Zibner, Stephan Klaus Ulrich; Reimann, Hendrik; Popova, Irina; Schöner, Gregor	Vision Guided Robotic Block Stacking Macias, Nate; Wen, John
20	12:24- 12:27	A Flexible and Robust Robotic Arm Design and Skill Learning by Using Recurrent Neural Networks Tan, Boon Hwa; Tang, Huajin; Yan, Rui; Tani, Jun	Control in the Reliable Region of a Statistical Model with Gaussian Process Regression Yun, Youngmok; Deshpande, Ashish	A Two Phase RGB-D Visual Servoing Controller Hojaij, Abdullah; Zelek, John S.; Asmar, Daniel
21	12:27- 12:30	Sponsor Talk: The da Vinci Xi Surgical System <i>DiMaio, Simon P.</i> Intuitive Surgical	Confidence-Based Roadmap Using Gaussian Process Regression for a Robot Control Okadome, Yuya; Nakamura, Yutaka; URAI, Kenji; Nakata, Yoshihiro; Ishiguro, Hiroshi	Pose Error Correction For Visual Features Prediction Cazy, Nicolas; Dune, Claire; Wieber, Pierre-Brice; Robuffo Giordano, Paolo; Chaumette, Francois

Monday Session C, 13:50 - 15:10

		Grand Ballroom MoC1 Micro-Nano Robots I & Manipulation and Grasping II	State Ballroom MoC2 Humanoids and Bipeds I & Computer Vision I	Red Lacquer Room MoC3 Bioinspired Robots II & Distributed Robotics
	Chair	Brock, Oliver (TU Berlin)	Dillmann, Rüdiger (Karlsruhe Institute of Technology)	Hsieh, M. Ani (Drexel University)
#	Time	Session Keynote	Session Keynote	Session Keynote
1	13:50- 14:10	Keynote: Micro and Nano Robotics for Biomedical Innovations Arai, Fumihito Nagoya University	Keynote: What is a humanoid robot good for? <i>Yokoi, Kazuhito</i> AIST	Keynote: From Biology to Robot and Back <i>Choset, Howie</i> Carnegie Mellon University
		Micro-Nano Robots I	Humanoids and Bipeds I	Bioinspired Robots II
2	14:10- 14:13	Three Dimensional Multi-Cell Spheroids Assembly Using Thermoresponsive Gel Probe Takeuchi, Masaru; Nakajima, Masahiro; Fukuda, Toshio; Hasegawa, Yasuhisa	Identification of HRP-2 Foot's Dynamics Mikami, Yuya; Moulard, Thomas; Yoshida, Eiichi; Venture, Gentiane	Compliance Computation for Continuum Types of Robots Smoljkic, Gabrijel; Reynaerts, Dominiek; Vander Sloten, Jos; Vander Poorten, Emmanuel B
3	14:13- 14:16	Construction of Vascular-like Microtubes via Fluidic Axis-translation Self-assembly based on Multiple Hydrogels Yue, Tao; Nakajima, Masahiro; Takeuchi, Masaru; Huang, Qiang; Fukuda, Toshio	Integration of Non-Inclusive Contacts in Posture Generation Brossette, Stanislas; Escande, Adrien; Vaillant, Joris; Keith, François; Moulard, Thomas; Kheddar, Abderrahmane	Multiport Modeling of Force and Displacement in Elastic Transmissions for Underactuated Hands <i>Martell, Michael; Schultz, Joshua</i>
4	14:16- 14:19	Magnetic Actuation of Ultra-Compliant Micro Robotic Mechanisms Vogtmann, Dana; Bergbreiter, Sarah	3D Dynamics of Bipedal Running: Effects of Step Width on an Amputee-Inspired Robot Sullivan, Timothy; Seipel, Justin	iSplash-II: Realizing Fast Carangiform Swimming to Outperform a Real Fish Clapham, Richard James; Hu, Huosheng
5	14:19- 14:22	Selective and Rapid Cell Injection of Fluorescence Sensor Encapsulated in Liposome Using Optical Control of Zeta Potential and Local Vibration Stimulus by Optical Tweezers Maruyama, Hisataka; Masuda, Taisuke; Ryu, heng jun; Arai, Fumihito	Lyapunov Stability Margins for Humanoid Robot Balancing Spyrakos-Papastavridis, Emmanouil; Perrin, Nicolas Yves; Tsagarakis, Nikolaos; Dai, Jian; Caldwell, Darwin G.	Multi-Functional Bio-Inspired Leg for Underwater Robots Kim, Hee Joong; Jun, Bong Huan; Lee, Jihong
6	14:22- 14:25	Real-Time LOC-based Morphological Cell Analysis System Using High-Speed Vision Gu, Qingyi; Aoyama, Tadayoshi; Takaki, Takeshi; Ishii, Idaku; Takemoto, Ayumi; Sakamoto, Naoaki	State Estimation for a Humanoid Robot Rotella, Nicholas; Bloesch, Michael; Righetti, Ludovic; Schaal, Stefan	Torque Control Strategies for Snake Robots Rollinson, David; Alwala, Kalyan Vasudev; Zevallos, Nico; Choset, Howie
7	14:25- 14:28	Noncontact Fine Alignment for Multiple Microcontact Printing Tanaka, Nobuyuki; Ota, Hiroki; Fukumori, Kazuhiro; Yamato, Masayuki; Okano, Teruo; Miyake, Jun	Sideward Locomotion Control of Biped Robots Based on Dynamics Morphing Atsuta, Hiroshi; Sugihara, Tomomichi	A 3D Motion Planning Framework for Snake Robots Liljebäck, Pål; Pettersen, Kristin Y.; Stavdahl, Øyvind; Gravdahl, Jan Tommy
8	14:28- 14:31	Study on Rotational and Unclogging Motions of Magnetic Chain-Like Microrobot Belharet, Karim; Folio, David; Ferreira, Antoine	Modular Low-Cost Humanoid Platform for Disaster Response Yi, Seung-Joon; McGill, Stephen; Vadakedathu, Larry; He, Qin; Ha, Inyong; Rouleau, Michael; Hong, Dennis; Lee, Daniel D.	Human Control of Robot Swarms with Dynamic Leaders Walker, Phillip; Amirpour Amraii, Saman; Lewis, Michael; Chakraborty, Nilanjan; Sycara, Katia
9	14:31- 14:34	Development of Chemical Stimulation System for Local Environment Control by Using Combination of Spout and Suction from Dual Pipettes Motoyoshi, Takahiro; Kojima, Masaru; Ohara, Kenichi; Horade, Mitsuhiro; Kamiyama, Kazuto; Mae, Yasushi; Arai, Tatsuo	Perception and Control Strategies for Driving Utility Vehicles with a Humanoid Robot Rasmussen, Christopher; Sohn, Kiwon; Wang, Qiaosong; Oh, Paul Y.	Snakes on an Inclined Plane: Learning an Adaptive Sidewinding Motion for Changing Slopes Gong, Chaohui; Tesch, Matthew; Rollinson, David; Choset, Howie
10	14:34- 14:37	A Stick-Slip Omnidirectional Powertrain for Low-Cost Swarm Robotics: Mechanism, Calibration, and Control Klingner, John; Kanakia, Anshul; Farrow, Nicholas; Reishus, Dustin; Correll, Nikolaus	Balancing experiments on a torque-controlled humanoid with hierarchical inverse dynamics Herzog, Alexander; Righetti, Ludovic; Grimminger, Felix; Pastor, Peter; Schaal, Stefan	Flapping Actuator Inspired by Lepidotrichia of Ray- Finned Fishes Sekar, Karthik Srivatsa; Triantafyllou, Michael; Valdivia y Alvarado, Pablo
11	14:37- 14:40	Non-Vector Space Stochastic Control for Nano Robotic Manipulations Zhao, Jianguo; Song, Bo; Xi, Ning	Dynamic State Estimation Using Quadratic Programming Xinjilefu, X; Feng, Siyuan; Atkeson, Christopher	Design and Implementation of a Low Cost, Pump- Based, Depth Control of a Small Robotic Fish Makrodimitris, Michail; Aliprantis, Ioannis; Papadopoulos, Evangelos

Monday Session C, 13:50 - 15:10 (Continued)

		Grand Ballroom	State Ballroom	Red Lacquer Room
		MoC1	MoC2	MoC3
#	Time	Manipulation and Grasping II	Computer Vision I	Distributed Robotics
12	14:40- 14:43	Task Specific Robust Grasping for Multifingered Robot Hands Boutselis, George; Bechlioulis, Charalampos; Liarokapis, Minas; Kyriakopoulos, Kostas	"Look at This!" Learning to Guide Visual Saliency in Human-Robot Interaction Schauerte, Boris; Stiefelhagen, Rainer	Distributed Management and Representation of Data and Context in Robotic Applications Dietrich, André; Zug, Sebastian; Mohammad, Siba; Kaiser, Jörg
13	14:43- 14:46	Achieving Elastic Stability of Concentric Tube Robots through Optimization of Tube Precurvature Ha, Junhyoung; Park, Frank; Dupont, Pierre	SuperFAST: Model-Based Adaptive Corner Detection for Scalable Robotic Vision Florentz, Gaspard; Aldea, Emanuel	Environment-independent Formation Flight for Micro Aerial Vehicles Naegeli, Tobias; Conte, Christian; domahidi, alexander; Morari, Manfred; Hilliges, Otmar
14	14:46- 14:49	Cable Stiffened Flexible Link Manipulator Dixit, Rahul; Kumar, R Prasanth	Auto-Adjusting Camera Exposure for Outdoor Robotics Using Gradient Information Shim, Inwook; Lee, Joon-Young; Kweon, In So	Rapid Multirobot Deployment with Time Constraints Carpin, Stefano; Pavone, Marco; Sadler, Brian
15	14:49- 14:52	Robotic Handwriting: Multi-Contact Manipulation Based on Reactional Internal Contact Hypothesis Kim, Sung-Kyun; Jo, Joonhee; Oh, Yonghwan; Oh, Sang-Rok; Srinivasa, Siddhartha; Likhachev, Maxim	SLAM with Object Discovery, Modeling and Mapping Choudhary, Siddharth; Trevor, Alexander J B; Christensen, Henrik Iskov; Dellaert, Frank	A Distributed Optimal Strategy for Rendezvous of Multi Robots with Random Node Failures Park, Hyongju; Hutchinson, Seth
16	14:52- 14:55	Cooperative Suspended Object Manipulation Using Reinforcement Learning and Energy-Based Control Palunko, Ivana; Donner, Philine; Buss, Martin; Hirche, Sandra	Real-Time Sequential Model-Based Non-Rigid SFM Bronte, Sebastian; Paladini, Marco; Bergasa, Luis Miguel; Agapito, Lourdes; Arroyo, Roberto	Distributed Cohesive Configuration Control for Swarm Robots with Boundary Information and Network Sensing Lee, Seoung Kyou; McLurkin, James
17	14:55- 14:58	Robotic Dual Probe Setup for Reliable Pick and Place Processing on the Nanoscale Using Haptic Devices Tiemerding, Tobias; Zimmermann, Soeren; Fatikow, Sergej	Direct Superpixel Labeling for Mobile Robot Navigation Using Learned General Optical Flow Templates Roberts, Richard; Dellaert, Frank	Decentralized and Complete Multi-Robot Motion Planning in Confined Spaces Wiktor, Adam; Scobee, Dexter; Messenger, Sean; Clark, Christopher M.
18	14:58- 15:01	Optimal Parameter Identification for Discrete Mechanical Systems with Application to Flexible Object Manipulation Caldwell, Timothy; Coleman, David; Correll, Nikolaus	A Directional Visual Descriptor for Large-Scale Coverage Problems Tamassia, Marco; Farinelli, Alessandro; Murino, Vittorio; Del Bue, Alessio	Mobile Robotic Wireless Sensor Networks for Efficient Spatial Prediction Nguyen, Linh Van; Kodagoda, Sarath; Ranasinghe, Ravindra; Dissanayake, Gamini
19	15:01- 15:04	The Joint Coordination in Reach-To-Grap Movements Li, Zhi; Gray, Kierstin; Roldan, Jay Ryan; Milutinovic, Dejan; Rosen, Jacob	Real-Time Pose Estimation of Deformable Objects Using a Volumetric Approach Li, Yinxiao; Wang, Yan; Case, Michael; Chang, Shih- Fu; Allen, Peter	Improving Data Ferrying by Iteratively Learning the Radio Frequency Environment <i>Carfang, Anthony; Wagle, Neeti; Frew, Eric W.</i>
20	15:04- 15:07	A Robot System Design for Low-Cost Multi-Robot Manipulation McLurkin, James; McMullen, Adam; Robbins, Nicholas; Habibi, Golnaz; Becker, Aaron; Chou, Alvin; Li, Hao; John, Meagan; Okeke, Nnena; Rykowski, Joshua; Kim, Sunny; Xie, William; Taylor, Vaughn; Zhou, Yu; Shen, Hsin-Yu Jennifer; Chen, Nelson; Kaseman, Quillan; Langford, Lindsay; Hunt, Jeremy; Boone, Amanda; Koch, Kevin Koch	PAS: Visual Odometry with Perspective Alignment Search <i>Richardson, Andrew; Olson, Edwin</i>	A Cooperative Formation Control Strategy Maintaining Connectivity of a Multi-Agent System Dutta, Rajdeep; Sun, Liang; Kothari, Mangal; Sharma, Rajnikant; Pack, Daniel
21	15:07- 15:10	Declarative Specification of Task-Based Grasping with Constraint Validation Schneider, Sven; Hochgeschwender, Nico; Kraetzschmar, Gerhard	Planar Building Facade Segmentation and Mapping Using Appearance and Geometric Constraints Lee, Joseph; Lu, Yan; Song, Dezhen	Interactive Augmented Reality for Understanding and Analyzing Multi-Robot Systems Ghiringhelli, Fabrizio; Guzzi, Jerome; Di Caro, Gianni A.; caglioti, vincenzo; Gambardella, Luca; Giusti, Alessandro

Monday Session D, 15:20 - 16:40

		Grand Ballroom	State Ballroom	Red Lacquer Room
		MoD1	MoD2	MoD3
		Haptics &	Human-Robot Interaction I &	Formal Methods &
		Surgical Robotics I	Robot Learning II	Software and Architecture
	Chair	Xiao, Jing (UNC-Charlotte)	De Luca, Alessandro (Sapienza University of Rome)	Tumova, Jana (Royal Institute of Technology)
#	Time	Session Keynote	Session Keynote	Session Keynote
1	15:20-	Keynote: Haptics in Robot-Assisted Surgery	Reynote: Overview of Motor Interaction with Robots and Other Humans Burdet Etianne	Keynote: Formal methods in robotics
	10.40	Stanford University	Imperial College London	University of Pennsylvania
		Haptics	Human-Robot Interaction I	Formal Methods
2	15:40- 15:43	Steering of Flexible Needles Combining Kinesthetic and Vibratory Force Feedback Pacchierotti, Claudio; Abayazid, Momen; Misra, Sarthak; Prattichizzo, Domenico	A Peer Pressure Experiment: Recreation of the Asch Conformity Experiment with Robots Brandstetter, Jürgen; Racz, Peter; Beckner, Clayton; Sandoval, Eduardo; Hay, Jennifer; Bartneck, Christoph	A Compositional Approach to Stochastic Optimal Control with Co-safe Temporal Logic Specifications <i>Horowitz, Matanya; Wolff, Eric; Murray, Richard</i>
3	15:43- 15:46	Touch Attention Bayesian Models for Robotic Active Haptic Exploration of Heterogeneous Surfaces Martins, Ricardo; Ferreira, João Filipe; Dias, Jorge	Inverse Reinforcement Learning Algorithms and Features for Robot Navigation in Crowds: An Experimental Comparison Vasquez, Dizan; Okal, Billy; Arras, Kai Oliver	Formal Verification of Maneuver Automata for Parameterized Motion Primitives Heß, Daniel; Althoff, Matthias; Sattel, Thomas
4	15:46- 15:49	Design and Evaluation of a 1DoF ERF-Based Needle Insertion Haptic Platform Graña Sanchez, Adrian; Sanchez Secades, Luis Alonso; Zemiti, Nabil; Poignet, Philippe	Extraction of Person-Specific Motion Style Based on a Task Model and Imitation by Humanoid Robot Okamoto, Takahiro; Shiratori, Takaaki; Glisson, Matthew; Yamane, Katsu; Kudoh, Shunsuke; Ikeuchi, Katsushi	How Behavior Trees Modularize Robustness and Safety in Hybrid Systems Colledanchise, Michele; Ogren, Petter
5	15:49- 15:52	Haptic-Enabled Teleoperation of Base-Excited Hydraulic Manipulators Applied to Live-Line Maintenance Banthia, Vikram; Maddahi, Yaser; Balakrishnan, Subramaniam; Sepehri, Nariman	Determining Proper Grasp Configurations for Handovers through Observation of Object Movement Patterns and Inter-Object Interactions During Usage Chan, Wesley Patrick; Kakiuchi, Yohei; Okada, Kei; Inaba, Masayuki	Verification and Testing of Mobile Robot Navigation Algorithms: A Case Study in SPARK <i>Trojanek, Piotr; Eder, Kerstin</i>
6	15:52- 15:55	A Mixed-Initiative Control System for an Aerial Service Vehicle Supported by Force Feedback <i>Cacace, Jonathan; Finzi, Alberto; Lippiello, Vincenzo</i>	Using Spatial Language to Drive a Robot for an Indoor Environment Fetch Task Huo, Zhiyu; Alexenko, Tatiana; Skubic, Marjorie	Verifying and Validating Multirobot Missions Lyons, Damian; Arkin, Ronald; Jiang, Shu; Harrington, Dagan; Liu, Tsung-Ming
7	15:55- 15:58	Design of a Bladder Based Elastomeric Smart Shoe for Haptic Terrain Display Wang, Yue; Minor, Mark	Speech-Based Human-Robot Interaction Robust to Acoustic Reflections in Real Environment Gomez, Randy; Inoue, Koji; Nakamura, Keisuke; Mizumoto, Takeshi; Nakadai, Kazuhiro	Maximally Satisfying LTL Action Planning Tumova, Jana; Marzinotto, Alejandro; Dimarogonas, Dimos V.; Kragic, Danica
8	15:58- 16:01	Contact Force Decomposition Using Tactile Information for Haptic Augmented Reality Kim, Hyoungkyun; Choi, Seungmoon; Chung, Wan Kyun	Head-Eyes System and Gaze Analysis of the Humanoid Robot Romeo Pateromichelakis, Nikolaos; Mazel, Alexandre; Hache, Marc-Antoine; KOUMPOGIANNIS, Thomas; Gelin, Rodolphe; MAISONNIER, Bruno; Berthoz, Alain	Optimal and Dynamic Planning for Markov Decision Processes with Co-Safe LTL Specifications Lacerda, Bruno; Parker, David; Hawes, Nick
9	16:01- 16:04	RoboPuppet: Low-Cost, 3D Printed Miniatures for Teleoperating Full-Size Robots Eilering, Anna; Franchi, Giulia; Hauser, Kris	Development of a Rehabilitation Robot Suit with Velocity and Torque-Based Mechanical Safety Devices Kai, Yoshihiro; KITAGUCHI, Satoshi; Kanno, Shotaro; Zhang, Wenlong; Tomizuka, Masayoshi	SafeRobots: A Model-Driven Framework for Developing Robotic Systems Ramaswamy, Arunkumar; Monsuez, Bruno; Tapus, Adriana
10	16:04- 16:07	Haptic Exploration of Unknown Surfaces with Discontinuities Jamisola, Jr., Rodrigo S.; Kormushev, Petar; Bicchi, Antonio; Caldwell, Darwin G.	Modeling and Controller Design of Cooperative Robots in Workspace Sharing Human-Robot Assembly Teams Liu, Changliu; Tomizuka, Masayoshi	Automated Composition of Motion Primitives for Multi- Robot Systems from Safe LTL Specifications Saha, Indranil; Ramaithitima, Rattanachai; Kumar, Vijay; Pappas, George J.; Seshia, Sanjit A.
11	16:07- 16:10	The Patched Intrinsic Tactile Object: A Tool to Investigate Human Grasps Serio, Alessandro; Riccomini, Emanuele; Tartaglia, Vincenzo; Sarakoglou, Ioannis; Gabiccini, Marco; Tsagarakis, Nikolaos; Bicchi, Antonio	Adjutant: A Framework for Flexible Human-Machine Collaborative Systems Guerin, Kelleher; Riedel, Sebastian Danilo; Bohren, Jonathan; Hager, Gregory	A Stable Switched-System Approach to Obstacle Avoidance for Mobile Robots in SE(2) Jin, JingFu; Green, Adrian; Gans, Nicholas (Nick)

Monday Session D, 15:20 - 16:40 (Continued)

		Grand Ballroom	State Ballroom	Red Lacquer Room
		MoD1	MoD2	MoD3
_ #	Time	Surgical Robotics I	Robot Learning II	Software and Architecture
12	16:10- 16:13	Workspace Characterization for Concentric Tube Continuum Robots Burgner-Kahrs, Jessica; Gilbert, Hunter B.; Granna,	Efficient Policy Search with a Parameterized Skill Memory Reinhart, Rene Felix; Steil, Jochen J.	Language and Robot Controller Using Expression Graphs Aertbelien, Erwin; De Schutter, Joris
	<u> </u>	Josephine; Swaney, Philip J.; Webster III, Robert James		
13	16:13- 16:16	Preliminary Evaluation of a New Microsurgical Robotic System for Head and Neck Surgery Olds, Kevin; Chalasani, Preetham; Pacheco-Lopez, Paulette; Iordachita, Iulian; Akst, Lee; Taylor, Russell H.	Simultaneous On-Line Discovery and Improvement of Robotic Skill Options Stulp, Freek; Herlant, Laura; Hoarau, Antoine; Raiola, Gennaro	Robot Task Commander: A Framework and IDE for Robot Application Development Hart, Stephen; Dinh, Paul; Yamokoski, John; Wightman, Brian; Radford, Nicolaus
14	16:16- 16:19	Surgical Structured Light for 3D Minimally Invasive Surgical Imaging Reiter, Austin; Sigaras, Alexandros; Fowler, Dennis; Allen, Peter	Dimensionality Reduction and Motion Coordination in Learning Trajectories with Dynamic Movement Primitives Colomé, Adrià; Torras, Carme	Enhancing Software Module Reusability Using Port Plug-Ins: An Experiment with the iCub Robot Paikan, Ali; Tikhanoff, Vadim; Metta, Giorgio; Natale, Lorenzo
15	16:19- 16:22	Cooperative Teleoperation with Projection-Based Force Reflection for MIS Takhmar, Amir; Polushin, Ilia G.; Talasaz, Ali; Patel, Rajnikant V.	OrigamiBot-I: A Thread-Actuated Origami Robot for Manipulation and Locomotion Vander Hoff, Evan; Jeong, Donghwa; Lee, Kiju	Simple Concurrency for Robotics with the Roboscoop Framework Rusakov, Andrey; Shin, Jiwon; Meyer, Bertrand
16	16:22- 16:25	Design of a Unified Active Locomotion Mechanism for a Wireless Laparoscopic Camera System <i>Liu, Xiaolong; Mancini, Gregory; Tan, Jindong</i>	Decoding Surface Electromyogram into Dynamic State to Extract Dynamic Motor Control Strategy of Human Park, Seongsik; Chung, Wan Kyun	A Lightweight, Cross-Platform, Multiuser Robot Visualization Using the Cloud Hilton, William; Lofaro, Daniel; Kim, Youngmoo
17	16:25- 16:28	Toward Automated Intraocular Laser Surgery Using a Handheld Micromanipulator Yang, Sungwook; MacLachlan, Robert A.; Riviere, Cameron N.	Latent Space Policy Search for Robotics Luck, Kevin Sebastian; Neumann, Gerhard; Berger, Erik; Peters, Jan; Ben Amor, Heni	ReFrESH: A Self-Adaptation Framework to Support Fault Tolerance in Field Mobile Robots Cui, Yanzhe; Voyles, Richard; Lane, Joshua; Mahoor, Mohammad
18	16:28- 16:31	Quasi-Static Modeling of the Da Vinci Instrument Anooshahpour, Farshad; Polushin, Ilia G.; Patel, Rajnikant V.	Learning of Closed-Loop Motion Control Farshidian, Farbod; Neunert, Michael; Buchli, Jonas	Speeding up Rao-Blackwellized Particle Filter SLAM with a Multithreaded Architecture Gouveia, Bruno; Portugal, David; Marques, Lino
19	16:31- 16:34	Design and Evaluation of a Novel Flexible Robot for Transluminal and Endoluminal Surgery Seneci, Carlo Alberto; Shang, Jianzhong; Leibrandt, Konrad; Vitiello, Valentina; Patel, Nisha; Darzi, Ara; Teare, Julian; Yang, Guang-Zhong	Unsupervised Learning Approach to Attention-Path Planning for Large-Scale Environment Classification LEE, Hosun; Jeong, Sungmoon; Chong, Nak Young	Developing Virtual Testbeds for Intelligent Robot Manipulators - an Erobotics Approach <i>Guiffo Kaigom, Eric; Rossmann, Juergen</i>
20	16:34- 16:37	Design of a Spine-Inspired Kinematic for the Guidance of Flexible Instruments in Minimally Invasive Surgery <i>Traeger, Mattias Felix; Roppenecker, Daniel B.;</i> <i>Leininger, Matthias R.; Schnoes, Florian; Lueth, Tim</i> <i>C.</i>	Automatic Channel Selection and Neural Signal Estimation across Channels of Neural Probes Vysotska, Olga; Frank, Barbara; Istvan, Ulbert; Paul, Oliver; Ruther, Patrick; Stachniss, Cyrill; Burgard, Wolfram	Crowdsourcing As a Methodology to Obtain Large and Varied Robotic Data Sets de Croon, Guido; Gerke, Paul; Sprinkhuizen-Kuyper, Ida
21	16:37- 16:40	Hybrid Control of Master-Slave Velocity Control and Admittance Control for Safe Remote Surgery Osa, Takayuki; Uchida, Satoshi; Sugita, Naohiko; Mitsuishi, Mamoru	Fast Planning of Well Conditioned Trajectories for Model Learning Wang, Cong; Zhao, Yu; Lin, Chung-Yen; Tomizuka, Masayoshi	

Tuesday Session A, 09:00 - 10:20

		Grand Ballroom	State Ballroom	Red Lacquer Room
		TuA1 Manipulation and Grasping III & Parallel Robotics	TuA2 Motion and Path Planning II & Localization and Mapping II	TuA3 Search, Rescue, and Audition & Field Robotics
	Chair	Guglielmelli, Eugenio (Universita' Campus Bio-Medico)	LaValle, Steven M (University of Illinois)	Tadokoro, Satoshi (Tohoku University)
#	Time	Session Keynote	Session Keynote	Session Keynote
<i>"</i>	00.00	Keynote: Grasping and Manipulation by Humans and	Keynote: Sampling-Based Planning: Foundations &	Keynote: Lessons Learned in Field Robotics from
1	09:00-	Brock, Oliver	Amato, Nancy	Murphy, Robin
		TU Berlin	Texas A&M	Texas A&M
		Manipulation and Grasping III	Motion and Path Planning II	Search, Rescue, and Audition
2	09:20- 09:23	Characterization of the Precision Manipulation Capabilities of Robot Hands via the Continuous Group of Displacements Rojas, Nicolas; Dollar, Aaron	Proactive Kinodynamic Planning using the Extended Social Force Model and Human Motion Prediction in Urban Environments Ferrer, Gonzalo; Sanfeliu, Alberto	The Response Robotics Summer School 2013: Bringing Responders and Researchers Together to Advance Response Robotics Sheh, Raymond Ka-Man; Collidge, Bill; Lazarescu, Mihai; Komsuoglu, Haldun; Jacoff, Adam
		Encoderless Robot Motion Control Lising Vision	An Automatic Approach for the Generation of the Roadman for Multi-AGV Systems in an Industrial	Design of a Hybrid Exploration Robot for Air and Land
3	09:23- 09:26	Sensor and Back Electromotive Force Kawamura, Akihiro; Tachibana, Miyako; Yamate, Soichiro; Kawamura, Sadao	Environment Digani, Valerio; Sabattini, Lorenzo; Secchi, Cristian; Fantuzzi, Cesare	Rescue Applications Latscha, Stella; Kofron, Michael; Stroffolino, Anthony; Davis, Lauren; Merritt, Gabrielle; Piccoli, Matthew; Yim, Mark
		Humanoid Compliant Whole Arm Dexterous	Recursive Non-Uniform Coverage of Unknown	Approaches to Robotic Teleoperation in a Disaster Scenario: From Supervised Autonomy to Direct
	00.26	Manipulation: Control Design and Experiments	Terrains for UAVs	Control Katval Kapili Bravin Christenber: Hachtman Staven
4	09:28-	Christian	Saoar, Abbas, wawena, Jens, vaugnan, Richaro	A.; Yai, Kapii, Brown, Christopher, Hechiman, Steven A.; Para, Matthew; McGee, Timothy G.; Wolfe, Kevin; Murphy, Ryan Joseph; Kutzer, Michael Dennis Mays; Tunstel, Edward; Mcloughlin, Michael; Johannes, Matthew
		Analyzing Human Fingertip Usage in Dexterous Precision Manipulation: Implications for Robotic Finger	Path Planning with Stability Uncertainty for Articulated	Remote Vertical Exploration by Active Scope Camera
5	09:29-	Design Rullock, Jon: Foix, Thomas: Dallar, Acron	Mobile Vehicles in Challenging Environments	into Collapsed Buildings
	09.32	Bullock, Ian, Feix, Montas, Dollar, Aaron	Gamini; Vidal-Calleja, Teresa A.	Tadokoro, Satoshi
				Estimation of Ground Surface Radiation Sources from
	09:32-	Adaptive Under-Actuated Anthropomorphic Hand: ISR- SoftHand	Closed-Loop Global Motion Planning for Reactive Execution of Learned Tasks	Dose Map Measured by Moving Dosimeter and 3D Map
0	09:35	Tavakoli, Mahmoud; de Almeida, Anibal	Bowen, Chris; Alterovitz, Ron	Minamoto, Gaku; Takeuchi, Eijiro; Tadokoro, Satoshi
		Coordinated Motion Control of a Nonholonomic Mobile		Making a Robot Dance to Diverse Musical Genre in
7	09:35- 09:38	Manipulator for Accurate Motion Tracking Jia. Yunvi: Xi. Nina: Chena. Yu: Liana. Sivana	An Empirical Study of Optimal Motion Planning Luo. Jingru: Hauser, Kris	Noisy Environments Oliveira. João Lobato: Nakamura. Keisuke: Langlois.
				Thibault; Gouyon, Fabien; Nakadai, Kazuhiro; Lim, Angelica; Reis, Luís Paulo; Okuno, Hiroshi G.
		Hierarchical Fingertip Space for Multi-Fingered	The Lion and Man Game on Polyhedral Surfaces with	Improvement in Outdoor Sound Source Detection
8	09:38- 09:41	Precision Grasping	Boundary Noori Narges: Isler Volkan	Using a Quadrotor-Embedded Microphone Array Obata Takuma: Nakamura Keisuke: Mizumoto
		Danica		Takeshi; Tezuka, Taiki; Nakadai, Kazuhiro
		Modeling of Skid-Steer Mobile Manipulators Using		Visualization of auditory awareness based on sound
	09:41-	Spatial Vector Algebra and Experimental Validation with a Compact Loader	Steering Using Optimization in Belief Space	source positions estimated by depth sensor and microphone array
	09:44	Aguilera, Sergio; Torres-Torriti, Miguel; Auat Cheein, Fernando	Sun, Wen; Alterovitz, Ron	Iyama, Takahiro; Sugiyama, Osamu; Otsuka, Takuma; Itoyama, Katsutoshi; Okuno, Hiroshi G.
		Physically-Consistent Sensor Fusion in Contact-Rich	A Sampling-Based Algorithm for Multi-Robot Visibility-	Rapidly Learning Musical Reats in the Presence of
10	09:44-	Behaviors	Based Pursuit-Evasion	Environmental and Robot Ego Noise
	09:47	Tom; Todorov, Emanuel	Sumer, Nicriolas; O'Kane, Jason	Grunberg, Davia; Kim, Youngmoo
<u> </u>				
1	09.47-	A Real-Time Distributed Architecture for Large-Scale	Online Learning of Task-Specific Dynamics for Periodic Tasks	Audio Ray Tracing for Position Estimation of Entities in Blind Regions
11	09:50	Baglini, Emanuele; Youssefi, Shahbaz;	Petric, Tadej; Gams, Andrej; Zlajpah, Leon; Ude, Ales	Even, Jani; Morales Saiki, Luis Yoichi; Kallakuri,
		iviastrogiovanni, Fuivio; Cannata, Giorgio		ivagasrikantn; isni, Carios Toshihori; Hagita, Norihiro

Tuesday Session A, 09:00 - 10:20 (Continued)

		Grand Ballroom	State Ballroom	Red Lacquer Room
		TuA1	TuA2	TuA3
щ	Time	Devellal Dahatian	I continuation and Monster II	Field Dehetics
12	09:50- 09:53	A New Extension of Desired Compensation Adaptive Control and Its Real-Time Application to Redundantly Actuated PKMs Bennehar, Moussab; Chemori, Ahmed; Pierrot, François	Towards Consistent Reconstructions of Indoor Spaces Based on 6D RGB-D Odometry and KinectFusion Dong, Haiwei; Figueroa, Nadia; El Saddik, Abdulmotaleb	An Adaptive Basic I/O Gain Tuning Method Based on Leveling Control Input Histogram for Human-Machine Systems Kamezaki, Mitsuhiro; Iwata, Hiroyasu; Sugano, Shigeki
13	09:53- 09:56	Structural Synthesis of Dexterous Hands Ozgur, Erol; Gogu, Grigore; Mezouar, Youcef	Biologically Inspired SLAM Using Wi-Fi Berkvens, Rafael; Jacobson, Adam; Milford, Michael J; peremans, herbert; Weyn, Maarten	Development and Field Test of Teleoperated Mobile Robots for Active Volcano Observation Nagatani, Keiji; Akiyama, Ken; Yamauchi, Genki; Yoshida, Kazuya; Hada, Yasushi; Yuta, Shinichi; Izu, Tomoyuki; Randy, Mackay
14	09:56- 09:59	Study of Reconfigurable Suspended Cable-Driven Parallel Robots for Airplane Maintenance NGUYEN, Dinh Quan; Gouttefarde, Marc	Point Cloud Registration Using Congruent Pyramids Krishnan, Aravindhan; Saripalli, Srikanth	Intelligent Slip-Optimization Control with Traction- Energy Trade-Off for Wheeled Robots on Rough Terrain <i>Kim, Jayoung; Lee, Jihong</i>
15	09:59- 10:02	Workspace Analysis of Two Similar 3-DOF Axis- Symmetric Parallel Manipulators Marlow, Kristan; Isaksson, Mats; Abdi, Hamid; Nahavandi, Saeid	On the Formulation, Performance and Design Choices of Cost-Curve Occupancy Grids for Stereo-Vision Based 3D Reconstruction Brandao, Martim; Ferreira, Ricardo; Hashimoto, Kenji; Santos-Victor, José; Takanishi, Atsuo	Novel Robot Mechanism Capable of 3D Differential Driving Inside Pipelines Yang, Seung Ung; Kim, Ho Moon; Suh, Jung Seok; Choi, Yun Seok; Mun, Hyeong Min; Park, Chan Min; Moon, Hyungpil; Choi, Hyouk Ryeol
16	10:02- 10:05	Improvement of the Direct Kinematic Model of a Haptic Device for Medical Application in Real Time Using an Extra Sensor saafi, Houssem; Iaribi, med amine; Zeghloul, Said	Handling Perceptual Clutter for Robot Vision with Partial Model-Based Interpretations <i>Tsai, Grace; Kuipers, Benjamin</i>	Autonomous Robotic System for Bridge Deck Data Collection and Analysis La, Hung; Gucunski, Nenad; Kee, Seong-Hoon; Yi, Jingang; Senlet, Turgay; Nguyen, Luan
17	10:05- 10:08	Switching Strategy for Flexible Task Execution Using the Cooperative Dual Task-Space Framework Figueredo, Luis Felipe da Cruz; Adorno, Bruno Vilhena; Ishihara, João Yoshiyuki; Borges, Geovany Araujo	Modeling Motion Patterns of Dynamic Objects by IOHMM Wang, Zhan; Ambrus, Rares; Jensfelt, Patric; Folkesson, John	Road Surface Washing System for Decontaminating Radioactive Substances Endo, Mitsuru; Endo, Mai; Kakizaki, Takao
18	10:08- 10:11	Vibration Control of 3P(S)4 Class Parallel Mechanisms for High Speed Applications Using Quantitative Feedback Design Avci, Ebubekir; Kenmochi, Masanori; Kawanishi, Michihiro; Narikiyo, Tatsuo; Kawakami, Shinji; Saitoh, Yumi	Fast Hybrid Relocation in Large Scale Metric- Topologic-Semantic Map DROUILLY, Romain; Rives, Patrick; Morisset, Benoit	A Framework for Predicting the Mission-Specific Performance of Autonomous Unmanned Systems Durst, Phillip J; Gray, Wendell; Nikitenko, Agris; Caetano, Joao; King, Roger; Trentini, Michael
19	10:11- 10:14	Dimensional Synthesis of 4 DoFs (3T-1R) Actuatedly Redundant Parallel Manipulator Based on Dual Criteria: Dynamics and Precision SHAYYA, Samah; Krut, Sebastien; Company, Olivier; Baradat, Cédric; Pierrot, François	Stereo-Vision Based Obstacle Mapping for Indoor/Outdoor SLAM Brand, Christoph; Schuster, Martin Johannes; Hirschmüller, Heiko; Suppa, Michael	Experimental Analysis of Models for Trajectory Generation on Tracked Vehicles <i>Fink, Jonathan; Stump, Ethan</i>
20	10:14- 10:17	Active Vibration Canceling of a Cable-Driven Parallel Robot Using Reaction Wheels Weber, Xavier; Cuvillon, Loic; Gangloff, Jacques	Meta-Rooms: Building and Maintaining Long Term Spatial Models in a Dynamic World Ambrus, Rares; Bore, Nils; Folkesson, John; Jensfelt, Patric	Sonar-Based Chain Following Using an Autonomous Underwater Vehicle Hurtos, Natalia; Palomeras, Narcis; Carreras, Marc; Carrera, Arnau; Bechlioulis, Charalampos; Karras, George; Heshmati-alamdari, Shahab; Kyriakopoulos, Kostas
21	10:17- 10:20		Sponsor Talk: BRIN: Benchmark for Robotic Indoor Navigation Parent, Gershon Microsoft Robotics	Sponsor Talk: Vision-Based Navigation <i>Jones, Chris</i> iRobot Corporation

Tuesday Session B, 10:50 - 12:10

		Grand Ballroom TuB1 Medical Robots and Systems I & Rehabilitation Robotics I	State Ballroom TuB2 Human-Robot Interaction II & Robot Learning III	Red Lacquer Room TuB3 Marine Robotics & Space Robotics
	Chair	Papanikolopoulos, Nikos (University of Minnesota)	Zhang, Jianwei (University of Hamburg)	Leonard, John (MIT)
#	Time	Session Kevnote	Session Keynote	Session Keynote
1	10:50- 11:10	Keynote: Medical Robotics - Melding Clinical Need with Engineering Research <i>Dupont, Pierre</i> Boston University	Keynote: Robots and Gaming - Therapy for Children with Disabilities <i>Howard, Ayanna</i> Georgia Tech	Keynote: Human-guided video data collection in marine environments Dudek, Gregory EPFL
		Medical Robots and Systems I	Human-Robot Interaction II	Marine Robotics
2	11:10- 11:13	A Fast, Low-Cost, Computer Vision Approach for Tracking Surgical Tools Dockter, Rodney; Sweet, Robert; Kowalewski, Timothy	A Gesture Recognition System for Mobile Robots That Learns Online Hamlet, Alan; Emami, Patrick	Predicting the Speed of a Wave Glider Autonomous Surface Vehicle from Wave Model Data Ngo, Phillip; Das, Jnaneshwar; Ogle, Jonathan; Thomas, Jesse; Anderson, Will; Smith, Ryan N.
3	11:13- 11:16	A Dynamically Consistent Hierarchical Control Architecture for Robotic-Assisted Tele-Echography Santos, Luís; Cortesao, Rui	Cartesian Impedance Control of Redundant Manipulators for Human-Robot Co-Manipulation Ficuciello, Fanny; Romano, Amedeo; Villani, Luigi; Siciliano, Bruno	3D Trajectory Synthesis and Control for a Legged Swimming Robot Meger, David Paul; Shkurti, Florian; Cortés Poza, David; Giguere, Philippe; Dudek, Gregory
4	11:16- 11:19	Extended Kinematic Mapping of Tendon-Driven Continuum Robot for Neuroendoscopy Kato, Takahisa; Okumura, Ichiro; Kose, Hidekazu; Takagi, Kiyoshi; Hata, Nobuhiko	Estimation of Contact Forces Using a Virtual Force Sensor Magrini, Emanuele; Flacco, Fabrizio; De Luca, Alessandro	Control of a Compact, Tetherless ROV for In-Contact Inspection of Complex Underwater Structures <i>Bhattacharyya, Sampriti; Asada, Harry</i>
5	11:19- 11:22	Dielectrophoresis-Based Automatic 3D Cell Manipulation and Patterning through a Micro- Electrode Integrated Multi-Layer Scaffold Chu, Henry; Huan, Zhijie; Mills, James K.; Yang, Jie; Sun, Dong	Multi-Muscle FES Control of the Human Arm for Interaction TasksStabilizing with Muscle Co- Contraction and Postural Adjustment: A Simulation Study Liao, Yu-Wei; Schearer, Eric; Perreault, Eric; Tresch, Matthew; Lynch, Kevin	Three-Dimensional Reconstruction of Bridge Structures above the Waterline with an Unmanned Surface Vehicle Han, Jungwook; Park, Jeonghong; Kim, JinWhan
6	11:22- 11:25	A Novel Redundant Motion Control Mechanism in Accordance with Medical Diagnostic and Therapeutic Task Functions for a NIUTS Koizumi, Norihiro; Lee, Dongjun; Seo, Joonho; Tsukihara, Hiroyuki; Nomiya, Akira; Azuma, Takashi; Yoshinaka, Kiyoshi; Sugita, Naohiko; Homma, Yukio; Mitsuishi, Mamoru	Pneumatic Tubular Body Fixture for Wearable Assistive Device - Analysis and Design of Active Cuff to Hold Upper Limb - Hasegawa, Yasuhisa; Hasegawa, Takaaki; Eguchi, Kiyoshi	I-AUV Docking and Intervention in a Subsea Panel Palomeras, Narcis; Peñalver, Antonio; Massot- Campos, Miquel; Vallicrosa, Guillem; Negre Carrasco, Pep Lluis; Fernández, José Javier; Ridao, Pere; Sanz, Pedro J; Oliver, Gabriel A.; Palomer, Albert
7	11:25- 11:28	Simultaneously Powering and Controlling Many Actuators with a Clinical MRI Scanner Becker, Aaron; Felfoul, Ouajdi; Dupont, Pierre	Implementation and Experimental Validation of Dynamic Movement Primitives for Object Handover Prada, Miguel; Remazeilles, Anthony; Koene, Ansgar Roald; Endo, Satoshi	Active Range-Only Beacon Localization for AUV Homing Vallicrosa, Guillem; Ridao, Pere; Ribas, David; Palomer, Albert
8	11:28- 11:31	Simultaneous Catheter and Environment Modeling for Trans-Catheter Aortic Valve Implantation Shi, Chaoyang; Giannarou, Stamatia; Lee, Su-Lin; Yang, Guang-Zhong	Support Vector Machine Classification of Muscle Cocontraction to Improve Physical Human-Robot Interaction Moualeu, Antonio; Gallagher, William; Ueda, Jun	Autonomous Vehicle Localization in a Vector Field: Underwater Vehicle Implementation Song, Zhuoyuan; Mohseni, Kamran
9	11:31- 11:34	Structurally-Redesigned Concentric-Tube Manipulators with Improved Stability Azimian, Hamidreza; Francis, Peter; Looi, Thomas; Drake, James	Oscillation Reduction Scheme for Wearable Robots Employing Linear Actuators and Sensors Park, Jong Hyeon; Choo, Junghoon; Jeong, Dong- Hyun; Jeong, Seungwoo; Chu, Gilwhoan	Underway Path-Planning for an Unmanned Surface Vehicle Performing Cooperative Navigation for UUVs at Varying Depths Hudson, Jonathan; Seto, Mae
10	11:34- 11:37	Online Identification of Abdominal Tissues in Vivo for Tissue-Aware and Injury-Avoiding Surgical Robots Sie, Astrini; Winek, Michael; Kowalewski, Timothy	Joint Configuration Strategy for Serial-Chain Safe Manipulators HONG, SeongHun; Lee, Woosub; Cho, Changhyun; Kang, Sungchul; Lee, Hyeongcheol	Experimental Validation of Robotic Manifold Tracking in Gyre-Like Flows Michini, Matthew; Hsieh, M. Ani; Forgoston, Eric; Schwartz, Ira
11	11:37- 11:40	A Novel Micro Laser Ablation System Integrated with Image Sensor for Minimally Invasive Surgery Su, Baiquan; Shi, Zhan; Liao, Hongen	Single Muscle Site Semg Interface for Assistive Grasping Weisz, Jonathan; Barszap, Alexander; Joshi, Sanjay; Allen, Peter	Trajectory Planning with Adaptive Control Primitives for Autonomous Surface Vehicles Operating in Congested Civilian Traffic Shah, Brual C.; Svec, Petr; Bertaska, Ivan R.; Klinger, Wilhelm; Sinisterra, Armando J.; Ellenrieder, Karl von; Dhanak, Manhar; Gupta, Satyandra K.

Tuesday Session B, 10:50 - 12:10 (Continued)

		Grand Ballroom	State Ballroom	Red Lacquer Room
		TuB1	TuB2	TuB3
#	Time	Rehabilitation Robotics I	Robot Learning III	Space Robotics
12	11:40- 11:43	Preliminary Evaluation of a New Control Approach to Achieve Speed Adaptation in Robotic Transfemoral Prosthesis Lenzi, Tommaso; Hargrove, Levi; Sensinger, Jonathon	Using Haptics to Extract Object Shape from Rotational Manipulations Strub, Claudius; Wörgötter, Florentin; Ritter, Helge Joachim; Sandamirskaya, Yulia	Inchworm Style Gecko Adhesive Climbing Robot kalouche, Simon; Wiltsie, Nicholas; Su, Hai-Jun; Parness, Aaron
13	11:43- 11:46	Development of an Elbow-Forearm Interlock Joint Mechanism Toward an Exoskeleton for Patients with Essential Tremor Matsumoto, Yuya; Amemiya, Motoyuki; Kaneishi, Daisuke; Nakashima, Yasutaka; Seki, Masatoshi; Ando, Takeshi; Kobayashi, Yo; Iijima, Hiroshi; Nagaoka, Masanori; Fujie, Masakatsu G.	Dynamic Attack Motion Prediction for Kendo Agent Tanaka, Yasufumi; Kosuge, Kazuhiro	Backup State Observer Based on Optic Flow Applied to Lunar Landing Sabiron, Guillaume; Burlion, Laurent; Jonniaux, Grégory; Kervendal, Erwan; Bornschlegl, Eric; Raharijaona, Thibaut; Ruffier, Franck
14	11:46- 11:49	A Method for Predicting Personalized Pelvic Motion Based on Body Meta-Features for Gait Rehabilitation Robot Shin, Sung Yul; Hong, Jisoo; Chun, Changmook; Kim, Seung-Jong; Kim, ChangHwan	Integration of Various Concepts and Grounding of Word Meanings Using Multi-Layered Multimodal LDA for Sentence Generation Attamimi, Muhammad; Fadlil, Muhammad; Abe, Kasumi; Nakamura, Tomoaki; Funakoshi, Kotaro; Nagai, Takayuki	Experimental Evaluation of On-Board, Visual Mapping of an Object Spinning in Micro-Gravity Aboard the International Space Station Tweddle, Brent Edward; Setterfield, Timothy Philip; Saenz-Otero, Alvar; Miller, David W.; Leonard, John
15	11:49- 11:52	Towards Local Reflexive Control of a Powered Transfemoral Prosthesis for Robust Amputee Push and Trip Recovery <i>Thatte, Nitish; Geyer, Hartmut</i>	A Machine Learning Approach for Real-Time Reachability Analysis Allen, Ross; Clark, Ashley; Starek, Joseph; Pavone, Marco	Small Body Surface Mobility with a Limbed Robot Helmick, Daniel; Douillard, Bertrand; Bajracharya, Max
16	11:52- 11:55	Analysis of Inertial Motion in Swing Phase of Human Gait and Its Application to Motion Generation Method of Transfemoral Prosthesis Wada, Takahiro; Sano, Hiroshi; Sekimoto, Masahiro	Transfer of Sparse Coding Representations and Object Classifiers across Heterogeneous Robots <i>Kira, Zsolt</i>	On Controller Parametric Sensitivity of Passive Object Handling in Space by Robotic Servicers <i>Rekleitis, Georgios; Papadopoulos, Evangelos</i>
17	11:55- 11:58	Investigation of Contralateral Leg Response to Unilateral Stiffness Perturbations Using a Novel Device Skidmore, Jeffrey; Barkan, Andrew; Artemiadis, Panagiotis	A Perceptual Memory System for Grounding Semantic Representations in Intelligent Service Robots Oliveira, Miguel; Lim, Gi Hyun; Seabra Lopes, Luís; Mohades Kasaei, Seyed Hamidreza; Tomé, Ana Maria; Chauhan, Aneesh	Design of a Hopping Mechanism using Permanent Magnets for Small-scale Exploration Rovers <i>Kurisu, Masamitsu</i>
18	11:58- 12:01	Mobile Robotic Gait Rehabilitation System CORBYS: Overview and First Results on Orthosis Actuation Slavnic, Sinisa; Ristic-Durrant, Danijela; Tschakarow, Roko; Brendel, Thomas; Tüttemann, Markus; Leu, Adrian; Gräser, Axel	Actor-Critic Design Using Echo State Networks in a Simulated Quadruped Robot Schmidt, Nico M.; Baumgartner, Matthias; Pfeifer, Rolf	Soft Landing of Capsule by Casting Manipulator System Arisumi, Hitoshi; Otsuki, Masatsugu; Nishida, Shin- Ichiro
19	12:01- 12:04	Design and Control of an Exoskeleton System for Gait Rehabilitation Capable of Natural Pelvic Movement Jung, Chan-Yul; Choi, Junho; Park, Shinsuk; Lee, Jong Min; Kim, ChangHwan; Kim, Seung-Jong	Expensive Multiobjective Optimization for Robotics with Consideration of Heteroscedastic Noise Ariizumi, Ryo; Tesch, Matthew; Choset, Howie; Matsuno, Fumitoshi	Particle Filter Based 3D Position Tracking for Terrain Rovers Using Laser Point Clouds Jayasekara, Peshala Gehan; Ishigami, Genya; Kubota, Takashi
20	12:04- 12:07	Integrated Control Method for Power-Assisted Rehabilitation: Ellipsoid Regression and Impedance Control Lee, Jaemin; Kim, MinKyu; Oh, Sang-Rok; Kim, Keehoon	Flop and Roll: Learning Robust Goal-Directed Locomotion for a Tensegrity Robot Iscen, Atil; Agogino, Adrian; SunSpiral, Vytas; Tumer, Kagan	A Real-Time Recognition Based Drilling Strategy for Lunar Exploration Quan, Qiquan; Tang, Junyue
21	12:07- 12:10	reachMAN2: A Compact Rehabilitation Robot to Train Reaching and Manipulation TONG, LIU ZHU; Klein, Julius; Anne Dual, Seraina; Teo, Chee Leong; burdet, etienne	Efficient Bayesian Local Model Learning for Control Meier, Franziska; Hennig, Philipp; Schaal, Stefan	

Tuesday Session C, 13:30 - 14:50

		Grand Ballroom	State Ballroom	Red Lacquer Room
		TuC1 Dynamics and Control & Manipulation and Grasping IV	TuC2 Humanoids and Bipeds II & Domestic and Interactive Robots	TuC3 Localization and Mapping III & Visual Servoing and Tracking
	Chair	Buchli, Jonas (ETH Zurich)	Lee, C. S. George (Purdue University)	Neira, José (Universidad de Zaragoza)
#	Time	Session Keynote	Session Kevnote	Session Keynote
1	13:30- 13:50	Keynote: Highly dynamic, energy-aware, biomimetic robots Stramigioli, Stefano University of Twente	Keynote: Human-Robot Interaction Socially Assistive Robotics Scassellati, Brian Yale University	Keynote: The SLAM Problem - A Fifteen Year Journey Dissanayake, Gamini University of Technology, Sydney
L		Dunamics and Control	Lumencide and Disade II	Localization and Manning III
2	13:50- 13:53	Robust Control of Flexible Joint Robots Based on Motor-Side Dynamics Reshaping Using Disturbance Observer (DOB) Kim, Min Jun; Chung, Wan Kyun	Perturbation Recovery of Biped Walking by Updating the Footstep <i>Fu, Chenglong</i>	Direction-Driven Navigation Using Cognitive Map for Mobile Robots Shim, Vui Ann; Tian, Bo; Yuan, Miaolong; Tang, Huajin; Li, Haizhou
3	13:53- 13:56	A Novel RISE-Based Adaptive Feedforward Controller for Redundantly Actuated Parallel Manipulators Bennehar, Moussab; Chemori, Ahmed; Pierrot, François	Swing-Leg Retraction Efficiency in Bipedal Walking Hasaneini, Seyed Javad; Macnab, Chris; Bertram, John; Leung, Henry	ISPCG: Incremental Subgraph-Preconditioned Conjugate Gradient Method for Online SLAM with Many Loop-Closures Jian, Yong-Dian; Dellaert, Frank
4	13:56- 13:59	Constrained Directions As a Path Planning Algorithm for Mobile Robots under Slip and Actuator Limitations <i>Soltani-Zarrin, Rana; Jayasuriya, Suhada</i>	Falling Prevention of Humanoid Robots by Switching Standing Balance and Hopping Motion Based on MOA Set Yamamoto, Ko	Real-Time RGB-D Registration and Mapping in Texture-Less Environments Using Ranked Order Statistics Yousif, Khalid; Bab-hadiashar, Alireza; Hoseinnezhad, Reza
5	13:59- 14:02	Partially Analytical Extra-Insensitive Shaper for a Lightly Damped Flexible Arm Kang, Chul-Goo; Ha, Manh-Tuan	Preliminary Walking Experiments with Underactuated 3D Bipedal Robot MARLO Buss, Brian G.; Ramezani, Alireza; Akbari Hamed, Kaveh; Griffin, Brent Austin; Galloway, Kevin; Grizzle, J.W	Online Global Loop Closure Detection for Large-Scale Multi-Session Graph-Based SLAM Labbé, Mathieu; Michaud, Francois
6	14:02- 14:05	Terminal Sliding-Mode Based Force Tracking Control of Piezoelectric Actuators for Variable Physical Damping System Lee, Jinoh; Jin, Maolin; Tsagarakis, Nikolaos; Caldwell, Darwin G.	Running into a Trap: Numerical Design of Task- Optimal Preflex Behaviors for Delayed Disturbance Responses Van Why, Johnathan; Hubicki, Christian; Jones, Mikhail; Daley, Monica; Hurst, Jonathan	Selecting Good Measurements Via L1 Relaxation: A Convex Approach for Robust Estimation Over Graphs Carlone, Luca; Censi, Andrea; Dellaert, Frank
7	14:05- 14:08	Development of a Single Controller for the Compensation of Several Types of Disturbances During Task Execution of a Wheeled Inverted Pendulum Assistant Robot Canete, Luis; Takahashi, Takayuki	SLIP with Swing Leg Augmentation As a Model for Running Mohammadi Nejad Rashty, Aida; Ahmad Sharbafi, Maziar; Seyfarth, Andre	Hybrid Inference Optimization for Robust Pose Graph Estimation Segal, Aleksandr V.; Reid, Ian
8	14:08- 14:11	A Reverse Priority Approach to Multi-Task Control of Redundant Robots Flacco, Fabrizio; De Luca, Alessandro	Quantifying the Trade-Offs between Stability versus Energy Use for Underactuated Biped Walking Saglam, Cenk Oguz; Byl, Katie	Robust Graph SLAM Back-Ends: A Comparative Analysis Latif, Yasir; Cadena Lerma, Cesar Dario; Neira, José
9	14:11- 14:14	Dynamic Modeling of Constant Curvature Continuum Robots Using the Euler-Lagrange Formalism Falkenhahn, Valentin; Mahl, Tobias; Hildebrandt, Alexander; Neumann, Ruediger; Sawodny, Oliver	Highly Robust Running of Articulated Bipeds in Unobserved Terrain <i>Wu, Albert; Geyer, Hartmut</i>	Graph SLAM with Signed Distance Function Maps on a Humanoid Robot Wagner, René; Frese, Udo; Bäuml, Berthold
10	14:14- 14:17	Fast and Reasonable Contact Force Computation in Forward Dynamics Based on Momentum-Level Penetration Compensation Wakisaka, Naoki; Sugihara, Tomomichi	From Template to Anchor: A Novel Control Strategy for Spring-Mass Running of Bipedal Robots Dadashzadeh, Behnam; Vejdani, Hamid Reza; Hurst, Jonathan	Credibilist Simultaneous Localization and Mapping with a LIDAR Trehard, Guillaume; Alsayed, Zayed; Pollard, Evangeline; BRADAI, Benazouz; Nashashibi, Fawzi
11	14:17- 14:20	Recursive Dynamics and Feedback Linearizing Control of Serial-Chain Manipulators Travers, Matthew; Choset, Howie	An Estimation Model for Footstep Modifications of Biped Robots Wittmann, Robert; Hildebrandt, Arne-Christoph; Ewald, Alexander; Buschmann, Thomas	Novel Insights into the Impact of Graph Structure on SLAM Khosoussi, Kasra; Huang, Shoudong; Dissanayake, Gamini

Tuesday Session C, 13:30 - 14:50 (Continued)

		Grand Ballroom	State Ballroom	Red Lacquer Room
		TuC1	TuC2	TuC3
12	Time 14:20- 14:23	Manipulation and Grasping IV Grasp Planning for Constricted Parts of Objects Approximated with Quadric Surfaces Tsuji, Tokuo; Uto, Soichiro; Harada, Kensuke; Kurazume, Ryo; Hasegawa, Tsutomu; Morooka, Ken'ichi	Domestic and Interactive Robots Finding and Navigating to Household Objects with UHF RFID Tags by Optimizing RF Signal Strength Deyle, Travis; Reynolds, Matthew; Kemp, Charlie	Visual Servoing and Tracking Robust Model Predictive Control for Visual Servoing Assa, Akbar; Janabi-Sharifi, Farrokh
13	14:23- 14:26	Fast Grasping of Unknown Objects Using Force Balance Optimization LEI, QUJIANG; Wisse, Martijn	RGB-D Sensor Setup for Multiple Tasks of Home Robots and Experimental Results de la Puente, Paloma; Bajones, Markus; Einramhof, Peter; Wolf, Daniel; Fischinger, David; Vincze, Markus	Prescribed Performance Image Based Visual Servoing under Field of View Constraints Heshmati-alamdari, Shahab; Bechlioulis, Charalampos; Liarokapis, Minas; Kyriakopoulos, Kostas
14	14:26- 14:29	Robotic Nonprehensile Catching: Initial Experiments Yashima, Masahito; Yamawaki, Tasuku	Enhanced Robotic Cleaning with a Low-Cost Tool Attachment <i>Xu, Zhe; Cakmak, Maya</i>	Monocular Template-Based Vehicle Tracking for Autonomous Convoy Driving Fries, Carsten; Wuensche, Hans J
15	14:29- 14:32	Changing Pre-Grasp Strategies with Increasing Object Location Uncertainty <i>Illing, Boris; Asfour, Tamim; Pollard, Nancy S</i>	CHARM: A Platform for Algorithmic Robotics Education & Research Singh, Surya; Kurniawati, Hanna; Soltani Naveh, Kianoosh; Song, Joshua; Zastrow, Tyson	Real-Time Object Pose Recognition and Tracking with an Imprecisely Calibrated Moving RGB-D Camera Pauwels, Karl; Ivan, Vladimir; Ros, Eduardo; Vijayakumar, Sethu
16	14:32- 14:35	Shrinkable, Stiffness-Controllable Soft Manipulator Based on a Bio-Inspired Antagonistic Actuation Principle Stilli, Agostino; Wurdemann, Helge Arne; Althoefer, Kaspar	Development of a Comic Mark Based Expressive Robotic Head Adapted to Japanese Cultural Background KISHI, Tatsuhiro; Futaki, Hajime; Trovato, Gabriele; Endo, Nobutsuna; Destephe, Matthieu; Cosentino, Sarah; Hashimoto, Kenji; Takanishi, Atsuo	Robust Ground Surface Map Generation Using Vehicle-Mounted Stereo Camera Motooka, Kouma; Sugimoto, Shigeki; Okutomi, Masatoshi; Shima, Takeshi
17	14:35- 14:38	Guided Locomotion in 3D for Snake Robots Based on Contact Force Optimization Ponte, Hugo; Travers, Matthew; Choset, Howie	Effects of Bodily Mood Expression of a Robotic Teacher on Students Xu, Junchao; broekens, joost; Hindriks, Koen; Neerincx, Mark	RGB-D Fusion: Real-Time Robust Tracking and Dense Mapping with RGB-D Data Fusion Lee, Seong-Oh; Lim, Hwasup; Kim, Hyoung-Gon; Ahn, Sang Chul
18	14:38- 14:41	Push Resistance in In-Hand Manipulation He, Junhu; Zhang, Jianwei	Real-Time Recognition of Pointing Gestures for Robot to Robot Interaction Kondaxakis, Polychronis; Pajarinen, Joni; Kyrki, Ville	Bearings-Only Path Following with a Vision-Based Potential Field Sabatta, Deon; Siegwart, Roland
19	14:41- 14:44	Online Interactive Perception of Articulated Objects with Multi-Level Recursive Estimation Based on Task- Specific Priors Martín Martín, Roberto; Brock, Oliver	Adaptive Spacing in Human-Robot Interactions Papadakis, Panagiotis; Rives, Patrick; Spalanzani, Anne	Event-Based, 6-DOF Pose Tracking for High-Speed Maneuvers Mueggler, Elias; Huber, Basil; Scaramuzza, Davide
20	14:44- 14:47	Using Environment Objects As Tools: Unconventional Door Opening Levihn, Martin; Stilman, Mike	Determining the Affective Body Language of Older Adults during Socially Assistive HRI <i>McColl, Derek; Nejat, Goldie</i>	Learning Visual Feature Descriptors for Dynamic Lighting Conditions Carlevaris-Bianco, Nicholas; Eustice, Ryan
21	14:47- 14:50	Sponsor Talk: Components for Mobile Manipulation: Light-Weight Arms and Robotic Hands <i>Parlitz, Christopher</i> SCHUNK	Sponsor Talk: The Eyes: A History of Baxter's Personification <i>Maroney, Kyle</i> Rethink Robotics	Detection of Small Moving Objects Using a Moving Camera Shakeri, Moein; Zhang, Hong

Tuesday Session D, 15:00 - 16:20

		Crewd Dellysom	Ctata Dallusare	Ded Leaguer Deam
		Grand Bailroom		
		Actuators & Kinematics and Machanism Design II	Reasoning and Al Planning &	Sensing I & Sensing for Human Environmente
		Kinematics and Mechanism Design II	Path and Task Planning	Sensing for Human Environments
	Chair	Krovi, Venkat (University at Buffalo (SUNY Buffalo))	Jacobs, Sam Ade (ABB Inc)	Song, Dezhen (Texas A&M University)
#	Time	Session Keynote	Session Keynote	Session Keynote
		Keynote: Robots for Interaction with Humans and	Keynote: Symbiotic Mobile Robot Autonomy in Human	·
	15:00-	Unknown Environments	Environments	Keynote: Life In a World of Ubiquitous Sensing
1'	15:20	Albu-Schäffer, Alin	Veloso, Manuela	Hager, Gregory
		DLR	Carnegie Mellon University	Johns Hopkins University
-			× i	· · ·
	1	Actuators	Reasoning and Al Planning	Sensing I
2	15:20- 15:23	Soft Pneumatic Actuator Skin with Embedded Sensors Suh, Chansu; Condal Margarit, Jordi; Song, Yun Seong; Paik, Jamie	Prior-Assisted Propagation of Spatial Information for Object Search Lorbach, Malte; Höfer, Sebastian; Brock, Oliver	Augmenting Bayes Files with the Relevance vector Machine for Time-Varying Context-Dependent Observation Distribution Ravet, Alexandre; Lacroix, Simon; Hattenberger, Gautier
3	15:23- 15:26	Towards Variable Stiffness Control of Antagonistic Twisted String Actuators Popov, Dmitry; Gaponov, Igor; Ryu, Jee-Hwan	Combining Top-Down Spatial Reasoning and Bottom- Up Object Class Recognition for Scene Understanding Kunze, Lars; Burbridge, Christopher; Alberti, Marina; Thippur, Akshaya; Folkesson, John; Jensfelt, Patric; Hawes, Nick	Audio-Visual Classification and Detection of Human Manipulation Actions Pieropan, Alessandro; Salvi, Giampiero; Pauwels, Karl; Kjellstrom, Hedvig
				Object Shape Categorization in RGBD Images using
4	15:26- 15:29	A Multiplex Pneumatic Actuator Drive Method Based on Acoustic Communication in Air Supply Line Suzumori, Koichi; Osaki, Naoto; Misumi, Jumpei; Yamamoto, Akina; Kanda, Takefumi	Learning Relational Affordance Models for Two-Arm Robots <i>Moldovan, Bogdan; De Raedt, Luc</i>	Hierarchical Graph Constellation Models based on Unsupervisedly Learned Shape Parts described by a Set of Shape Specificity Levels Mueller, Christian Atanas; Pathak, Kaustubh; Birk, Andreas
-			Cognitive Eactories with Multiple Teams of	
5	15:29- 15:32	A Low-Friction Passive Fluid Transmission and Fluid- Tendon Soft Actuator Whitney, John; Glisson, Matthew; Brockmeyer, Eric; Hodgins, Jessica	Heterogeneous Robots: Hybrid Reasoning for Optimal Feasible Global Plans Saribatur, Zeynep G.; Erdem, Esra; Patoglu, Volkan	sEMG-Based Decoding of Human Intentions Robust to the Changes of Electrode Positions <i>Park, Myoung Soo</i>
-		Design of a Novel Intermittent Self-Closing		
6	15:32- 15:35	Mechanism for a MACCEPA-Based Series-Parallel Elastic Actuator (SPEA) Mathijssen, Glenn; Furnémont, Raphaël; Brackx, Branko; Van Ham, Ronald; Lefeber, Dirk; Vanderborght, Bram	Incorporating Kinodynamic Constraints in Automated Design of Simple Machines <i>Erdogan, Can; Stilman, Mike</i>	Multi-Target Visual Tracking with Aerial Robots Tokekar, Pratap; Isler, Volkan; Franchi, Antonio
7	15:35- 15:38	A Resonant Parallel Elastic Actuator for Biorobotic Applications Sudano, Angelo; Tagliamonte, Nevio Luigi; Accoto, Dino; Guglielmelli, Eugenio	Unifying Multi-Goal Path Planning for Autonomous Data Collection Faigl, Jan; Hollinger, Geoffrey	Opportunistic Sampling-Based Planning for Active Visual SLAM Chaves, Stephen; Kim, Ayoung; Eustice, Ryan
8	15:38- 15:41	Smart Braid: Air Muscles That Measure Force and Displacement Felt, Wyatt; Remy, C. David	Stochastic Collection and Replenishment (SCAR) Optimisation for Persistent Autonomy Palmer, Andrew William; Hill, Andrew John; Scheding, Steven	Ear-Based Exploration on Hybrid Metric/Topological Maps Zhang, Qiwen; Whitney, David; Shkurti, Florian; Rekleitis, Ioannis
9	15:41- 15:44	Variable Stiffness Fabrics with Embedded Shape Memory Materials for Wearable Applications Chenal, Thomas; Case, Jennifer; Paik, Jamie; Kramer, Rebecca	Coverage Planning with Finite Resources Strimel, Grant; Veloso, Manuela	Fast and Effective Visual Place Recognition using Binary Codes and Disparity Information Arroyo, Roberto; Fernández Alcantarilla, Pablo; Bergasa, Luis Miguel; Yebes, José Javier; Bronte, Sebastian
10	15:44- 15:47	A Flexible Passive Joint for Robotic Fish Pectoral Fins: Design, Dynamic Modeling, and Experimental Results <i>Bazaz Behbahani, Sanaz; Tan, Xiaobo</i>	Coordination in Human-Robot Teams Using Mental Modeling and Plan Recognition Talamadupula, Kartik; Briggs, Gordon; Chakraborti, Tathagata; Scheutz, Matthias; Kambhampati, Subbarao	A Linear Approach to Visuo-Inertial Fusion for Homography-Based Filtering and Estimation <i>Eudes, Alexandre; Morin, Pascal</i>
11	15:47- 15:50	Formulation and Optimization of Pulley-Gear-Type SMA Heat Engine Toward Microfluidic MEMS Motor Aono, Hiroyuki; Imamura, Ryota; Fuchiwaki, Ohmi; Yamanashi, Yuki; Böhringer, Karl F.	A Framework for Formal Specification of Robotic Constraint-Based Tasks and their Concurrent Execution with Online QoS Monitoring Scioni, Enea; Borghesan, Gianni; Bruyninckx, Herman; Bonfe, Marcello	Fusion of Optical Flow and Inertial Measurements for Robust Egomotion Estimation Bloesch, Michael; Omari, Sammy; Fankhauser, Péter; Sommer, Hannes; Gehring, Christian; Hwangbo, Jemin; Hoepflinger, Mark; Hutter, Marco; Siegwart, Roland

Tuesday Session D, 15:00 - 16:20 (Continued)

		Grand Ballroom	State Ballroom	Red Lacquer Room
		TuD1	TuD2	TuD3
12	Time 15:50- 15:53	Kinematics and Mechanism Design II Design, Principles, and Testing of a Latching Modular Robot Connector Eckenstein, Nick; Yim, Mark	Path and Task Planning Synthesizing Manipulation Sequences for Under- Specified Tasks Using Unrolled Markov Random Fields Sung, Jaeyong; Selman, Bart; Saxena, Ashutosh	Sensing for Human Environments Cameraman Robot: Dynamic Trajectory Tracking with Final Time Constraint Using State-Time Space Stochastic Approach Ardiyanto, Igi; Miura, Jun
13	15:53- 15:56	Design, Modeling and Performance Evaluation of a Long and Slim Continuum Robotic Cable <i>Tonapi, Manas; Godage, Isuru S.; Walker, Ian</i>	A Probability-Based Path Planning Method Using Fuzzy Logic Lee, Jaeyeon; Park, Wooram	Automatic Detection and Verification of Pipeline Construction Features with Multi-Modal Data Vidal-Calleja, Teresa A.; Valls Miro, Jaime; Martin, Fernando; Lingnau, Daniel C.; Russell, David E.
14	15:56- 15:59	Kinetostatic Optimization for an Adjustable Four-Bar Based Articulated Leg-Wheel Subsystem Alamdari, Aliakbar; Sovizi, Javad; Jun, Seung-kook; Krovi, Venkat	Multi-Goal Path Planning Based on the Generalized Traveling Salesman Problem with Neighborhoods <i>Vicencio, Kevin; Davis, Brian; Gentilini, Iacopo</i>	Grasping Point Selection on an Item of Crumpled Clothing Based on Relational Shape Description Yamazaki, Kimitoshi
15	15:59- 16:02	A Single DOF Arm for Transition of Climbing Robots between Perpendicular Planes Viegas, Carlos; Tavakoli, Mahmoud	A Multi-Tree Extension of the Transition-Based RRT: Application to Ordering-And-Pathfinding Problems in Continuous Cost Spaces Devaurs, Didier; Simeon, Thierry; Cortes, Juan	A Solution to Pose Ambiguity of Visual Markers Using Moire Patterns Tanaka, Hideyuki; Sumi, Yasushi; Matsumoto, Yoshio
16	16:02- 16:05	Design of Variable Release Torque-Based Compliant Spring-Clutch and Torque Estimation Seok, Jushin; Kang, Sungchul; Lee, Woosub	Informed RRT*: Optimal Sampling-based Path Planning Focused via Direct Sampling of an Admissible Ellipsoidal Heuristic Gammell, Jonathan David; Srinivasa, Siddhartha; Barfoot, Timothy	On Leader Following and Classification Stein, Procópio; Spalanzani, Anne; Santos, Vitor; Laugier, Christian
17	16:05- 16:08	Principles of Microscale Flexure Hinge Design for Enhanced Endurance Malka, Ronit; Lussier Desbiens, Alexis; Chen, YuFeng; Wood, Robert	Integrating Multiple Soft Constraints for Planning Practical Paths Yang, Jing; dymond, patrick; Jenkin, Michael	Complexity-Based Motion Features and Their Applications to Action Recognition by Hierarchical Spatio-Temporal Naive Bayes Classifier <i>Kwon, Woo Young; Suh, Il Hong</i>
18	16:08- 16:11	Strengthening of 3D Printed Robotic Parts Via Fill Compositing Belter, Joseph; Dollar, Aaron	Sampling-Based Trajectory Imitation in Constrained Environments Using Laplacian-RRT* Nierhoff, Thomas; Hirche, Sandra; Nakamura, Yoshihiko	Enhancement of Layered Hidden Markov Model by Brain-Inspired Feedback Mechanism Lee, Sang Hyoung; Kim, Min Gu; Suh, Il Hong
19	16:11- 16:14	Cogeneration of Mechanical, Electrical, and Software Designs for Printable Robots from Structural Specifications Mehta, Ankur; DelPreto, Joseph; Shaya, Benjamin; Rus, Daniela	The Anatomy of a Distributed Motion Planning Roadmap Jacobs, Sam Ade; Amato, Nancy	Guiding Computational Perception through a Shared Auditory Space Martinson, Eric; Yalla, Ganesh
20	16:14- 16:17	Design of a Robotic Finger Using Series Gear Chain Mechanisms Mishima, Yuuki; Ozawa, Ryuta	Safest Path Adversarial Coverage Yehoshua, Roi; Agmon, Noa; Kaminka, Gal A	Classification and Identification of Robot Sensing Data Based on Nested Infinite GMM Sasaki, Yoko; Hatao, Naotaka; Kagami, Satoshi
21	16:17- 16:20	Sponsor Talk: The Next Research Revolution with KUKA's Robotic Reference Platforms <i>Ryan, Corey</i> KUKA Robotics Corp	Planning with the STAR(s) Karydis, Konstantinos; Zarrouk, David; Poulakakis, Ioannis; Fearing, Ronald; Tanner, Herbert G.	Localization of Multiple Sources from a Binaural Head in a Known Noisy Environment Portello, Alban; Bustamante, Gabriel; Danès, Patrick; Mifsud, Alexis

Tuesday Session E, 16:50 - 17:55

		Grand Ballroom	State Ballroom	Red Lacquer Room
		Constrained and Underactuated Robots &	Human-Robot Interaction III &	Unmanned Aerial Systems I &
		Legged Robots I	Grasp Learning	Localization and Pose Estimation
	Chair	Buehler, Martin (Vecna Technologies)	Wettels, Nicholas (NASA-JPL)	Clark, Christopher M. (Harvey Mudd College)
#	Time	Session Keynote	Session Keynote	Session Keynote
1	16:50- 17:10	Keynote: Robot Motion Optimization <i>Park, Frank</i> Seoul National University	Keynote: Perception-Action-Learning and Associative Skill Memories Schaal, Stefan University of Southern California	Keynote: Aerial Robot Swarms <i>Kumar, Vijay</i> University of Pennsylvania
		Constrained and Underactuated Robots	Human-Robot Interaction III	Inmanned Aerial Systems I
2	17:10- 17:13	A Novel Continuum-Style Robot with Multilayer Compliant Modules Qi, Peng; Qiu, Chen; Liu, Hongbin; Dai, Jian; Seneviratne, lakmal; Althoefer, Kaspar	Remote Control System for Multiple Mobile Robots Using Touch Panel Interface and Autonomous Mobility Ochiai, Yuya; Takemura, Kentaro; Ikeda, Atsutoshi; Takamatsu, Jun; Ogasawara, Tsukasa	Frequency-Domain Flight Dynamics Model Identification of MAVs - Miniature Quad-Rotor Aerial Vehicles Guowei, Cai; Al Mehairi, Hind; Al-Hosani, Hanan; Dias, Jorge; Seneviratne, lakmal
3	17:13- 17:16	A Fish-Like Locomotion Model in an Ideal Fluid with Lateral-Line-Inspired Background Flow Estimation Xu, Yiming; Mohseni, Kamran	Ridesharing with Passenger Transfers Coltin, Brian; Veloso, Manuela	Simulating Quadrotor UAVs in Outdoor Scenarios Symington, Andrew Colquhoun; De Nardi, Renzo; Julier, Simon Justin; Hailes, Stephen
4	17:16- 17:19	MR Compatible Continuum Robot Based on Closed Elastica with Bending and Twisting Yamada, Atsushi; Naka, Shigeyuki; Morikawa, Shigehiro; Tani, Tohru	Modeling of Human Velocity Habituation for a Robotic Wheelchair Morales Saiki, Luis Yoichi; Abdur-Rahim, Jamilah; Even, Jani; Kondo, Tadahisa; Hagita, Norihiro; Ogawa, Takeshi; Ishii, Shin; Watanabe, Atsushi	Health Aware Stochastic Planning for Persistent Package Delivery Missions Using Quadrotors Agha-mohammadi, Ali-akbar; Ure, Nazim Kemal; How, Jonathan; Vian, John
5	17:19- 17:22	Trajectory Optimization of Flapping Wings Modeled as a Three Degree-Of-Freedoms Oscillation System <i>Qin, Yi; Cheng, Bo; Deng, Xinyan</i>	Physical Embodied Communication between Robots and Children: An Approach for Relationship Building by Holding Hands Hieida, Chie; Abe, Kasumi; Attamimi, Muhammad; Shimotomai, Takayuki; Nagai, Takayuki; Omori, Takashi	High-Throughput Study of Flapping Wing Aerodynamics for Biological and Robotic Applications Gravish, Nicholas; Chen, YuFeng; Combes, Stacey; Wood, Robert
6	17:22- 17:25	The Use of Unicycle Robot Control Strategies for Skid- Steer Robots through the ICR Kinematic Mapping <i>Pentzer, Jesse; Brennan, Sean; Reichard, Karl</i>	Using Social Cues to Estimate Possible Destinations When Driving a Robotic Wheelchair ESCOBEDO-CABELLO, Jesus-Arturo; Spalanzani, Anne; Laugier, Christian	Computational Morphology for a Soft Micro Air Vehicle in Hovering Flight Chevallereau, Christine; Porez, Mathieu; Boyer, Frédéric
7	17:25- 17:28	Open-Source, Affordable, Modular, Light-Weight, Underactuated Robot Hands Zisimatos, Agisilaos; Liarokapis, Minas; Mavrogiannis, Christoforos; Kyriakopoulos, Kostas	A Novel User-Guided Interface for Robot Search Kosti, Shahar; Sarne, David; Kaminka, Gal A	Towards Valve Turning Using a Dual-Arm Aerial Manipulator Korpela, Christopher M.; Orsag, Matko; Oh, Paul Y.
8	17:28- 17:31	Modeling of Wheeled Mobile Robots As Differential- Algebraic Systems Kelly, Alonzo; Seegmiller, Neal Andrew	Contextual Task-Aware Shared Autonomy for Assistive Mobile Robot Teleoperation Gao, Ming; Oberländer, Jan; Schamm, Thomas; Zöllner, Johann Marius	Control of a Multirotor Outdoor Aerial Manipulator Heredia, Guillermo; Jimenez-Cano, Antonio; Sanchez, M. Ivan; Llorente, Domingo; Vega, Victor; Braga, Juan; Acosta, Jose Angel; Ollero, Anibal
9	17:31- 17:34	Practical Identification and Flatness Based Control of a Terrestrial Quadrotor thorel, sylvain; d'Andréa-Novel, Brigitte	Personalizing Vision-Based Gestural Interfaces for HRI with UAVs: A Transfer Learning Approach <i>Costante, Gabriele; Bellocchio, Enrico; Valigi, Paolo;</i> <i>Ricci, Elisa</i>	Reinforcement Learning for Autonomous Dynamic Soaring in Shear Winds Montella, Corey; Spletzer, John
10	17:34- 17:37	Partial Force Control of Constrained Floating-Base Robots Del Prete, Andrea; Mansard, Nicolas; Nori, Francesco; Metta, Giorgio; Natale, Lorenzo	Multimodal Real-Time Contingency Detection for HRI Chu, Vivian; Bullard, Kalesha; Thomaz, Andrea Lockerd	Vision-Based Absolute Localization for Unmanned Aerial Vehicles YOL, Aurélien; Delabarre, Bertrand; Dame, Amaury; DARTOIS, Jean-Emile; Marchand, Eric
11	17:37- 17:40	Balancing Control Algorithm for a 3D Under-Actuated Robot Azad, Morteza; Featherstone, Roy	Pose Estimation in Physical Human-Machine Interactions with Application to Bicycle Riding Zhang, Yizhai; Chen, Kuo; Yi, Jingang; Liu, Liu	Variable Impedance Control for Aerial Interaction Mersha, Abeje Y.; Stramigioli, Stefano; Carloni, Raffaella

Tuesday Session E, 16:50 - 17:55 (Continued)

		Grand Ballroom	State Ballroom	Red Lacquer Room
		TuE1	TuE2	TuE3
#	Time	Legged Robots I	Grasp Learning	Localization and Pose Estimation
12	17:40- 17:43	On the Convergence of Fixed-point Iteration in Solving Complementarity Problems Arising in Robot Locomotion and Manipulation <i>Lu, Ying; Trinkle, Jeff</i>	Learning of Grasp Adaptation through Experience and Tactile Sensing Li, Miao; Bekiroglu, Yasemin; Kragic, Danica; Billard, Aude	Improving Object Tracking through Distributed Exploration of an Information Map Neveln, Izaak; Miller, Lauren; MacIver, Malcolm A.; Murphey, Todd
13	17:43- 17:46	Quadruped Bounding Control with Variable Duty Cycle Via Vertical Impulse Scaling Park, Hae-Won; Chuah, Meng Yee (Michael); Kim, Sangbae	Construction of an Object Manipulation Database from Grasp Demonstrations Kent, David; Chernova, Sonia	Topometric Localization on a Road Network Xu, Danfei; Badino, Hernan; Huber, Daniel
14	17:46- 17:49	Posture and Balance Control for Humanoid Robots in Multi-Contact Scenarios Based on Model Predictive Control Henze, Bernd; Ott, Christian; Roa, Maximo A.	Evaluating the Efficacy of Grasp Metrics for Utilization in a Gaussian Process-Based Grasp Predictor Goins, Alex; Carpenter, Ryan; Wong, Weng-Keen; Balasubramanian, Ravi	Pose Estimation of Servo-Brake-Controlled Caster Units Arbitrarily Located on a Mobile Base Saida, Masao; Hirata, Yasuhisa; Kosuge, Kazuhiro
15	17:49- 17:52	Optimal Gaits and Motions for Legged Robots Xi, Weitao; Remy, C. David	Predicting Object Interactions from Contact Distributions Kroemer, Oliver; Peters, Jan	Rail-Guided Robotic End-Effector Position Error Due to Rail Compliance and Ship Motion Borgerink, Dian J.; Stegenga, Jan; Brouwer, Dannis M.; Wörtche, Heinrich; Stramigioli, Stefano
16	17:52- 17:55	Quadratic Programming-Based Inverse Dynamics Control for Legged Robots with Sticking and Slipping Frictional Contacts Zapolsky, Samuel; Drumwright, Evan	Learning Robot Tactile Sensing for Object Manipulation Chebotar, Yevgen; Kroemer, Oliver; Peters, Jan	A Multi-AUV State Estimator for Determining the 3D Position of Tagged Fish Lin, Yukun; Kastein, Hannah; Peterson, Taylor; White, Connor; Lowe, Christopher G.; Clark, Christopher M.

Wednesday Session A, 09:00 - 10:20

		Grand Ballroom	State Ballroom	Red Lacquer Room
		WeA1	WeA2	WeA3
		Medical Robots and Systems II &	Motion and Path Planning III &	Networked Robots &
		Renabilitation Robotics II	Planning, Failure Detection and Recovery	Swarm Robotics
	Chair	Taylor, Russell H. (Johns Hopkins University)	Kroeger, Torsten (Google, Inc.)	Vaughan, Richard (Simon Fraser University)
#	Time	Session Keynote	Session Keynote	Session Keynote
<u> </u>		Keynote: Towards Intelligent Robotic Surgical		
1	09:00- 09:20	Assistants Cavusoglu, M. Cenk	Keynote: Planning for Complex High-Level Missions Kavraki, Lydia	Keynote: Networked Robots Rus, Daniela
		Case western Reserve University	Rice University	WI I
		Medical Robots and Systems II	Motion and Path Planning III	Networked Robots
			Nonlinear Dimensionality Reduction for Kinematic	
2	09:20- 09:23	Task-Space Motion Planning of MRI-Actuated Catheters for Catheter Ablation of Atrial Fibrillation Greigarn, Tipakorn; Cavusoglu, M. Cenk	Cartography with an Application Toward Robotic Locomotion Dear, Tony; Hatton, Ross; Choset, Howie	Autonomous Wireless Backbone Deployment with Bounded Number of Networked Robots Santos, Elerson Rubens da Silva; Vieira, Marcos
	09:23-	Using Lie Algebra for Shape Estimation of Medical	Orienting in Mid-Air through Configuration Changes to Achieve a Rolling Landing for Reducing Impact after a Fall	Point Cloud Culling for Robot Vision Tasks under
3	09:26	Rangaprasad, Arun Srivatsan; Travers, Matthew; Choset, Howie	Bingham, Jeffrey; Lee, Jeongseok; Haksar, Ravi; Ueda, Jun; Liu, Karen	Beksi, William; Papanikolopoulos, Nikos
4	09:26- 09:29	Modeling and Control of Robotic Surgical Platform for Single-Port Access Surgery Lee, Jusuk; Kim, Jiyoung; Lee, Kwang-Kyu; Hyung, SeungYong; Kim, Yong-Jae; Kwon, Woong; Roh,	Motion Planning for Non-Holonomic Mobile Robots Using the I-PID Controller and Potential Field Ma, Yingchong; Zheng, Gang; perruquetti, Wilfrid; QIU, Zhaopeng	Robust Routing and Multi-Confirmation Transmission Protocol for Connectivity Management of Mobile Robotic Teams Stephan, James; Fink, Jonathan; Charrow, Benjamin; Kumar, Vijay; Ribeiro, Alejandro
5	09:29- 09:32	Kyungshik; Choi, Jung-Yun Semi-Autonomous Navigation for Robot Assisted Tele- Echography Using Generalized Shape Models and Co Registered RGB-D Cameras Zhang, Lin; Lee, Su-Lin; Yang, Guang-Zhong; Mvionas. Georae	Spherical Parabolic Blends for Robot Workspace Trajectories Dantam, Neil; Stilman, Mike	A Centralized-Equivalent Decentralized Implementation of Extended Kalman Filters for Cooperative Localization Kia, Solmaz; Rounds, Stephen; Martinez, Sonia
6	09:32- 09:35	State Recognition of Bone Drilling with Audio Signal in Robotic Orthopedics Surgery System Sun, Yu; Jin, Haiyang; HU, Ying; Zhang, Peng; Zhang, Jianwei	Trajectory Planning for Car-Like Robots in Unknown, Unstructured Environments Fassbender, Dennis; Mueller, Andre; Wuensche, Hans J	From Autonomy to Cooperative Traded Control of Humanoid Manipulation Tasks with Unreliable Communication: System Design and Lessons Learned Mainprice, Jim; Phillips-Grafflin, Calder; Suay, Halit Bener; Alunni, Nicholas; Lofaro, Daniel; Berenson, Dmitry; Chernova, Sonia; Lindeman, Robert; Oh, Paul Y
7	09:35- 09:38	Estimating Contact Force for Steerable Ablation Catheters Based on Shape Analysis Khoshnam Tehrani, Mahta; Patel, Rajnikant V.	Fast, Dynamic Trajectory Planning for a Dynamically Stable Mobile Robot Shomin, Michael; Hollis, Ralph	Route Swarm: Wireless Network Optimization through Mobility Williams, Ryan; Gasparri, Andrea; Krishnamachari, Bhaskar
8	09:38- 09:41	Predicting Kinematic Configuration from String Length for a Snake-Like Manipulator Not Exhibiting Constant Curvature Bending Murphy, Ryan Joseph; Otake, Yoshito; Taylor, Russell H.; Armand, Mehran	Risk-Aware Trajectory Generation with Application to Safe Quadrotor Landing Mueller, Joerg; Sukhatme, Gaurav	Cooperative Dynamic Behaviors in Networked Systems with Decentralized State Estimation Sabattini, Lorenzo; Secchi, Cristian; Fantuzzi, Cesare
9	09:41- 09:44	Comparison of Methods for Estimating the Position of Actuated Instruments in Flexible Endoscopic Surgery Cabras, Paolo; Goyard, David; Nageotte, Florent; zanne, Philippe; Doignon, Christophe	Hierarchical Robustness Approach for Nonprehensile Catching of Rigid Objects Pekarovskiy, Alexander; Stockmann, Ferdinand; Okada, Masafumi; Buss, Martin	Adding Transmission Diversity to Unmanned Systems through Radio Switching and Directivity Lowrance, Christopher John; Lauf, Adrian P.
10	09:44- 09:47	Robust Forceps Tracking Using Online Calibration of Hand-Eye Coordination for Microsurgical Robotic System Tanaka, Shinichi; Baek, Young Min; Harada, Kanako; Sugita, Naohiko; Morita, Akio; Sora, Shigeo; Nakatomi, Hirofumi; Saito, Nobuhito; Mitsuishi, Mamoru	Parameterized Controller Generation for Multiple Mode Behavior Gong, Chaohui; Travers, Matthew; Kao, Hsien-Tang; Choset, Howie	Effective Compression of Range Data Streams for Remote Robot Operations using H.264 Nenci, Fabrizio; Spinello, Luciano; Stachniss, Cyrill
11	09:47- 09:50	MRI-Powered Closed-Loop Control for Multiple Magnetic Capsules Eqtami, Alina; Felfoul, Ouajdi; Dupont, Pierre	Extending Equilibria to Periodic Orbits for Walkers Using Continuation Methods Rosa, Nelson; Lynch, Kevin	Network Lifetime Maximization in Mobile Visual Sensor Networks Yu, Shengwei; Lee, C. S. George

Wednesday Session A, 09:00 - 10:20 (Continued)

		Grand Ballroom	State Ballroom	Red Lacquer Room
		WeA1	WeA2	WeA3
_ #	Time	Rehabilitation Robotics II	Planning, Failure Detection and Recovery	Swarm Robotics
12	09:50- 09:53	for Physical Therapy Devices Based on Rehabilitation Database Tsuji, Toshiaki; Momiki, Chinami; Sakaino, Sho	Global Registration of Mid-Range 3D Observations and Short Range Next Best Views Aleotti, Jacopo; Lodi Rizzini, Dario; Monica, Riccardo; Caselli, Stefano	Displaying Stick Figure Animations with Multiple Mobile Robots Yamane, Katsu; Goerner, Jared
13	09:53- 09:56	EMG-Based Continuous Control Method for Electric Wheelchair Jang, Giho; Choi, Youngjin	Model-Free Robot Anomaly Detection Hornung, Rachel Hannah; Urbanek, Holger; Klodmann, Julian; Osendorfer, Christian; van der Smagt, Patrick	Worst-Case Optimal Average Consensus Estimators for Robot Swarms Elwin, Matthew; Freeman, Randy; Lynch, Kevin
14	09:56- 09:59	NTUH-II Robot Arm with Dynamic Torque Gain Adjustment Method for Frozen Shoulder Rehabilitation Lin, Chia-Hsun; Lien, Wei-Ming; Wang, Wei-Wen; Chen, Sung-Hua; Lo, Chan-Hsiang; Lin, Sheng-Yen; Fu, Li-Chen; Lai, Jin-Shin	A Constraint-Based Method for Solving Sequential Manipulation Planning Problems Lozano-Perez, Tomas; Kaelbling, Leslie	Robust Sensor Cloud Localization from Range Measurements Dubbelman, Gijs; Duisterwinkel, Erik; Demi, Libertario; Talnishnikh, Elena; Wörtche, Heinrich; Bergmans, Jan W. M.
15	09:59- 10:02	Involuntary Movement During Haptics-Enabled Robotic Rehabilitation: Analysis and Control Design Atashzar, Seyed Farokh; Saxena, Abhijit; Shahbazi, Mahya; Patel, Rajnikant V.	Attack Resilient State Estimation for Autonomous Robotic Systems Bezzo, Nicola; Weimer, James; Pajic, Miroslav; Sokolsky, Oleg; Pappas, George J.; Lee, Insup	Application of Grazing-Inspired Guidance Laws to Autonomous Information Gathering Apker, Thomas; Liu, Shih-Yuan; Sofge, Donald; Hedrick, Karl
16	10:02- 10:05	A Framework for Supervised Robotics-Assisted Mirror Rehabilitation Therapy Shahbazi, Mahya; Atashzar, Seyed Farokh; Patel, Rajnikant V.	A Metric for Self-Rightability and Understanding Its Relationship to Simple Morphologies Kessens, Chad C.; Lennon, Craig; Collins, Jason	Human-Swarm Interaction Using Spatial Gestures Nagi, Jawad; Giusti, Alessandro; Gambardella, Luca; Di Caro, Gianni A.
17	10:05- 10:08	Development of an Upper Limb Exoskeleton Powered Via Pneumatic Electric Hybrid Actuators with Bowden Cable Noda, Tomoyuki; Teramae, Tatsuya; Ugurlu, Barkan; Morimoto, Jun	Sampling Based Motion Planning with Reachable Volumes: Application to Manipulators and Closed Chain Systems McMahon, Troy; Thomas, Shawna; Amato, Nancy	Mapping of Unknown Environments Using Minimal Sensing from a Stochastic Swarm Dirafzoon, Alireza; Betthauser, Joseph; Schornick, Jeff; Benavides, Daniel; Lobaton, Edgar
18	10:08- 10:11	A Novel Customized Cable-Driven Robot for 3-DOF Wrist and Forearm Motion Training Cui, Xiang; Chen, Weihai; Agrawal, Sunil; Wang, Jianhua	Probabilistically Complete Kinodynamic Planning for Robot Manipulators with Acceleration Limits <i>Kunz, Tobias; Stilman, Mike</i>	Probabilistic Guidance of Distributed Systems Using Sequential Convex Programming Morgan, Daniel; Subramanian, Giri Prashanth; Bandyopadhyay, Saptarshi; Chung, Soon-Jo; Hadaegh, Fred
19	10:11- 10:14	Identifying Inverse Human Arm Dynamics Using a Robotic Testbed Schearer, Eric; Liao, Yu-Wei; Perreault, Eric; Tresch, Matthew; Memberg, William; Kirsch, Robert; Lynch, Kevin	Run-Time Detection of Faults in Autonomous Mobile Robots Based on the Comparison of Simulated and Real Robot Behaviour Millard, Alan Gregory; Timmis, Jon; Winfield, Alan	Geodesic Topological Voronoi Tessellations in Triangulated Environments with Multi-Robot Systems Lee, Seoung Kyou; Fekete, Sándor; McLurkin, James
20	10:14- 10:17	A Risk Assessment Infrastructure for Powered Wheelchair Motion Commands without Full Sensor Coverage TalebiFard, Pouria; Sattar, Junaed; Mitchell, Ian	Sampling-Based Tree Search with Discrete Abstractions for Motion Planning with Dynamics and Temporal Logic <i>McMahon, James; Plaku, Erion</i>	Outdoor Flocking and Formation Flight with Autonomous Aerial Robots Vásárhelyi, Gábor; Virágh, Csaba; Somorjai, Gergo; Tarcai, Norbert; Szörényi, Tamás; Nepusz, Tamás; Vicsek, Tamas
21	10:17- 10:20	LINarm: a Low-cost Variable Stiffness Device for Upper-limb Rehabilitation Malosio, Matteo; Caimmi, Marco; Legnani, Giovanni; Molinari, Lorenzo	Distributed Fault Detection and Recovery for Networked Robots Arrichiello, Filippo; Marino, Alessandro; Pierri, Francesco	Sponsor Talk: Autonomous Robot Fleets for Automated Warehouses <i>Sweet, Larry</i> Symbotic LLC

Wednesday Session B, 10:50 - 12:10

		Grand Ballroom WeB1 Mechanisms and Actuators & Force and Tactile Sensing	State Ballroom WeB2 Humanoids and Bipeds III & Human Detection and Tracking	Red Lacquer Room WeB3 Collision Detection and Avoidance & Sensing II
	Chair	Okamura, Allison M. (Stanford University)	Bertrand, Sylvain (IHMC)	MacDonald, Bruce (University of Auckland)
#	Time	Session Keynote	Session Keynote	Session Keynote
1	10:50- 11:10	Keynote: Natural Machine Motion and Embodied Intelligence <i>Bicchi, Antonio</i> University of Pisa	Keynote on Humanoids and Bipeds Hong, Dennis UCLA	Keynote: Bayesian Perception & Decision From Theory to Real World Applications <i>Laugier, Christian</i> INRIA
		Mechanisms and Actuators	Humanoids and Bipeds III	Collision Detection and Avoidance
2	11:10- 11:13	Dynamic Trajectory Planning of Planar 2-Dof Redundantly Actuated Cable-Suspended Parallel Robots Tang, Lewei; Gosselin, Clement; Tang, Xiaoqiang; Jiang, Xiaoling	3D-SLIP Steering for High-Speed Humanoid Turns Wensing, Patrick; Orin, David	Real-Time Collision Avoidance in Human-Robot Interaction Based on Kinetostatic Safety Field Parigi Polverini, Matteo; Zanchettin, Andrea Maria; Rocco, Paolo
3	11:13- 11:16	Workspace Augmentation of Spatial 3-DOF Cable Parallel Robots Using Differential Actuation <i>Khakpour, Hamed; Birglen, Lionel</i>	Emergence of Humanoid Walking Behaviors from Mixed-Integer Model Predictive Control Ibanez, Aurélien; Bidaud, Philippe; Padois, Vincent	Determining States of Inevitable Collision Using Reachability Analysis Lawitzky, Andreas; Nicklas, Anselm; Wollherr, Dirk; Buss, Martin
4	11:16- 11:19	Tendon Routing Resolving Inverse Kinematics for Variable Stiffness Joint Shirafuji, Shouhei; Ikemoto, Shuhei; Hosoda, Koh	Trajectory Generation for Continuous Leg Forces During Double Support and Heel-To-Toe Shift Based on Divergent Component of Motion Englsberger, Johannes; Koolen, Twan; Bertrand, Sylvain; Pratt, Jerry; Ott, Christian; Albu-Schäffer, Alin	Collision Prediction among Polygons with Arbitrary Shape and Unknown Motion Lu, Yanyan; Xi, Zhonghua; Lien, Jyh-Ming
5	11:19- 11:22	Drum Stroke Variation Using Variable Stiffness Actuators Kim, Yongtae; Garabini, Manolo; Park, Jaeheung; Bicchi, Antonio	Model Preview Control in Multi-Contact Motion - Application to a Humanoid Robot Audren, Hervé; Vaillant, Joris; Kheddar, Abderrahmane; Escande, Adrien; Kaneko, Kenji; Yoshida, Eiichi	Unified GPU Voxel Collision Detection for Mobile Manipulation Planning Hermann, Andreas; Drews, Florian; Bauer, Jörg; Klemm, Sebastian; Roennau, Arne; Dillmann, Rüdiger
6	11:22- 11:25	Compliant Robotic Systems on Graphs Groothuis, Stefan S.; Stramigioli, Stefano; Carloni, Raffaella	Predictive Control for Dynamic Locomotion of Real Humanoid Robots Piperakis, Stylianos; Orfanoudakis, Emmanouil; Lagoudakis, Michail	A Practical Reachability-Based Collision Avoidance Algorithm for Sampled-Data Systems: Application to Ground Robots Dabadie, Charles; Kaynama, Shahab; Tomlin, Claire
7	11:25- 11:28	Reaching desired states time-optimally from equilibrium and vice versa for visco-elastic joint robots with limited elastic deflection Mansfeld, Nico; Haddadin, Sami	A Robot-Machine Interface for Full-Functionality Automation Using a Humanoid Jeong, Heejin; Shim, David Hyunchul; Cho, Sungwook	Time Scaled Collision Cone Based Trajectory Optimization Approach for Reactive Planning in Dynamic Environments Singh, Arun Kumar; GOPALAKRISHNAN, BHARATH; Krishna, Madhava
8	11:28- 11:31	Force-Guiding Particle Chains for Shape-Shifting Displays Lasagni, Matteo; Roemer, Kay	Planar Sliding Analysis of a Biped Robot in Centroid Acceleration Space Senoo, Taku; Ishikawa, Masatoshi	A Representation Method Based on the Probability of Collision for Safe Robot Navigation in Domestic Environments Coenen, Sebastiaan Antonius Maria; Lunenburg, Janno Johan Maria; van de Molengraft, Marinus Jacobus Gerardus; Steinbuch, Maarten
9	11:31- 11:34	A Class of Microstructures for Scalable Collective Actuation of Programmable Matter Holobut, Pawel; Kursa, Michał; Lengiewicz, Jakub	Energy Based Control of Compass Gait Soft Limbed Bipeds Godage, Isuru S.; Wang, Yue; Walker, Ian	Real-Time 3D Collision Avoidance for Biped Robots Hildebrandt, Arne-Christoph; Wittmann, Robert; Wahrmann, Daniel; Ewald, Alexander; Buschmann, Thomas
10	11:34- 11:37	HiGen: A High-Speed Genderless Mechanical Connection Mechanism with Single-Sided Disconnect for Self-Reconfigurable Modular Robots Parrott, Christopher; Dodd, T J; Gross, Roderich	Analytical Control Parameters of the Swing Leg Retraction Method using an Instantaneous SLIP Model Shemer, Natan; Degani, Amir	Ensuring Safety in Human-Robot Coexistence Environment Tsai, Chi-Shen; Hu, Jwu-Sheng; Tomizuka, Masayoshi
11	11:37- 11:40	Stretchable Electroadhesion for Soft Robots Germann, Juerg Markus; Schubert, Bryan; Floreano, Dario	Task-Oriented Whole-Body Planning for Humanoids Based on Hybrid Motion Generation Cognetti, Marco; Mohammadi, Pouya; Oriolo, Giuseppe; Vendittelli, Marilena	A Unified Framework for External Wrench Estimation, Interaction Control and Collision Reflexes for Flying Robots <i>Tomic, Teodor; Haddadin, Sami</i>

Wednesday Session B, 10:50 - 12:10 (Continued)

		Grand Ballroom WeB1	State Ballroom WeB2	Red Lacquer Room WeB3
	-			
#	Time	Force and Tactile Sensing	Human Detection and Tracking	Sensing II
12	11:40- 11:43	Miniature Capacitive Three-Axis Force Sensor Bekhti, Rachid; Duchaine, Vincent; Cardou, Philippe	Real-Time People Detection and Tracking for Indoor Surveillance Using Multiple Top-View Depth Cameras Tseng, Ting-En; Liu, An-Sheng; Hsiao, Po-Hao; Huang, Cheng-Ming; Fu, Li-Chen	Deterioration of Depth Measurements Due to Interference of Multiple RGB-D Sensors Martín Martín, Roberto; Lorbach, Malte; Brock, Oliver
13	11:43- 11:46	A Framework for Dynamic Sensory Substitution Mkhitaryan, Artashes; Burschka, Darius	Robot-Assisted Human Indoor Localization Using the Kinect Sensor and Smartphones Jiang, Chao; Fahad, Muhammad; Guo, Yi; Yang, Jie; Chen, Yingying	IMU/LIDAR Based Positioning of a Gangway for Maintenance Operations on Wind Farms merriaux, Pierre; Boutteau, Rémi; Vasseur, Pascal; Savatier, Xavier
14	11:46- 11:49	High-Throughput Analysis of the Morphology and Mechanics of Tip Growing Cells Using a Microrobotic Platform Felekis, Dimitrios; Vogler, Hannes; Mecja, Geraldo; Muntwyler, Simon; Sakar, Mahmut Selman; Grossniklaus, Ueli; Nelson, Bradley J.	Gesture-Based Attention Direction for a Telepresence Robot: Design and Experimental Study Tee, Keng Peng; Yan, Rui; Chua, Yuanwei; Huang, Zhiyong; Liemhetcharat, Somchaya	A Quantitative Evaluation of Surface Normal Estimation in Point Clouds Jordan, Krzysztof; Mordohai, Philippos
15	11:49- 11:52	What's in the Container? Classifying Object Contents from Vision and Touch Güler, Püren; Bekiroglu, Yasemin; Kragic, Danica; Gratal Martínez, Xavi; Pauwels, Karl	Kinect-Based People Detection and Tracking from Small-Footprint Ground Robots Pesenti Gritti, Armando; Tarabini, Oscar; Guzzi, Jerome; Di Caro, Gianni A.; caglioti, vincenzo; Gambardella, Luca; Giusti, Alessandro	View Planning for 3D Object Reconstruction with a Mobile Manipulator Robot Vasquez-Gomez, J. Irving; Sucar, Luis Enrique; Murrieta-Cid, Rafael
16	11:52- 11:55	3D Spatial Self-Organization of a Modular Artificial Skin Mittendorfer, Philipp; Dean-Leon, Emmanuel; Cheng, Gordon	Robust Articulated Upper Body Pose Tracking under Severe Occlusions Sigalas, Markos; Pateraki, Maria; Trahanias, Panos	Planar Pose Estimation for General Cameras Using Known 3D Lines <i>Miraldo, Pedro; Araujo, Helder</i>
17	11:55- 11:58	Detection of Membrane Puncture with Haptic Feedback Using a Tip-Force Sensing Needle Elayaperumal, Santhi; Bae, Jung Hwa; Daniel, Bruce; Cutkosky, Mark	Pedestrian Detection Combining RGB and Dense LIDAR Data Premebida, Cristiano; Carreira, Joao Luis da Silva; Batista, Jorge; Nunes, Urbano	GPS-Based Preliminary Map Estimation for Autonomous Vehicle Mission Preparation Dupuis, Yohan; merriaux, Pierre; Subirats, Peggy; Boutteau, Rémi; Savatier, Xavier; Vasseur, Pascal
18	11:58- 12:01	Active Gathering of Frictional Properties from Objects Rosales, Carlos; Ajoudani, Arash; Gabiccini, Marco; Bicchi, Antonio	Confidence-Based Pedestrian Tracking in Unstructured Environments Using 3D Laser Distance Measurements Häselich, Marcel; Jöbgen, Benedikt; Wojke, Nicolai; Hedrich, Jens; Paulus, Dietrich	Dynamic Objects Tracking with a Mobile Robot Using Passive UHF RFID Tags Liu, Ran; Huskić, Goran; Zell, Andreas
19	12:01- 12:04	Localization and Manipulation of Small Parts Using GelSight Tactile Sensing Li, Rui; Platt, Robert; Yuan, Wenzhen; ten Pas, Andreas; Roscup, Nathan; Srinivasan, Mandayam; Adelson, Edward	Whole-Body Pose Estimation in Physical Rider-Bicycle Interactions with a Monocular Camera and a Set of Wearable Gyroscopes Lu, Xiang; Yu, Kaiyan; Zhang, Yizhai; Yi, Jingang; Liu, Jingtai	Spatio-Temporal Motion Features for Laser-Based Moving Objects Detection and Tracking Shen, Xiaotong; Kim, Seong-Woo; Ang Jr, Marcelo H
20	12:04- 12:07	Exploiting Global Force Torque Measurements for Local Compliance Estimation in Tactile Arrays Ciliberto, Carlo; Fiorio, Luca; Maggiali, Marco; Natale, Lorenzo; Rosasco, Lorenzo; Metta, Giorgio; SANDINI, GIULIO; Nori, Francesco	Pedalvatar: An IMU-Based Real-Time Body Motion Capture System Using Foot Rooted Kinematic Model Zheng, Yang; Chan, Ka Chun; Wang, Charlie C.L.	The Role of Target Modeling in Designing Search Strategies Renzaglia, Alessandro; Noori, Narges; Isler, Volkan
21	12:07- 12:10	Toward a Modular Soft Sensor-Embedded Glove for Human Hand Motion and Tactile Pressure Measurement Hammond III, Frank L.; Menguc, Yigit; Wood, Robert	Sponsor Talk: TOYOTA - Partner Robot <i>Djugash, Joseph</i> Toyota Motor Eng. & Manuf. North America	Advances in Fibrillar On-Off Polymer Adhesive: Sensing and Engagement Speed <i>Wettels, Nicholas; Parness, Aaron</i>

Wednesday Session C, 14:00 - 15:20

		Grand Ballroom	State Ballroom	Red Lacquer Room
		WeC1	WeC2	WeC3
		Surgical Robotics II &	Learning by Demonstration &	Localization and Mapping IV &
		Teleoperation and Telerobotics	Industrial and Manufacturing Robotics	Locomotion, Navigation, and Mobility
	Chair	Hamel, William R. (University of Tennessee)	Parker, Lynne (University of Tennessee)	Antonelli, Gianluca (Univ. of Cassino and S. Lazio)
#	Time	Session Keynote	Session Keynote	Session Keynote
	14.00	Koupoto: Surgical Poliotics: Transition to Automation	Keynote: Machine Learning of Motor Skills for	Keynote: Toward Persistent SLAM in Challenging
1	14:20	Hannaford, Blake	Peters, Jan	Eustice, Ryan
		University of Washington	TU Darmstadt	University of Michigan
		Suraical Pobotics II	Learning by Demonstration	Localization and Manning IV
		Bimanual Telerobotic Surgery with Asymmetric Haptic	A Robust Autoregressive Gaussian Process Motion	
		Force Feedback: A Davinci Surgical System	Model Using L1-Norm Based Low-Rank Kernel	Simultaneous Localization and Planning on Multiple
2	14:20-	Implementation Mohareri, Omid: Schneider, Caitlin: Saloudean	Approximation	Map Hypotheses
	14.23	Septimiu E.	Kini, Euriwoo, Choi, Sungjoon, On, Songhwai	Upcroft, Ben
				- 1
		First 3D Printed Medical Robot for ENT Surgery -	Unifying Scene Registration and Trajectory	LongTerm Topological Localisation for Service
	14:23-	Disposable Manipulators	Application to Manipulation of Deformable Objects	Maps
3	14:26	Entsfellner, Konrad; Kuru, Ismail; Maier, Thomas;	Lee, Alex Xavier; Huang, Sandy; Hadfield-Menell,	Krajník, Tomás; Pulido Fentanes, Jaime; Martinez
		Gumprecht, Jan David Jerome; Lueth, Tim C.	Dylan; Tzeng, Eric; Abbeel, Pieter	Mozos, Oscar; Duckett, Tom; Ekekrantz, Johan;
				Hanneide, Marc
		Mass and Inertia Optimization for Natural Motion in	Robot Learns Chinese Calligraphy from	SAIL-MAP: Loop-Closure Detection Using Saliency-
4	14:26-	Hands-On Robotic Surgery	Demonstrations	Based Features
	14:29	Petersen, Joshua; Rodriguez y Baena, Ferdinando	Sun, Yuandong; QIAN, Huinuan; Xu, Yangsheng	BIREM, Merwan; QUINTON, Jean-Charles; berry, francois: Mezouar, Youcef
				nancois, Mczodal, Toucci
		Interleaved Continuum-Rigid Manipulation Approach:	Learning to Coguenes Mayament Drimitiyes from	Viewel Disco Decognition using LINM Convence
	14.29-	Scale Manipulator	Demonstrations	Matching
5	14:32	Conrad, Benjamin; Zinn, Michael	Manschitz, Simon; Kober, Jens; Gienger, Michael;	Hansen, Peter; Browning, Brett
			Peters, Jan	
		Using Monocular Images to Estimate Interaction		Linear-Time Estimation with Tree Assumed Density
6	14:32-	Forces During Minimally Invasive Surgery	Kinematically Optimised Predictions of Object Motion	Filtering and Low-Rank Approximation
	14.55	Nooni, Ensan, Farastegan, Sina, Zenan, Milos	Sebastian	ra, Duy-Nguyen, Denaen, Frank
				Large-Scale Image Mosaicking Using Multimodal Hyperedge Constraints from Multiple Registration
	14.05	Recursive Estimation of Needle Pose for Control of 3D	Program Synthesis by Examples for Object	Methods within the Generalized Graph SLAM
7	14:35-	Ultrasound-Guided Robotic Needle Steering	Repositioning Tasks	Framework
		Adebar, Troy K.; Okamura, Allison M.	Feniello, Ashley; Dang, Hao; Birchfield, Stan	Pfingsthorn, Max; Birk, Andreas; Ferreira, Fausto; Veruggio, Gianmarco; Caccia, Massimo; Bruzzone
				Gabriele
		Development of Multi-Axial Force Sensing System for		Localization Algorithm Based on Zigbee Wireless
	14:38-		LAT: A Simple Learning from Demonstration Method	Sensor Network with Application to an Active Shopping Cart
8	14:41	Lee, Dong-Hyuk; Kim, Uikyum; Choi, Hyouk Ryeol	Reiner, Benjamin; Ertel, Wolfgang; Posenauer, Heiko;	Gai, Shengnan; Jung, Eui-jung; Yi, Byung-Ju
			Schneider, Markus	
		Estimation of Needle Tissue Interaction Based on Non	Discovering Task Constraints through Observation and	RF Odometry for Localization in Pipes Based on
9	14:41-	Linear Elastic Modulus and Friction Force Patterns	Active Learning	Periodic Signal Fadings
	14:44	Ligezua Fernanuez, Iriko; Kobayasni, Yo; Fujie, Masakatsu G.	nayes, brauley, Scassellati, Brian	Rizzo, Garios, Rumar, Vijay; Lera, Francisco; Villarroel, José Luis
		Design and Realization of Creaner Integrated Force	Unsupervised Object Individuation from BCB D Image	Multi Vahiala Localization with Additive Compressed
1	14:44-	Sensor for Minimally Invasive Robotic Surgerv	Sequences	Factor Graphs
10	14:47	Kim, Uikyum; Lee, Dong-Hyuk; Choi, Hyouk Ryeol;	Koo, Seongyong; Lee, Dongheui; Kwon, Dong-Soo	Toohey, Lachlan; Pizarro, Oscar; Williams, Stefan
		Moon, Hyungpil; Koo, Ja Choon		Bernard
		A Biomechanical Model Describing Tangential Tissue	Grasp Planning Based on Strategy Extracted from	Building Local Terrain Maps Using Spatio-Temporal
11	14:47-	Deformations During Contact Micro-Probe Scanning	Demonstration	Classification for Semantic Robot Localization
	14.00	Nosa, Benon, Worer, Guillaume, Szewczyk, Jerome	Lin, run, Sun, ru	Laible, Stelan, Zell, Anuleas

Wednesday Session C, 14:00 - 15:20 (Continued)

			Grand Ballroom	State Ballroom	Red Lacquer Room
			WeC1	WeC2	WeC3
_	#	Time	Teleoperation and Telerobotics	Industrial and Manufacturing Robotics	Locomotion, Navigation, and Mobility
	12	14:50- 14:53	Industrial Robotic Assembly Process Modeling Using Support Vector Regression <i>Li, Binbin; Chen, Heping; Jin, Tongdan</i>	Stiffness Modeling of Industrial Robots for Deformation Compensation in Machining Schneider, Ulrich; Momeni, Mahdi; Ansaloni, Matteo; Verl, Alexander	HexaMorph: A Reconfigurable and Foldable Hexapod Robot Inspired by Origami Gao, Wei; Huo, Ke; Seehra, Jasjeet Singh; Ramani, Karthik; Cipra, Raymond
	13	14:53- 14:56	Teleoperation System Using past Image Records for Mobile Manipulator Murata, Ryosuke; Songtong, Sira; Mizumoto, Hisashi; Kon, Kazuyuki; Matsuno, Fumitoshi	A Study on Data-Driven In-Hand Twisting Process Using a Novel Dexterous Robotic Gripper for Assembly Automation Chen, Fei; Cannella, Ferdinando; Canali, Carlo; Hauptman, Traveler; Sofia, Giuseppe; Caldwell, Darwin G.	On the Optimal Selection of Motors and Transmissions for Electromechanical and Robotic Systems Rezazadeh, Siavash; Hurst, Jonathan
	14	14:56- 14:59	Experimental Evaluation of Guidance and Forbidden Region Virtual Fixtures for Object Telemanipulation King, H. Hawkeye; Hannaford, Blake	Velocity Coordination and Corner Matching in a Multi- Robot Sewing Cell Schrimpf, Johannes; Bjerkeng, Magnus; Mathisen, Geir	Active Behavior of Musculoskeletal Robot Arms Driven by Pneumatic Artificial Muscles for Receiving Human's Direct Teaching Effectively Ikemoto, Shuhei; Kayano, Yuji; Hosoda, Koh
	15	14:59- 15:02	Investigating Human Perceptions of Robot Capabilities in Remote Human-Robot Team Tasks Based on First- Person Robot Video Feeds <i>Canning, Cody; Donahue, Thomas; Scheutz, Matthias</i>	On the Location of the Center of Mass for Parts with Shape Variation Panahi, Fatemeh; van der Stappen, Frank	Received Signal Strength Based Bearing-Only Robot Navigation in a Sensor Network Field Deshpande, Nikhil; Grant, Edward; Draelos, Mark; Henderson, Thomas C.
	16	15:02- 15:05	Know Thy User: Designing Human-Robot Interaction Paradigms for Multi-Robot Manipulation <i>Lewis, Bennie; Sukthankar, Gita</i>	Design and Motion Planning of Body-In-White Assembly Cells Pellegrinelli, Stefania; Pedrocchi, Nicola; Molinari Tosatti, Lorenzo; Fischer, Anath; Tolio, Tullio A. M.	GeckoGripper: A Soft, Inflatable Robotic Gripper Using Gecko-Inspired Elastomer Micro-Fiber Adhesives Song, Sukho; Majidi, Carmel; Sitti, Metin
	17	15:05- 15:08	Modeling Visuo-Motor Control and Guidance Functions in Remote-Control Operation Andersh, Jonathan; Li, Bin; Mettler, Berenice	Cartesian Sensor-Less Force Control for Industrial Robots Cho, Hyunchul; Kim, Min Jeong; Lim, Hyunkyu; Kim, Donghyeok	Design and Architecture of a Series Elastic Snake Robot Rollinson, David; Bilgen, Yigit; Brown, H. Ben; Enner, Florian; Ford, Steven; Layton, Curtis; Rembisz, Justine; Schwerin, Michael; Willig, Andrew; Velagapudi, Prasanna; Choset, Howie
	18	15:08- 15:11	Transparency Compensation for Bilateral Teleoperators with Time-Varying Communication Delays <i>Rodriguez-Seda, Erick J.</i>	Improving the Sequence of Robotic Tasks with Freedom of Execution Alatartsev, Sergey; Ortmeier, Frank	Hybrid Unmanned Aerial Underwater Vehicle: Modeling and Simulation Drews Jr, Paulo; Alves Neto, Armando; Campos, Mario Montenegro
	19	15:11- 15:14	Model-Free Path Planning for Redundant Robots Using Sparse Data from Kinesthetic Teaching Seidel, Daniel; Emmerich, Christian; Steil, Jochen J.	Parallel Active/Passive Force Control of Industrial Robots with Joint Compliance Dayal, Udai, Arun; Hayat, Abdullah Aamir; Saha, Subir Kumar	Circumnavigation by a Mobile Robot Using Bearing Measurements Zheng, Ronghao; Sun, Dong
	20	15:14- 15:17	Learning Task Outcome Prediction for Robot Control from Interactive Environments Haidu, Andrei; Daniel, Kohlsdorf; Beetz, Michael	Automated Guidance of Peg-In-Hole Assembly Tasks for Complex-Shaped Parts Song, Hee-Chan; Kim, Young-Loul; Song, Jae-Bok	
	21	15:17- 15:20		Intuitive Skill-Level Programming of Industrial Handling Tasks on a Mobile Manipulator Pedersen, Mikkel Rath; Herzog, Dennis Levin; Krueger, Volker	

Wednesday Session D, 15:50 - 17:10

		Grand Ballroom	State Ballroom	Red Lacguer Room
		WeD1	WeD2	WeD3
		Micro-Nano Robots II &	Unmanned Aerial Systems II &	Computer Vision II &
		Impedance, Compliance, and Force Control	Legged Robots II	Recognition
		I	1	
	Chair	Sun, Dong (City University of Hong Kong)	Carloni, Raffaella (University of Twente)	Martinet, Philippe (Ecole Centrale de Nantes)
#	Time	Session Keynote	Session Keynote	Session Keynote
1	15:50-	Keynote: Soft, printable, and small: an overview of manufacturing methods for novel robots at Harvard	Keynote: Material-Handling - Paradigms for Humanoids and UAVs	Keynote: Semantic Parsing in Indoors and Outdoors Environments
	16:10	Harvard University	Un, Paul Y. University of Nevada, Las Vegas (UNLV)	Kosecka, Jana George Mason University
		Micro-Nano Robots II	Inmanned Aerial Systems II	Computer Vision II
2	16:10- 16:13	Modeling and experiments of high speed magnetic micromanipulation at the air/liquid interface Dkhil, Mohamed; Bolopion, Aude; Gauthier, Michael; Régnier, Stéphane	Robust Attitude Controller for Uncertain Hexarotor Micro Aerial Vehicles (MAVs) Derawi, Dafizal; Salim, Nurul Dayana; Zamzuri, Hairi; Liu, Hao; Abdul Rahman, Mohd Azizi; Mazlan, Saiful Amri	A Model-Free Approach for the Segmentation of Unknown Objects ASIF, UMAR; Bennamoun, Mohammed; Sohel, Ferdous
3	16:13- 16:16	Assembly and Mechanical Characterizations of Polymer Microhelical Devices Alvo, Sébastien; Decanini, Dominique; Couraud, Laurent; Haghiri-Gosnet, Anne-Marie; Hwang, Gilaueng	Emergency Landing for a Quadrotor in Case of a Propeller Failure: A Backstepping Approach Lippiello, Vincenzo; Ruggiero, Fabio; Serra, Diana	Automatic Detection of Pole-Like Structures in 3D Urban Environments Tombari, Federico; Fioraio, Nicola; Cavallari, Tommaso; Salti, Samuele; Petrelli, Alioscia; Di Stefano, Luiai
		Controllable Roll-To-Swim Motion Transition of Helical	Guaranteed Road Network Search with Small	Real-Time and Low Latency Embedded Computer Vision Hardware Based on a Combination of FPGA
4	16:16- 16:19	Nanoswimmers Barbot, Antoine; Decanini, Dominique; Hwang, Gilgueng	Unmanned Aircraft Dille, Michael; Grocholsky, Ben; Singh, Sanjiv	and Mobile CPU Honegger, Dominik; Oleynikova, Helen; Pollefeys, Marc
5	16:19- 16:22	Three Dimensional Rotation of Bovine Oocyte by using Magnetically Driven On-chip Robot Feng, Lin; U, Ningga; Turan, Bilal; Arai, Fumihito	A Ground-Based Optical System for Autonomous Landing of a Fixed Wing UAV Kong, Weiwei; Zhou, Dianle; Zhang, Yu; Zhang, Daibing; Wang, Xun; Zhao, Boxin; Yan, Chengping; Shen, Lincheng; Zhang, Jianwei	Multi-View Terrain Classification Using Panoramic Imagery and LIDAR Taghavi Namin, Sarah; Najafi, Mohammad; Petersson, Lars
6	16:22- 16:25	Robust Nanomanipulation Control Based on Laser Beam Feedback Amari, Nabil; Folio, David; Ferreira, Antoine	On Crop Height Estimation with UAVs Anthony, David; Elbaum, Sebastian; Lorenz, Aaron; Detweiler, Carrick	Efficient Real-Time Loop Closure Detection Using GMM and Tree Structure BOULEKCHOUR, MOHAMMED; Aouf, Nabil
7	16:25- 16:28	Microrobotic Platform for Mechanical Stimulation of Swimming Microorganism on a Chip Ahmad, Belal; Kawahara, Tomohiro; Yasuda, Takashi; Arai, Fumihito	Model-Aided State Estimation for Quadrotor Micro Air Vehicles Amidst Wind Disturbances Abeywardena, Dinuka; Wang, Zhan; Dissanayake, Gamini; Waslander, Steven Lake; Kodagoda, Sarath	Place Categorization using Sparse and Redundant Representations Carrillo, Henry; Latif, Yasir; Neira, José; Castellanos, Jose A.
8	16:28- 16:31	Magnetic-Based Motion Control of Sperm-Shaped Microrobots Using Weak Oscillating Magnetic Fields Khalil, Islam S.M.; Youakim, Kareem; Sanchez Secades, Luis Alonso; Misra, Sarthak	Inspection of Pole-Like Structures Using Vision- Controlled VTOL UAV and Shared Autonomy Sa, Inkyu; Hrabar, Stefan; Corke, Peter	Real-Time Global Localization of Intelligent Road Vehicles in Lane-Level Via Lane Marking Detection and Shape Registration <i>Cui, Dixiao; Xue, Jianru; Du, Shaoyi; Zheng, Nanning</i>
9	16:31- 16:34	On-Chip Flexible Scaffold for Construction of Multishaped Tissues Chumtong, Puwanan; Kojima, Masaru; Horade, Mitsuhiro; Ohara, Kenichi; Kamiyama, Kazuto; Mae, Yasushi; Akiyama, Yoshikatsu; Yamato, Masayuki; Arai, Tatsuo	Image-Based Control for Dynamically Cross-Coupled Aerial Manipulation Mebarki, Rafik; Lippiello, Vincenzo; Siciliano, Bruno	On-Road Vehicle Detection through Part Model Learning and Probabilistic Inference Wang, Chao; Zhao, Huijing; Guo, Chunzhao; Mita, Seiichi; Zha, Hongbin
10	16:34- 16:37	Cell Isolation System for Rare Circulating Tumor Cell Masuda, Taisuke; Sun, Yiling; Song, Woneui; Niimi, Miyako; Yusa, Akiko; Hayao, Nakanishi; Arai, Fumihito	The Quadroller: Modeling of a UAV/UGV Hybrid Quadrotor Page, Jared; Pounds, Paul	Real-time Depth Enhanced Monocular Odometry Zhang, Ji; Kaess, Michael; Singh, Sanjiv
11	16:37- 16:40	Incorporating In-Situ Force Sensing Capabilities in a Magnetic Microrobot Jing, Wuming; Cappelleri, David	Persistent monitoring with a team of autonomous gliders using static soaring Acevedo, José Joaquín; Lawrance, Nicholas Robert Jonathon; Arrue, Begoña C.; Sukkarieh, Salah; Ollero, Anibal	MEVO: Multi-Environment Stereo Visual Odometry Koletschka, Thomas; Puig, Luis; Daniilidis, Kostas

Wednesday Session D, 15:50 - 17:10 (Continued)

		Grand Ballroom	State Ballroom	Red Lacquer Room
		WeD1	WeD2	WeD3
#	Time	Impedance Compliance and Force Control	Legged Robots II	Recognition
12	16:40- 16:43	Joint Space Torque Controller Based on Time-Delay Control with Collision Detection Hur, Sung-moon; Oh, Sang-Rok; Oh, Yonghwan	Compliant Terrain Legged Locomotion Using a Viscoplastic Approach Vasilopoulos, Vasileios; Paraskevas, Iosif S.; Papadopoulos, Evangelos	Place Recognition and Self-Localization in Interior Hallways by Indoor Mobile Robots: A Signature-Based Cascaded Filtering Framework Ahmad Yousef, Khalil; Park, Johnny; Kak, Avinash
13	16:43- 16:46	Force/vision Control for Robotic Cutting of Soft Materials Long, Philip; Khalil, Wisama; Martinet, Philippe	Passive Dynamic Walking of Compass-Like Biped Robot with Dynamic Absorbers Akutsu, Yukihiro; Asano, Fumihiko; Tokuda, Isao	Automated Perception of Safe Docking Locations with Alignment Information for Assistive Wheelchairs Jain, Siddarth; Argall, Brenna
14	16:46- 16:49	Hierarchical Inequality Task Specification for Indirect Force Controlled Robots Using Quadratic Programming Lutscher, Ewald; Cheng, Gordon	More Solutions Means More Problems: Resolving Kinematic Redundancy in Robot Locomotion on Complex Terrain Satzinger, Brian; Reid, Jason; Bajracharya, Max; Hebert, Paul; Byl, Katie	Terrain Classification Using Laser Range Finder Walas, Krzysztof, Tadeusz; Nowicki, Michal
15	16:49- 16:52	Fast Dual-Arm Manipulation Using Variable Admittance Control: Implementation and Experimental Results Bjerkeng, Magnus; Schrimpf, Johannes; Myhre, Torstein; Pettersen, Kristin Y.	Hopping Control for the Musculoskeletal Bipedal Robot BioBiped Ahmad Sharbafi, Maziar; Radkhah, Katayon; von Stryk, Oskar; Seyfarth, Andre	A Novel Feature for Polyp Detection in Wireless Capsule Endoscopy Images Yuan, Yixuan; Meng, Max QH.
16	16:52- 16:55	External Torque Sensing Algorithm for Flexible-Joint Robot Based on Disturbance Observer Structure Park, Young Jin; Chung, Wan Kyun	A Passive Dynamic Quadruped That Moves in a Large Variety of Gaits Gan, Zhenyu; Remy, C. David	Automation of "Ground Truth" Annotation for Multi- View RGB-D Object Instance Recognition Datasets Aldoma, Aitor; Fäulhammer, Thomas; Vincze, Markus
17	16:55- 16:58	Implicit Force Control for an Industrial Robot with Flexible Joints and Flexible Links Rossi, Roberto; Bascetta, Luca; Rocco, Paolo	Velocity Disturbance Rejection for Planar Bipeds Walking with HZD-Based Control <i>Post, David; Schmiedeler, James</i>	Recognition of Inside Pipeline Geometry by Using PSD Sensors for Autonomous Navigation Choi, Yun Seok; Kim, Ho Moon; Suh, Jung Seok; Mun, Hyeong Min; Yang, Seung Ung; Park, Chan Min; Choi, Hyouk Ryeol
18	16:58- 17:01	Cartesian Space Synchronous Impedance Control of Two 7-DOF Robot Arm Manipulators Jin, Minghe; Zhang, Zijian; Ni, Fenglei; Liu, Hong	Reactive Posture Behaviors for Stable Legged Locomotion Over Steep Inclines and Large Obstacles Roennau, Arne; Heppner, Georg; Nowicki, Michal; Zöllner, Johann Marius; Dillmann, Rüdiger	Large Scale Place Recognition in 2D LIDAR Scans Using Geometrical Landmark Relations Himstedt, Marian; Hartmann, Jan; Hellbach, Sven; Boehme, Hans-Joachim; Maehle, Erik
19	17:01- 17:04	Fully Omnidirectional Compliance in Mobile Robots Via Drive-Torque Sensor Feedback Kim, Kwan Suk; Kwok, Alan; Thomas, Gray; Sentis, Luis	The Effect of Leg Impedance on Stability and Efficiency in Quadrupedal Trotting Bosworth, William; Kim, Sangbae; Hogan, Neville	Evaluation of Feature Selection and Model Training Strategies for Object Category Recognition <i>Ali, Haider; Marton, Zoltan-Csaba</i>
20	17:04- 17:07	Augmenting Impedance Control with Structural Compliance for Improved Contact Transition Performance Kim, Dongwon; Gillespie, Brent; Johnson, Brandon	On the Energetics of Quadrupedal Bounding with and without Torso Compliance <i>Cao, Qu; Poulakakis, Ioannis</i>	Automatic Segmentation and Recognition of Human Activities from Observation Based on Semantic Reasoning Ramirez-Amaro, Karinne; Beetz, Michael; Cheng, Gordon
21	17:07- 17:10	Fuzzy Learning Variable Admittance Control for Human-Robot Cooperation Dimeas, Fotios; Aspragathos, Nikos A.	On the Dynamics of a Quadruped Robot Model with Impedance Control: Self-Stabilizing High Speed Trot- Running and Period-Doubling Bifurcations Lee, Jongwoo; Hyun, Dong Jin; Ahn, Jooeun; Kim, Sangbae; Hogan, Neville	Detection of Liquids in Cups Based on the Refraction of Light with a Depth Camera Using Triangulation Hara, Yoshitaka; Honda, Fuhito; Tsubouchi, Takashi; Ohya, Akihisa

3rd Floor

Note that the Crystal Room section of the hotel is 1/2 floor higher than the Interactive Salons, but both are called the Third Floor.

Lower-numbered papers in an oral session can be found in lower-numbered salons during the subsequent interactive sessions. For example, papers 2 and 3 in Track 3 (Red Lacquer Room) can be found in Salon 7, while papers 19 and 20 can be found in Salon 12.

