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Device Types
Admittance-based DevicesImpedance-based Devices

 Generally non-backdrivable Generally backdrivable

Natural rendering

Impedance-based Admittance-based

low inertia
low stiffness

high inertia
high stiffness

Output force / powerlow high
Design complexitylow high

 Requires a task-space 
force/torque sensor

 Requires closed-loop controller

 Operated open-loop
 Generally no explicit closed 

loop control

VISHARD

HapticMaster

Omega

Phantom



Effect of Actuation Characteristics

Actuation characteristics 
constrain

Device characteristics
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torque amplification
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Haptic device actuation EM actuatorsdominant

 low torque density
 maximum power / efficiency at high velocity 
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NL ~ 1k – 10k RPM

 as seen at output
motor inertia x N2

motor friction coulomb x N
viscous x N2

but ...

Amplifies motor dynamicsCommonly paired with gear reduction
 increases output torque

for high torque applications
 deceases output velocity

operate closer to Pmax
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reflected inertia:

Overview:  [Hollerbach et al 1992]



Device Output Impedance
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Device Output Impedance
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Output Impedance (Uncompensated)

Admittance-based 
device

- high force output > 100 N
- large power output > 50 W

- low force output < 20 N
- low power output < 10 W



Device Output Impedance
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Device Output Impedance
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simplifying assumptions:
 motor NL ~ 10 revs/s
 device output velocity vo = 25 cm/s
 motor torque ~ rm

2

 motor inertia ~ rm
2

increasing 
force & power

increasing 
reflected inertia



Device Output Impedance
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Friction dominated:
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+20 dB/decade

But loss of
back-driveability is 
not predicted



Equivalent Viscous-Coulomb Friction
Coulomb Friction       Equivalent Viscous Friction Model
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Device Output Impedance
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Friction dominated:
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Equivalent 
viscous friction

0.05 N

50 N

assumptions:
 motion amplitude = 5 cm
 drive-link length = 30 cm
 friction models equivalent at 1 Hz



Device Output Impedance
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 shaft normal loadi ~ motor diameter
 motor shaft diameter  ~ motor diameter
 single-stage reduction
 and others ...

non back-driveable
back-driveable
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Device Output Impedance
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 High force / power devices generally 
have naturally high output impedance
 Feedback is essential for use as haptic 

interface

Admittance-based device

Impedance-based 
device



Control Approach

Admittance-based systems require feedback
 feedback is required to 

overcome device 
characteristics:

o non-backdriveable
o high reflected inertia

 Numerous control strategies 
have been adopted

o explicit force control – virtual 
impedance

example control architecture – explicit force control
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Control Approach

Admittance-based systems require feedback

example control architecture – inner position loop

 feedback is required to 
overcome device 
characteristics:

o non-backdriveable
o high reflected inertia

 Numerous control strategies 
have been adopted

o explicit force control – virtual 
impedance

o inner position loop – virtual 
admittance
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increased CL bandwidth reverts to ZOL(s)
above CL

attenuation of friction 
& reflected inertia

DC ZCL(s) ~ 0

limited by 
unmodeled 
dynamics



Rendering Challenge: Low Inertia

 Low frequency transparency can 
approach zero
o Only limited by sensor and controller 

limitations
o Quantification of transparency at DC may 

not be well defined

 BUT … rendering low inertia is hard for 
admittance devices … why?



Rendering Challenge: Low Inertia
simple mass-spring-
damper human 
impedance model
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Rendering Challenge: Low Inertia
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Evaluation using human subjects

Device-user evaluation of rendering limits:

Evaluate range of stable 
virtual impedance via direct 
user-device interaction

Advantages:
 Direct determination of rendering limits / stability bounds –

including minimum inertia (for admittance systems)
 end-to-end system evaluation

Disadvantages:
 Subjective evaluation of stability limits
 Human subject variability and grasp variability
 Difficult to measure robustness

2( )desZ s ms cs k  



Emulated human-impedance
Device-Impedance model evaluation of rendering limits:

Advantages:
 good repeatability
 Allows evaluation of robustness

Disadvantages:
 no commonly accepted human 

impedance model
 complexity of hardware setup
 difficulty evaluating complete 

device workspace

Passive impedance emulation

[Hayward-Astley 1996]
[Ellis, R. E., et al 1996]

Evaluate range of stable 
virtual impedance using 
emulation of human 
impedance

 Active emulation of impedance
 e.g. Series Elastic Actuation (SEA) or its derivatives

Active impedance emulation



Measurement of Output Impedance

Force 
Sensor

Force
Control
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Generally simplify to 1 DOF (ignore coupling)

determine transparency and Imin from Zo(s)

Virtual Impedance

( )v sZ

0

Minimum inertia  
via Output 
impedance –
with explicit 
force control

set desired force, Fd = 0



Measurement of Output Impedance
Output impedance Measurement – systems with explicit 
force control

( )( )
( )

o
o

o

F sZ s
X s


Measurement options:

Position input Force measurement
Force input Position measurement

Force input:
 Well suited to admittance-based devices
 Force sources are challenging to implement

 Ideal source has zero output impedance
 Source dynamics can distort and destabilize system

Position input:
 Typical method for impedance based device
 Use of high impedance position/velocity source
 Challenging for admittance-based devices

 Not useable above CL of haptic device controller
 Can reduced position controller gains for testing [Ueberle, Buss 2002]



Measurement of Output Impedance
Indirect measurement of output impedance –
with explicit force control
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[Chapius 2009]



Measurement of Output Impedance

( )oF s

( )dF s

( )oX s

input:

output:

output:

( )dF sinput:

Indirect measurement of output impedance –
with explicit force control
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can also measure 
acceleration

Advantages / Disadvantages:
 Experimental evaluation of Zout
 Additional simplification through 

acceleration measurements
 Limited to force controlled systems

[Samur et al 2011]



Evaluation of Rendering Limits
Systems without explicit force control: 

Partition system and evaluate via modeling & experiment
 Position controlled device
 Human-impedance
 Virtual impedance (or admittance)



Evaluation of Rendering Limits

Position control

 high output impedance
 loading effects negligible

high bandwidth position 
controller

Systems without explicit force control: 
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high-bandwidth
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flexible mode



Evaluation of Rendering Limits
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Systems without explicit force control: 

Human Impedance model [Speich 2005]

 mass-spring damper model of 
human impedance

 experimentally-fit model 
parameters

 but – very difficult to identify 
suitable model / parameters



Evaluation of Rendering Limits
Systems without explicit force control: 

Partition system and evaluate via modeling & experiment
 Position controlled device
 Human-impedance
 Virtual impedance (or admittance)

Evaluate stable virtual admittances (e.g. stability margins)



10210-1 103

21 ms
Virtual 
admittance:

Evaluation of Rendering Limits
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 stability margins to estimate range of stable virtual impedances
 Relies on human impedance model
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Summary

 Admittance-based devices are fundamentally 
different than impedance-based devices
 High open-loop output impedance
 Characteristics are unavoidable

 Rendering capabilities are different (opposite) 
than impedance-based devices
 Low inertia is difficult

 Evaluation of rendering capability is challenging
 High output impedance limits techniques
 Various techniques used / suggested … but more work 

is required
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