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Device Types W, WISCONSIN

Impedance-based Devices Admittance-based Devices
= Generally backdrivable = Generally non-backdrivable
= Operated open-loop » Requires a task-space
= Generally no explicit closed force/torque sensor
loop control » Requires closed-loop controller
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< oW Design complexity high
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Effect of Actuation Characteristics W WisconsN

EM actuators

Haptic device actuation @slelnllsFTal:
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Simplified Device Model.
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Output Impedance:
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Magnitude Ratio ‘Zm (Ja))‘
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Output Impedance (Uncompensated)

Admittance-based
- device

- high force output > 100 N
- large power output > 50 W

~ Impedance-based
device

low force output <20 N
low power output < 10 W
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Magnitude Ratio ‘Zm (Ja))‘
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Inertia dominated:

Zo(8)=(1,+N?1)s?

+40 dB/decade
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Device Output Impedance
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Reflected Inertia (I, + N2l.,) [kg-m?]

Reflected Inertia Vs Output Force:

simplifying assumptions:

motor wy, ~ 10 revs/s

device output velocity v, = 25 cm/s
motor torque ~ r?
motor inertia ~ r,2

increasing | ) increasing
force & power reflected inertia
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Friction dominated:

But loss of
back-driveability is
not predicted

+20 dB/decade
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Equivalent Viscous-Coulomb Friction¥ WISCONSIN

Coulomb Frictiont—)> Equivalent Viscous Friction Model

R — g _
VS A oo Coulomb,
o 05 o O 05
5 8 | S 3 rson(6,)-"
O ®© 0 @ 0
T E s S E
- 0. O -0.5
& | 5&  mm
- — -  — -1t
© —
— 1 C 1 | |
Py N G) .'CE g 0.6
8 q® 0 = oc -
> = 8(7) £ o4
-0. o .
- 2 2 02 “-Viscous
1 oL
o 2 4 6 0 1 2 3 4 5 6
time (normalized) time (normalized)
Equate work done over 1-cycle
[ Viscous: A1
f Equivalent
W = ! Pdt - W= ﬂA Oy, —C, vi(lcous friction
0 Coulomb: 7z'Aa)
W =4Ar,




Output Impedance (Uncompensated)
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Device Output Impedance

200 100

Reflected Friction Vs Output Force:

simplifying assumptions:
shaft normal loadi ~ motor diameter
motor shaft diameter ~ motor diameter
single-stage reduction
and others ...
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Device Output Impedance

Output Impedance (Uncompensated)

Admittance-based device

= High force / power devices generally
have naturally high output impedance
» Feedback is essential for use as haptic
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Control Approach

Admittance-based systems require feedback

» feedback is required to = Numerous control strategies
overcome device have been adopted
characteristics: o explicit force control — virtual

o non-backdriveable impedance

o high reflected inertia

example control architecture — explicit force control
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Control Approach

Admittance-based systems require feedback

» feedback is required to = Numerous control strategies
overcome device have been adopted
characteristics: o explicit force control — virtual

o non-backdriveable impedance
o high reflected inertia O inner position loop — virtual
admittance

example control architecture — inner position loop
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Output Impedance, Z-/(S)
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Rendering Challenge: Low Inertia W Wisconsn

* Low frequency transparency can
approach zero

o Only limited by sensor and controller
limitations

o Quantification of transparency at DC may
not be well defined

= BUT ... rendering low Inertia is hard for
admittance devices ... why?
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Rendering Challenge: Low Inertia W WisCONsN

Simplified system model:
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Rendering Challenge: Low Inertia W Wisconsn

Simplified system model:

simple mass-spring-
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Evaluate range of stable
virtual impedance via direct
user-device interaction

(s)=ms” +cs+k

des

Advantages:

» Direct determination of rendering limits / stability bounds —
including minimum inertia (for admittance systems)
» end-to-end system evaluation

Disadvantages:

» Subjective evaluation of stability limits
= Human subject variability and grasp variability
= Difficult to measure robustness



Device-Impedance model evaluation of rendering limits:

Passive impedance emulation

Evaluate range of stable
virtual impedance using
emulation of human
Impedance

[Hayward-Astley 1996]

[Ellis, R. E., et al 1996] Advantages:

= good repeatability

Active impedance emulation = Allows evaluation of robustness

Disadvantages:
= no commonly accepted human

1T J= impedance model
T = complexity of hardware setup
Human patanse = difficulty evaluating complete
Z() """" (s) device workspace
s)=-"~
= Active emulation of impedance | " *n(®)

» e.g. Series Elastic Actuation (SEA) or its derivatives



Measurement of Output Impedance W Wisconsin

F,(s) =0 | Force

— Control

+ D(S) P~
' *‘ __ ><o (S)
Tl Minimum inertia
F: B via Output
— Force | Impedance —
Virtual Impedance| =001 with explicit
Z,(s) ) force control

F,(s) =T, (s)F,(s) + T;,,(s)X,(s)

T \set desired force, F, =0
|:o (S) U flx (S)Xo(s) _ . i : :
— Generally simplify to 1 DOF (ignore coupling)
output iImpedance

R(S) 7
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Measurement of Output Impedance W WiConsN

Output impedance Measurement — systems with explicit
force control

F (S) Measurement options:
Z.(S)=—5 Position input s Force measurement
XO (S) Force input == Position measurement

Position input:
= Typical method for impedance based device
» Use of high impedance position/velocity source
= Challenging for admittance-based devices
= Not useable above o, of haptic device controller
= Can reduced position controller gains for testing [Ueberle, Buss 2002]

Force input:
= Well suited to admittance-based devices
» Force sources are challenging to implement
» |deal source has zero output impedance
= Source dynamics can distort and destabilize system



Measurement of Output Impedance W Wisconsin

Indirect measurement of output impedance —
with explicit force control

F,(S) =T 4 (S)Fy(s) + T, () X, (S)

[Chapius 2009]

Fixed end-point:

output: F
Free end-point:

o(8)”

anut: Fd (S)

X, (8)

Fy (8)

output impedance

=T, ()

X, =0

Tf/d (S)

SCONSIN

F,=0 Tf /X (S)



Measurement of Output Impedance W Wisconsin

Indirect measurement of output impedance —
with explicit force control

F,(S)=T;,4(s)F,(s) + T, (s) X, (S)

Fixed end-point:

input: Fd (S) oijtput impedance
)
\ - X = Tf /X (S)
r - 9 (S) can also measure
= . F. (S acceleration
output: I:o (S) ‘ ( ) Fo= [Samur et al 2011]

Free end-point:

input: Fd (S)
Advantages / Disadvantages:

= Experimental evaluation of Z_,
= Additional simplification through
output: X (S)\

acceleration measurements
» Limited to force controlled systems



_________________ Position

1 2(O)w{controller

Force Sensor |« Zh(S) — Fh(S) PU——

Partition system and evaluate via modeling & experiment

= Position controlled device
* Human-impedance
» Virtual impedance (or admittance)



Virtual Admittance | Position
S controller
ms? + ¢s + Kk
A
Force Sensor [< (s) =Fh_(s) S
h Xp(S)
Position control high bandwidth position
derTT T controller

= high output impedance
» |oading effects negligible

I e drive-train
I | I T flexible mode




Position

1 2(O)w{controller

40 dB

F.(jo)
X, (o)

30 dB

20 dB

109 Hz 101 Hz

mass-spring damper model of
human impedance
experimentally-fit model
parameters

but — very difficult to identify
suitable model / parameters




_________________ Position

1 2(O)w{controller

Force Sensor |« Zh(S) — Fh(S) PU——

Partition system and evaluate via modeling & experiment

= Position controlled device
* Human-impedance
» Virtual impedance (or admittance)

# Evaluate stable virtual admittances (e.g. stability margins)



magnitude ratio

phase

Measured / Modeled System Components:

Full system — open loop response

Human impedance: F (s)/ X.(s
50 dBL h( )/ h( ) B As m is decreased - phase
margin goes to zero
OdBlF———n+—"" ~_ | bk gy / _____________
-50 dB|- Virtual
admittance: 1/m32/ '
-100 dB}- :
Position loop: XO(S)/Xd (S) :
I I I I I
P |
OO=: [
i j i I
I
-180° k S S
-360° e
Frequency [r/s] | Frequency [r/s] |
101 102 103101 102 10°
Advantages / = stability margins to estimate range of stable virtual impedances

Disadvantages: = Relies on human impedance model



Summary

= Admittance-based devices are fundamentally
different than impedance-based devices

= High open-loop output impedance
= Characteristics are unavoidable

* Rendering capabilities are different (opposite)

than impedance-based devices
* Low inertia is difficult

= Evaluation of rendering capabillity is challenging
» High output impedance limits techniques
= Various technigues used / suggested ... but more work
IS required
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