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We love textures and haptic texture rendering.
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Who are you?

Please introduce yourself:
Name
Institution
Position

Please ask questions throughout the tutorial!



Overview

This half-day Sunday afternoon tutorial will overview the problem of haptic texture rendering and then
carefully explain a new set of methods the presenters have developed for creating highly realistic haptic
virtual textures. While some of the discussion will be relevant to bare-finger haptic interactions, we will
focus on situations where the user touches the surface through a rigid tool. Interestingly, even though the
skin is not in contact with the surface, humans can perceive many properties of a texture by dragging a rigid
tool across it. Such interactions frequently arise in the areas of art, design, manufacturing, and medicine, as
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well as in everyday tasks such as writing a grocery list.

Agenda
1:30 — 1:40
1:40 — 1:55
1:55 — 2:10
2:10 — 2:20
2:20 — 2:30
2:30 — 2:45
2:45 — 3:00
3:00 — 3:30
3:30 — 3:40
3:40 — 3:55
3:55 — 4:05
4:05 — 4:25
4:25 — 4:40
4:40 - 5:00

Introductions

Activity 1: Passive and active interaction with textures using a tool and
the fingertip (KJK)

Perception of Textures (HC)

Background on Texture Rendering (KJK)

Data-Driven Modeling (KJK)

Activity 2: Passive tool-mediated interaction with textures moving
slow/fast and pressing hard/soft (KJK)

Recording Hardware and Demo 1: Haptic Camera (HC)

Coffee Break: Demos will be available during this time

Friction Modeling (HC)

Texture Modeling (HC)

Texture Signal Generation (KJK)

Rendering Hardware and Demo 2: TexturePad (KJK)

Perception of Virtual Textures (HC)

Penn Haptic Texture Toolkit and Demo 3: Toolkit Textures on Omni (HC)
http://repository.upenn.edu/meam _papers/299/
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Activity 1

 Choose a partner.

* Obtain a chopstick and some
texture samples.

* Subject: Hold the chopstick like
a pen, fat end down, in the air,
and close your eyes.

* Your job is to figure out what
kind of texture you are touching,
noticing the sensations.




Activity 1

 Experimenter: Chose a texture
and move it back and forth
against the fat end of the
chopstick.

 After a while, switch to holding
the texture stationary and let
your partner move the tool.

» Switch roles and pick a different
texture.

* Also try the same activities
using your bare finger.




Reflections on Activity 1

* Indirect touch: interacting with a surface
through an intermediary object.

* Direct touch: touching with your bare skin.

 Passive touch: when the surface moves and
the tool or finger remains stationary.

* Active touch: when the subject moves.

What did you notice during this activity?




Perception of Textures



contact location

pressure
shear
slip
vibration
tempe

nosition
orientation
force
torque
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Mechanoreceptors
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Mechanoreceptors

* Prederre e

» I hvinn

Pavnmvvvpains | ow v=ie smmbags

Afferent type Receptive field Density
(and response properties) (and probe)

SA-l (slowly-adapting type |)

“Coding and use of tactile
Merkel endings

signals from the fingertips in
object manipulation tasks”
by Johansson and
Flanagan, 2009

* Sensitive to low-frequency
dynamic skin deformations
(<-5 Hz)

* Sensitive to static force

* Transmit enhanced
representations of local
spatial discontinuities

Weak pointed touch 14



Mechanoreceptors

Afferent type Receptive field Density
(and response properties) (and probe) (afferents per cm?)

FA-ll (fast-adapting type Il)

Pacini ending

“Coding and use of tactile
signals from the fingertips in
object manipulation tasks”
by Johansson and
Flanagan, 2009

* Extremely sensitive to
mechanical transients and
high-frequency vibrations
(~-40-400 Hz) propagating
through tissues

* Insensitive to static force

* Respond to distant events
acting on hand-held objects

Light tapping 15



Pavnmvvvpains

Afferent type
(and response properties)

SA-ll (slowly-adapting type Il)
Ruffini-like endings

* Low dynamic sensitivity

* Sensitive to static force

* Sense tension in dermal and
subcutaneous collagenous
fibre strands

* Can fire in the absence
of externally applied
stimulation and respond to
remotely applied stretching
of the skin

Mechanoreceptors

Receptive field Density
(and probe) (afferents per cm?)

Touch or skin stretch

* Prederre e

» I hvinn

| ~wieemmbags

“Coding and use of tactile
signals from the fingertips in
object manipulation tasks”
by Johansson and
Flanagan, 2009
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Psychophysical Dimensions
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“Psychophysical Diménsions of Tactile Perception of Textures” by Okamoto et al., 2013 '/



Psychophysical Dimensions
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Psychophysical Dimensions
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“Psychophysical Diménsions of Tactile Perception of Textures” by Okamoto et al., 2013 '°



Psychophysical Dimensions
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» Mediated by skin of finger pad
— Skin stretch or adhesion

“Psychophysical Diménsions of Tactile Perception of Textures” by Okamoto et al., 2013 “°



Psychophysical Dimensions
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» Heat transfer property between texture
and finger

 TRP ion-channels on free nerve endings

“Psychophysical Diménsions of Tactile Perception of Textures” by Okamoto et al., 2013 ~’



Psychophysical Dimensions
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Roughness

 Tactile cues

» Contact area between finger pad
and object is important

“Psychophysical Diménsions of Tactile Perception of Textures” by Okamoto et al., 2013 “?




Perception through a tool

Rigid link between surface and fingers

No spatial cues available
— Skin deformation from tool, not from surface

Vibratory stimuli
Warm/cool dimension cannot be conveyed

23



Roughness through a tool

» High correlation of * Perceived

rated roughness roughness increased
values between finger as power of
and tool vibrations increased
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“Texture Perception Through Direct and Indirect Touch: An Analysis of Perceptual
Space for Tactile Textures in Two Modes of Exploration” by Yoshioka et al., 2007



Stickiness through a tool

* Proprioceptive cues + Perceived stickiness
through tool iIncreased as friction
between probe and
texture increased
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“Texture Perception Through Direct and Indirect Touch: An Analysis of Perceptual
Space for Tactile Textures in Two Modes of Exploration” by Yoshioka et al., 2007



Hardness through a tool

* Proprioceptive cues + Perceived hardness

through tool decreased as
— Amount of surface compliance
indentation (SAIl) increased
g 15 * =
§ s ! ¢
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g * reD/ Qt' 0.5
& ~ - | 0 |
0 0.5 1 19 -4 -3 -2 -1 0
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“Texture Perception Through Direct and Indirect Touch: An Analysis of Perceptual
Space for Tactile Textures in Two Modes of Exploration” by Yoshioka et al., 2007



Perceptual Space

Finger scanning Probe scanning

“Texture Perception Through Direct and Indirect Touch: An Analysis of Perceptual
Space for Tactile Textures in Two Modes of Exploration” by Yoshioka et al., 2007
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Background on Texture
Rendering
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Real-time dynamic simulation of tool-texture contacts
is computationally prohibitive [Otaduy and Lin, 2008]
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Prior Approaches

» Compute 2D lateral forces from gradient of texture
height field at probe location [Minsky 1995]

» Alter surface normal for force rendering based on
gradient of texture offset field [Ho et al. 1999]

* Add probabillistic texture forces to standard
penetration-based feedback [Siira and Pai 19906}

* Vary virtual coefficient of friction according to a
probabilistic model [Pai at al. 2001]

* And many others...



Data-Driven Modeling



21

Measurement-Based
Modeling for Haptic
Rendering

A. M. Okamura, K. J. Kuchenbecker,
and M. Mahvash

Measurement-based modeling is a technique for creating virtual environ-
ments based on real-world interactions. For the purpose of haptic ren-
dering, measurement-based models are formed from data recorded during
contact between an instrumented tool and a real environment. The created
model can be a database of recorded responses to various haptic stimuli, an
empirical input-output mapping, or a set of physics-based equations (Fig-
ure 21.1). In the database approach, recordings of a movement variable,
such as position or force, are played back during haptic rendering, similar
to audio recordings played on a stereo. Input-output models are created
by fitting simple phenomenological models to the recorded data and tuning
the haptic response as needed to provide the desired feel. Physics-based
models are constructed from a fundamental understanding of the mechani-
cal principles underlying the recorded haptic interaction; numerical values
for the model’s physical parameters can be selected either by fitting the
model’s response to the recorded data or by derivation from basic material
properties. Prior work has used all three of these methods in various forms
to create virtual environments that feel significantly more realistic than
models that are designed and tuned without incorporation of real-world

Database ———— - Store data » Interpolate/replay data

Record data
during real-world Create —» Input-output model —— Tune parameters
interaction

—» Invoke mapping

Physics-based model —» Identify parameters —» Simulate physics

Figure 21.1. The process of measurement-based modeling. Approaches include
database development, input-output modeling, and physics-based modeling.

443

[1] Allison M. Okamura, Katherine J. Kuchenbecker, and Mohsen Mahvash. Measurement-
based modeling for haptic rendering. In Ming Lin and Miguel Otaduy, editors, Haptic
Rendering: Algorithms and Applications, chapter 21, pp. 443—-467. A. K. Peters, May 2008.
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Capturing the Feel Recreating the Feel
of a Real Surface with Haptograph of the Real Surface with
a Sensorized Tool an Active Stylus

NSF #11S-0845670: “CAREER: Haptography: Capturing
and Recreating the Rich Feel of Real Surfaces”

[2] Katherine J. Kuchenbecker, Joseph M. Romano, and William McMahan. Haptography:
Capturing and recreating the rich feel of real surfaces. In Cedric Pradalier, Roland Siegwart,
and Gerhard Hirzinger, editors, Robotics Research: the 14th International Symposium (ISRR
2009), volume 70 of Springer Tracts in Advanced Robotics, pp. 245-260. Springer, 2011. .,
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Activity 2

* Find your partner and your
chopstick.

« Subject: Hold the chopstick like a
pen, fat end down, in the air, and
close your eyes. Pay attention to
the sensations that you feel.

 Experimenter: Chose a texture and
move it back and forth against the
fat end of the chopstick. Move with
low and high speed, with low and
high force.

« Switch roles and pick a different
texture.




Reflections on Activity 2

* Four different ways of interacting:
* Low scanning speed and medium normal force
* High scanning speed and medium normal force
* Medium scanning speed and low normal force
* Medium scanning speed and high normal force

What did you notice during this activity?
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Recording Hardware



Data recorded

* Three axes
— Force
— Position
— Orientation
— High-Frequency
Acceleration

44



Motivation for recording
force and speed

100
! 0

- Power and frequency
content of acceleration W
strongly depend on oo bedod
normal force and |
scanning speed




Sensors

Interchangeable
tooltip

Six-axis
force/torque
sensor

Two two-axis Magnetic motion
accelerometers tracking sensor
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Recording Procedure

Accel im/s”)

Time (s)

Force (N)

Speed (mm/s)
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Recording

Procedure

Force (N)

0 &0 00 150 20
Speed (mm/s)
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Accel (mfsz)

Recorded Data
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n Hapnc Camens Recording Dathtoard

Data Recording Dashboard

Step 1
Selact Existing Matenal for Tnal

OR
Create New Matenal

Canvas 1

Input Model Number

1

View Data Create Model
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Demonstration 1. Recording

Data Recorded from Canvas 1




Demonstration 1. Recording

What questions do you have?




Coffee Break
Please be back by 3:30

Demos are avalilable to try during the break.
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Friction Modeling



Data Recorded from Canvas 1
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Friction Model Selection

» » .
Fricuon Friction: Friction /
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Friction Friction Friction /
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| . /\
Stiction Karnopp’s model Stribeck effect

“Friction Identification for Haptic Display” by Richard et al., 1999
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Recording procedure



Recording procedure



Recording procedure

10

Time (s)
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Force data processing
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Fitting Coulomb friction model
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Fitting Coulomb friction model

Friction Force (N)
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Normal Force (N)

63



Summary of Data Processing
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[13] Heather Culbertson, Juliette Unwin, and Katherine J. Kuchenbecker. Modeling
and rendering realistic textures from unconstrained tool-surface interactions, 2014.
Under revisions for IEEE Transactions on Haptics.



Texture Modeling
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— Force
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Acceleration Processing
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[6] Nils Landin, Joseph M. Romano, William McMahan, and Katherine J. Kuchenbecker.
Dimensional reduction of high-frequency accelerations for haptic rendering. In Astrid
Kappers, Jan van Erp, Wouter Bergmann Tiest, and Frans van der Helm, editors, Hapfics:
Generating and Perceiving Tangible Sensations, Proc. EuroHaptics, Part I, volume 61 92 of
Lecture Notes in Computer Science, pp. 79-86. Springer, July 2010.



Speed Calculation
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Y Force (N) X Force(N)

Z Force (N)

Force Processing
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Model Structure

* Autoregressive (AR)
— All-pole infinite impulse response (lIR) filter

* Next output is a linear combination of
previous outputs

[5] Joseph M. Romano, Takashi Yoshioka, and Katherine J. Kuchenbecker. Automatic filter
design for synthesis of haptic textures from recorded acceleration data. In Proc. IEEE
International Conference on Robotics and Automation, pp. 1815-1821. May 2010.



Components of AR model

* AR Coefficients
(A1, Ay, . Ay}

e \ariance

N
var = 2 (}/n — A1Yn-1

n=1
R Apyn_p — en)z

[5] Joseph M. Romano, Takashi Yoshioka, and Katherine J. Kuchenbecker. Automatic filter
design for synthesis of haptic textures from recorded acceleration data. In Proc. IEEE
International Conference on Robotics and Automation, pp. 1815-1821. May 2010.



Motivation for segmentation

» Acceleration signal not stationary
— Power and frequency content depend on force
and speed
* AR model structure requires assumption of
strong stationarity
— Break signal into stationary segments
— Create AR model for each segment

[9] Heather Culbertson, Juliette Unwin, Benjamin E. Goodman, and Katherine J.
Kuchenbecker. Generating haptic texture models from unconstrained tool-surface
interactions. In Proc. IEEE World Haptics Conference, pp. 295-300. April 2013.



Segmenting Algorithm

« Auto-PARM algorithm’

— Genetic algorithm
— Optimize minimum description length (MDL)

MDL = log(m) + (m + 1)log(n)

m+1 m+1 m+1

p; + 2 n;
+ Z log(pj) + z '2 log (n,-) + Z ?’log(Znaiz)

" “Structural break estimation for nonstationary time series models” by Davis et al., 2006 ’°



Segmentation
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Modeling a segment
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Accel (mls"’)

Speed (mm/s)
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Normal Force (N)
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Summary of Te

xture Modeling

d h Convert | [
> Y Store AR Models
P, P,..., P, — P Make E Coefficients % R in Delauney
Segment >|Median [—»| AR {2 toLSF [ 2 Oerrlllove Triangulation
21y Siqgnal C1,Coy...,Cp . Models E utliers of Force-Speed
_ f
~ ~ Y
F, -
> Median
by v

U o | Segment

[13] Heather Culbertson, Juliette Unwin, and Katherine J. Kuchenbecker. Modeling
and rendering realistic textures from unconstrained tool-surface interactions, 2014.

Under revisions for IEEE Transactions on Haptics.



Texture Signal Generation



AR Models in Delauney Triangulation by
Normal Force and Scanning Speed

f

U

The haptic rendering system must continually
measure the user's normal force and scanning speed.
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e vary significantly over
eness with smoothness.
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Calculate Filter Coefficients and White Noise Variance

1.35

B0 8 90 95 100 105 110 115 120 125 130 135
Speed (mm/s)
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Imaginary
-

Interpolation must be done on Line Spectral Frequencies

instead of coefficients to preserve stability.

Interpolate Coefficients Interpolate LSFs
"%
.-‘-: i,ii
.............................. ‘ :::. e g 1 B
g o
e
L N MMl e g il R TT T B D
3]
=
............................. 13 s A SRR -1
ow X
-1 0 1 -1 0
Real Real

[7] Heather Culbertson, Joseph M. Romano, Pablo Castillo, Max Mintz, and
Katherine J. Kuchenbecker. Refined methods for creating realistic haptic virtual
textures from tool-mediated contact acceleration data. In Proc. IEEE Haptics
Symposium, pp. 385-391. March 2012.

87



Create White Gaussian
Noise with Calculated
Variance (Magnitude)

White-Noise Variance
Changes Over Time

[
Pass WGN Through 22 »(%)

AR Filter with
Calculated Coefficients
(Frequency Response)

Yields a Unique Waveform
Whose Spectrum Blends the
Spectra of the Recorded
Data from which the Three
Models were Made

Lmh h uiLk

Coefficients Change
Over Time
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Synthesizing a New Texture Output

One Original Recording

il

g W

gm’ A -\/N | l‘m ‘NJ“'W(\‘LM
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g ;wk"‘%

Recorded Data

89



Synthesizing a New Texture Output

One Original Recording

Six Synthetic Texture Signals
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Texture signal must be generated at 1000 Hz or faster.
Interpolation can occur at a slower rate.
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Output Spectrum Matches Spectrum of Recorded Data
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Summary of Texture Rendering

/ Identify Three White
Jpjconvert v Surrounding Node = = » | Convert Noise
“P| Units [y Calculate | v | LOW- Interpolate | ‘5| LSFto | . L]
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/| RIS yc 2 Generate
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»| Check for D WAV
— Motion “ <] .
: v’
Haptuator ' V oA Sound | Vies |Convert| iqes | Compensate| a
Card Units [<¢—for Dynamics |¢—

[13] Heather Culbertson, Juliette Unwin, and Katherine J. Kuchenbecker. Modeling
and rendering realistic textures from unconstrained tool-surface interactions, 2014.
Under revisions for IEEE Transactions on Haptics.



Rendering Hardware



Haptic Interface Motors are Far from the Hand
-

S
-\
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Vibration Actuation Approach: Dedicated Actuator on Handle

Voice-Coil
Actuator

Suspension

Handle

[3] William McMahan and Katherine J. Kuchenbecker. Haptic display of realistic tool
contact via dynamically compensated control of a dedicated actuator. In Proc. IEEE/
RSJ International Conference on Intelligent Robots and Systems, pp. 3171-3177.
St. Louis, Missouri, USA, October 2009.



Early Designs

Springs
’ Linear Voice-

SensAble ”' \ Coil Actuator

Phantom Omni ‘ L\ Nie

//'J i — .
/ N. h
y - * Accelerometer

[3] William McMahan and Katherine J. Kuchenbecker. Haptic display of realistic tool
contact via dynamically compensated control of a dedicated actuator. In Proc. IEEE/
RSJ International Conference on Intelligent Robots and Systems, pp. 3171-3177.
St. Louis, Missouri, USA, October 2009.
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Early Designs

—_—

Custom
Handle

Real Surface

[4] William McMahan, Joseph M. Romano, Amal M. Abdul Rahuman, and Katherine
J. Kuchenbecker. High frequency acceleration feedback significantly increases the

realism of haptically rendered textured surfaces. In Proc. IEEE Haptics Symposium,
pp. 141-148. Waltham, Massachusetts, March 2010.
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Early Designs

Acetal sleeve bearing

&
& / Pen- mounted housing
Moving magnet

/ Weight

\

k‘\
—

Flexure spring j
Mounting screw

End cap

Electromagnetlc coll

[8] Joseph M. Romano and Katherine J. Kuchenbecker. Creating realistic virtual textures

from contact acceleration data. IEEE Transactions on Haptics, volume 5(2):pp. 109-119,
April-June 2012.
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Haptuator by
Tactile Labs




Bracket Rigidly Attaches Haptuator to Handle

2




Characterization of Actuator Dynamics
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[12] William MeMahan-and-F ---- ----- er—Dynamie-modeling-and control of
voice-coil ac?uators fOFOhIgh fldellty dlsplay of haptlc V|brat|ons In Pzroc IEEE I-fapt:cs
Symposium. February 2014. 03-5 101



Empirical Transfer Function Estimates: Strong Resonance
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[12] William McMahan and Katherine J. Kuchenbecker. Dynamic modeling and control of
voice-coil actuators for high-fidelity display of haptic vibrations. In Proc. IEEE Haptics
Symposium. February 2014. O3-5 102
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[8] Joseph M. Romano and Katherine J. Kuchenbecker. Creating realistic virtual textures
from contact acceleration data. IEEE Transactions on Haptics, volume 5(2):pp. 109-119,
April-June 2012. 104
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Demonstration 2: TexturePad

What questions do you have?




Perception of Virtual Textures



Aims of study

» Evaluate texture modeling and rendering

 Assess similarities of real and virtual
textures

» Evaluate how perceptual qualities translate
to virtual textures



Study procedure

109



Phase 1: Free Exploration

 TJen textures presented one at a time

 First 10 seconds of interaction data were
recorded
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Phase 2: Pairwise comparison

Completely the Completely
Same Different
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Phase 3: Adjective Rating Scales

Rough Smooth

Hard Soft

Slippery Not Slippery

Fine Coarse

(Place a mark on the scale above)
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Results: Free Exploration

Power (dB) Spectral Centroid (Hz)
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Results: Dissimilarity Ratings
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Dimension 2

Dimension 3
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Results: Multi-dimensional Scaling and
Clustering
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Results: Predicted Dissimilarity

1
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0 0.5 1
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Results: Adjective Ratings

Rough Hard

Virtual

5 Real
7

Virtual
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Discussion

 Surface roughness was accurately captured

* Roughness and fineness ratings were highly
correlated
— Both physical roughness and fineness contribute to
perceived roughness
* Future modeling and rendering considerations

— To fully capture hardness, surface stiffness must be
rendered separately

— Slipperiness (friction) should be rendered directly



The Penn Haptic Texture Toolkit



Modeled Surfaces

Paper

Metal

Carbon Fiber
Fabric
Plastic

[11] Heather Culbertson, Juan Jose Lopez Delgado, and Katherine J. Kuchenbecker. One
hundred data- driven haptic texture models and open-source methods for rendering on 3D
objects. In Proc. IEEE Haptics Symposium. February 2014. Poster 11 & Demo 11



Recorded Data

Two recorded data files for each texture
— 10 seconds each

Data used to create texture and friction
models

Sampling Rate
— 10 kHz

All axes are with respect to the world frame
Stored in XML format



Acceleration Data
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Position Data
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Force Data
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Texture Models

* Provided in XML format
* Files used in rendering

* Two versions provided to render textures at
either 10 kHz or 1 kHz sampling rate



Texture Models

« HTML files included for visualization

Kinetic Friction Coefficient: 0 58

Sampling Rate: 1000 Hz
Number of models: 45
Number of AR coefficients: 19
Number of MA coefficients: 1/
Model Output Units: m/s”
Max speed: 248.0 mm/s

Max force: 2.317 N
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Texture Models

HTML files included for visualization

Model Speed: 72.9 mm/s
Model Force: 0 G226 N
Model Variance: 0.0171

AR Model Parameters:

AR Coefficient  Lag | ARLine Spectral Frequency
1.000000 v

- 0.068014
Y 3 0.321912

" 0.495069
0 189633 -4 08112608
0157020 75 1.128060
0328081  x° 1.200881
0002188 = 1247197

- 1.490397




Texture Models

HTML files included for visualization

Delaunay Triangulation
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Model Resampling Code

Original Model Step Response
2007

« Resample models to render ﬁ
textures at sampling rate less <™
than 10 kHz J\N~
» Zero-order hold on inputs
— Models become autoregressive P S
moving-average (ARMA) Tme(s)
» Spectral density is constant S

— Model variance must be scaled

100f | /\/\"—

(varl) 0 0.01 0.02 129
S, 1 Time (s)

Acceleration (m"sz)

wn
o

Fs,2

o
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ARMA Model Structure

* Model contains both poles and zeros
— AR coefficients  {4;,4,,...,4,}

— MA coefficients { CC C }
1 Dy weny q

* Discrete-time transfer function:



Rendering Code

» OpenHaptics 3.0, Haptic Device APl (HDAPI)
* 1000 Hz haptic loop
* Available for Windows and Linux computers
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Speed Estimate

* Discrete-time derivative of proxy position

* Low-pass filtered at 20 Hz
— Reduce noise
— Remove movement caused by displaying texture

300
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Speed
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o
o
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Time (s)



Calculating Forces

* Normal force
— Provides general shape and hardness

— Follows Hooke’s law relationship to proxy’s

penetration depth
* Gain =0.05 N/mm

Force (N)

Normal

10

Time (s)



Calculating Forces

* Friction Force
— Uses modeled Coulomb friction coefficient

— Modified Coulomb friction model

Friction
Force (N)
o - N W

Time (s)
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Calculating Forces

» Jexture Force
— Vibrations synthesized at 1000 Hz

— Scale acceleration by effective mass
* Mgg = 0.05 kg

S
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Calculating Forces
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Rendering Forces

[11] Heather Culbertson, Juan Jose Lopez Delgado, and Katherine J. Kuchenbecker. One
hundred data- driven haptic texture models and open-source methods for rendering on 3D
objects. In Proc. IEEE Haptics Symposium. February 2014. Poster 11 & Demo 11 137



Demonstration 3:
Toolkit Textures on Omni




Demonstration 3:

Toolkit Textures on Omni

What questions do you have?




Download the Toolkit

http://repository.upenn.edu/meam_papers/299/
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