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Context: teams of field robots"



Air/ground robot teams"

Usual advantages brought by robot teams"
•  Increase of the operation space"
•  Higher robustness wrt. Failures"

UAVs assist UGVs"
•  Localization"
•  Communication relay"
•  Environment modeling"
•  …"

UGVs assist UAVs"
•  Detect clear landing areas"
•  Carry UAVs"
•  Provide energy support"
•  …"

“Remote eye” @ CMU" On going work @ ACFR" Mars2020 @ UPenn"

•  Complementarities"
➙  Operational synergies"
➙  Robotic synergies"



Where and what for?"

Dozens of heterogeneous robots cooperate to achieve 
long-lasting missions in large environments"

Considered missions:"
•  exploration, search "
•  coverage / patrolling: observations, scene analyses, 
situation assessments"
•  interventions in the environment"

In various application contexts:"
•  Environment monitoring (pollutions, science, …)"
•  Search and rescue"
•  Civil security, defense applications"



Where and what for?"

Large scale (km3) implies:"
•  Faster robots, longer missions (“lifelong autonomy”)"
•  Communication constraints"
•  Large (multi-scale) environment models"

(operators are not considered throughout this talk)"

Dozens of heterogeneous robots cooperate to achieve 
long-lasting missions in large environments"

Robot teams must not imply teams of operators ! "
➙  A high level of autonomy is required"



Outline"

“On the importance of environment models”"



Outline"

Autonomous decision making in air/ground systems"

Environment models"

And yes, localization"

(Mostly on-going work, with some unstable choices / ideas)	
  



Simple instance of a perception / decision / action loop:"

•  Gathering data on the environment"
•  Structuring the data into a model"
•  Planning the trajectory to find the “optimal” one"
•  Executing the trajectory"

Decision 

Perception 
Action 

An elementary decision: AGV obstacle avoidance"
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Convolution of the robot 
model with the terrain model	
   Search	
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Simple instance of a perception / decision / action loop:"

•  Gathering data on the environment"
•  Structuring the data into a model"

•  Planning the trajectory to find the “optimal” one"

An elementary decision: AGV obstacle avoidance"

Digital terrain map	
  Depth image	
  

Decision 

Perception 

•  Executing the trajectory"Action 

Planning = Simulation + Search "
•  Simulation of the effects of an action with a predictive model"
•  Search over possible organizations of possible actions to 
meet a goal or to optimize a criteria"



1. Planning a surveillance mission"

Given:"
•  A team of robots"
•  An environment to monitor"
•  A set of constraints to satisfy (e.g. communications)"

Find the (optimal) trajectories to observe the whole environment "



1. Planning a surveillance mission"

Given:"
•  A team of robots"
•  An environment to monitor"
•  A set of constraints to satisfy (e.g. communications)"

Actions to plan:"
•  Observation tasks (hence motion tasks)"
•  Communications"

Approach:"
•  A task allocation process (distributed market-based 
approach)"
•  Large scale: interleaving allocation and 
decomposition processes"



1. Planning a surveillance mission"



1. Planning a surveillance mission"

Given:"
•  A team of robots"
•  An environment to monitor"
•  A set of constraints to satisfy (e.g. communications)"

Actions to plan:"
•  Observation tasks (hence motion tasks)"
•  Communications"

Required models:"
•  Of the observation tasks"
•  Of the robots motions"
•  Of the communications"



Given:"
•  A team of robots"
•  An unknown environment"
•  A set of constraints to satisfy (e.g. communications)"

2. Navigating a rover in an unknown environment"

Find the (optimal) trajectory for the rover to reach a given goal"



Given:"
•  A team of robots"
•  An unknown environment"
•  A set of constraints to satisfy (e.g. communications)"

Actions to plan:"
•  Environment modelling tasks"
•  AGV and UAV Motions"
•  Communications"

Approach:"
•  The UAV serves the UGV, by providing traversability maps!
•  Find the areas to perceive by the UAV relevant for the 
mission"

2. Navigating a rover in an unknown environment"
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1.  Run a A* search for theUGV"
2.  Integrate developed node costs"
3.  Evaluate the alternate paths, 

considering the UAV perception 
capacities"



Given:"
•  A team of robots"
•  An unknown environment"
•  A set of constraints to satisfy (e.g. communications)"

Approach:"
•  The UAV serves the UGV, by providing traversability maps!
•  Find the areas to perceive by the UAV relevant for the 
mission"

2. Navigating a rover in an unknown environment"

1.  Run a A* search for theUGV"
2.  Integrate developed node costs"
3.  Evaluate the alternate paths, 

considering the UAV perception 
capacities"

start	
  
goal	
  



(simulation with http://morse.openrobots.org )	
  

2. Navigating a rover in an unknown environment"



Given:"
•  A team of robots"
•  An unknown environment"
•  A set of constraints to satisfy (e.g. communications)"

Actions to plan:"
•  Environment modelling tasks"
•  AGV and UAV Motions"
•  Communications"

2. Navigating a rover in an unknown environment"

Required models:"
•  Of the traversability assessment function"
•  Of the robots motions"
•  Of the communications"



Given:"
•  A team of robots"
•  A target locked by one robot (the “pursuer”)"
•  A known environment"
•  A set of constraints to satisfy (e.g. communications)"

3. Tracking a target in a known environment"

Find the (optimal) trajectories to keep the target in sight"



Given:"
•  A team of robots"
•  A target locked by one robot (the “pursuer”)"
•  A known environment"
•  A set of constraints to satisfy (e.g. communications)"

Actions to plan:"
•  Target “traps” (sentinel positions)"
•  Communications"

3. Tracking a target in a known environment"

Approach:"
•  The pursuer evaluate potential 
visibility losses"

1. Target locked by the UAV	
  



Given:"
•  A team of robots"
•  A target locked by one robot (the “pursuer”)"
•  A known environment"
•  A set of constraints to satisfy (e.g. communications)"

Approach:"
•  The pursuer evaluate potential 
visibility losses"

3. Tracking a target in a known environment"

!

2. Assessment of loss risk	
  

Actions to plan:"
•  Target “traps” (sentinel positions)"
•  Communications"



Given:"
•  A team of robots"
•  A target locked by one robot (the “pursuer”)"
•  A known environment"
•  A set of constraints to satisfy (e.g. communications)"

Approach:"
•  The pursuer evaluate potential 
visibility losses"

3. Tracking a target in a known environment"

3. The UGV is asked for support	
  

Actions to plan:"
•  Target “traps” (sentinel positions)"
•  Communications"



Given:"
•  A team of robots"
•  A target locked by one robot (the “pursuer”)"
•  A known environment"
•  A set of constraints to satisfy (e.g. communications)"

Approach:"
•  The pursuer evaluate potential 
visibility losses"

3. Tracking a target in a known environment"

4. Target locked by the UGV	
  

Actions to plan:"
•  Target “traps” (sentinel positions)"
•  Communications"



Given:"
•  A team of robots"
•  A target locked by one robot (the “pursuer”)"
•  A known environment"
•  A set of constraints to satisfy (e.g. communications)"

Approach:"
•  The pursuer evaluate potential 
visibility losses"
•  Break the search complexity by 
exploiting redundancies in the tree"

O(mtmr)h down to O(h3)	
  

3. Tracking a target in a known environment"

Actions to plan:"
•  Target “traps” (sentinel positions)"
•  Communications"



3. Tracking a target in a known environment"

Target (on the ground)	
  

Pursuer (UAV) 	
  

Target positions where line of sight can be 
lost for a moment, with guaranteed recovery	
  

Target positions where line of sight can be 
lost without possible recovery	
  



Given:"
•  A team of robots"
•  A target locked by one robot (the “pursuer”)"
•  A known environment"
•  A set of constraints to satisfy (e.g. communications)"

3. Tracking a target in a known environment"

Required models:"
•  Of the robots and target motions"
•  Of the communications"

Actions to plan:"
•  Target “traps” (sentinel positions)"
•  Communications"



Planning = Simulation + Search "
•  Simulation of the effects of an action with a predictive model"
•  Search over possible organizations of possible actions to 
meet a goal or to optimize a criteria"

Decision and environment models"



Planning = Simulation + Search "
•  Simulation of the effects of an action with a predictive model"
•  Search over possible organizations of possible actions to 
meet a goal or to optimize a criteria"

Decision and environment models"

Surveillance" Rover navigation" Target tracking"

• 	
  Environment	
  
observa.ons	
  	
  
• 	
  Mo.ons	
  
• 	
  Communica.ons	
  

• 	
  Environment	
  
modeling	
  
• 	
  Mo.ons	
  
• 	
  Communica.ons	
  

• 	
  Target	
  
observa.ons	
  
• 	
  Mo.ons	
  
• 	
  Communica.ons	
  

Task	
  alloca.on	
  scheme	
   Heuris.c	
  graph	
  search	
  
Graph	
  search	
  +	
  task	
  

alloca.on	
  

Environment models:"
•  at the heart of autonomy "
•  at the heart of cooperation"

Simulation = convolution of 
action and environment models"
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Autonomous decision making in air/ground systems"
"On the importance of environment representations"



Outline"

Autonomous decision making in air/ground systems"
"On the importance of environment representations"

Environment models"



Planning = Simulation + Search "
•  Simulation of the effects of an action with a predictive model"
➙  by “convolving” action models with environment 
models"

Decision and environment models"

What are the main actions to plan / decide?"

From an operations point of view:"
•  Motions"
•  Environment observations (payload)"
•  Communications (within robots, with the control station)"

Plus, from a robotics point of view:"
•  Localization"
•  Environment perception and modeling"



Planning motions"

•  At a coarse level (itinerary)"
➙  notion of traversability"
(geometry, terrain nature)"

•  At a fine level"
➙  geometry, terrain nature 
(e.g. digital terrain map)"

Decision and environment models"

Planning observations"

•  Need to predict visibilities"
➙  geometry (2.5D or 3D)"



Planning motions"

•  At a coarse level (itinerary)"
➙  notion of traversability"
(geometry, terrain nature)"

•  At a fine level"
➙  geometry, terrain nature 
(e.g. digital terrain map)"

Decision and environment models"

Planning communications"

•  Need to predict radio visibilities"
➙  geometry, physical properties"

(or rather, learnt experience)"



Planning localization"

•  GPS or corrections coverage"
•  INS / Odometry: terrain nature"
•  Exteroceptive sensors: landmarks 
or other models (geometry, 
appearance models, …)"

Decision and environment models"



Planning localization"

•  GPS or corrections coverage"
•  INS / Odometry: terrain nature"
•  Exteroceptive sensors: landmarks 
or other models (geometry, 
appearance models, …)"

Planning environment 
perception & modeling"

•  Need to predict the information 
gain!
➙  amount of information in the 
environment models 
(uncertainty, entropy…)"

Decision and environment models"



A database of environment models"

Topology	
  

3D	
  model	
  

Traversability	
  

DTM	
  

Models	
  for	
  localiza.on	
  

Orthoimage	
  

The key 
information 
is geometry	
  



Building envt. models: information flow"
Exhaustive 

environment 
description 	
  

Geometry	
  

Physical 
properties	
  

Chemical 
properties	
  

Lighting 
conditions	
  

Semantics	
  

Thermal 
properties	
  

Temperature, 
humidity…	
  

…	
  

Exteroceptive sensor 
data	
  

Images	
  

Point clouds	
  

Radar echoes"

…	
  

Se
ns

or
s	
  

Environment models	
  

Initial models 
(GIS)	
  

Pe
rc

ep
tio

n	
  

Action"
models	
  

D
ec

is
io

n	
  

“Engineering	
  autonomous	
  agents	
  […]	
  requires	
  a	
  steady	
  flow	
  of	
  informa.on	
  
from	
  sensors	
  to	
  high-­‐level	
  reasoning	
  components”	
  [F.	
  Heintz,	
  “DyKnow”]	
  



Building a digital terrain model"
With a rover, using point clouds"

"Resampling data to obtain a z=f(x,y) representation on a 
regular Cartesian grid"

(It is essential to maintain confidence / 
certainty / precision values during the process)	
  

Using stereovision	
  
Using a Velodyne lidar	
  



Building a digital terrain model"
With a UAV, using a Lidar"

"Resampling data to obtain a z=f(x,y) representation on a 
regular Cartesian grid"

[Paul Chavent @ Onera Toulouse]	
  



Building a digital terrain model"
With a UAV, using a camera"

"Up-to-date commercial bundle adjustment techniques"



Building a traversability model"
With a rover, using point clouds (here stereo)"

"Probabilistic labeling (Bayesian supervised learning)"

•  Possibility to introduce luminance 
and texture attributes"
•  Much more up-to-date 
classification or learning processes 
exist"



Terrain models: data structures"
“Raster” models: "
regular Cartesian grids"

“Raster” models: hierarchical Cartesian 
grids or volumes"

Graph structures easily derived"



Terrain models: data structures"
Triangular irregular meshes"



Terrain models: key points"
1.  Whatever the encoded information (terrain class, elevation, 

traversability, ...), it is essential maintain its “quality” (confidence, 
precision, certainty…):"

•  To fuse the various sources of information "
•  initial model "
•  models built by other robots"
•  sensor data"

•   To drive the decision processes"

2.  Spatial consistency is crucial"



Merging air/ground models?"

Traversability 
models"

Digital terrain 
models"

Inter-robot spatial consistency required	
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Outline"

Autonomous decision making in air/ground systems"
"On the importance of environment representations"

Environment models"
"On the importance of localization"

Localization"



On the importance of localization"

Localization is required to:"

•  Ensure the achievement of the missions, most often defined 
in localization tems (“goto [goal]”, “explore / monitor 
[area]”, …)"

•  Ensure the lowest level (locomotion) controls"

•  Ensure the proper execution of paths / trajectories"

•  Ensure the spatial consistency of the built models"



On the importance of localization"



Localization solutions"

A variety of available information:"

•  Motion sensors"
Odometry, IMU, velocimeters, …"

•  Environment sensors"
Lidar, camera(s), radar, …"

•  Infrastructure sensors"
GPS, radio receivers, …"

•  A priori information"
Motion models, environment models (maps), …"



Localization solutions"

A variety of available techniques:"

•  Dead-reckoning"

•  Map-based localization"

•  SLAM"



But… what localization?"
Essential questions to answer:"

1.  With which precision?"
2.  In which frame? "
3.  At which frequency?"

From cm to meters"
Absolute vs. local"
From kHz to “sometimes”"

•  Ensure the lowest level (locomotion) controls"

•  Ensure the proper execution of paths / trajectories"

•  Ensure the spatial consistency of the built models"

•  Ensure the achievement of the missions, most often defined 
in localization terms (“goto [goal]”, “explore / 
monitor [area]”, …)"



But… what localization?"
Essential questions to answer:"

1.  With which precision?"
2.  In which frame? "
3.  At which frequency?"

From cm to meters"
Absolute vs. local"
From kHz to “sometimes”"

•  Ensure the lowest level (locomotion) controls"

•  Ensure the proper execution of paths / trajectories"

•  Ensure the spatial consistency of the built models"

•  Ensure the achievement of the missions, most often defined 
in localization terms (“goto [goal]”, “explore / 
monitor [area]”, …)"

cm accuracy, 
@ > 100 Hz, 
local frame	
  

~m accuracy, 
“sometimes”, 
global frame	
  

4.  Integrity of the solution?"
5.  Disponibility of the solution?"



Localization precision required for a DTM"

DTM resolution ~ 10cm, height precision ~ 3cm!

•  Velodyne lidar provides chunks of 64 points @ 3.5 kHz:!
1° error on pitch yields a 17cm elevation error @ 10m!

2m/s, GPS RTK @ 20Hz "
+ Xsens AHRS @ 100Hz!

+ FOG gyro @ 50Hz	
  



Localization precision required for a DTM"

•  DTM built by an UAV with a Lidar"
2m/s, GPS RTK @ 20Hz "

+ INS @ x Hz!
+ dynamic model!
+ compass x Hz	
  

During a calm day 	
  



Localization precision required for a DTM"

•  DTM built by an UAV with a Lidar"
2m/s, GPS RTK @ 20Hz "

+ INS @ x Hz!
+ dynamic model!
+ compass x Hz	
  

With a 10 km/h wind	
  



Vision-based SLAM"

http://rtslam.openrobots.org : a versatile EKF-based SLAM framework"
1.  Vision (monocular, stereoscopic, bi-cameras)"
2.  Point / line / planar landmarks"
3.  Predictions: motion model, INS"
4.  Additional observations : odometry (speed), GPS (position)"



Vision-based SLAM"

http://rtslam.openrobots.org : a versatile EKF-based SLAM framework"
1.  Vision (monocular, stereoscopic, bi-cameras)"
2.  Point / line / planar landmarks"
3.  Predictions: motion model, INS"
4.  Additional observations : odometry (speed), GPS (position)"



Vision-based SLAM"

http://rtslam.openrobots.org : a versatile EKF-based SLAM framework"
•  Real-time (100 Hz estimates, VGA @ 50Hz), active search"
•  Timestamp estimates through a dedicated filter"
•  IMU and calibration bias estimation"
•  Various landmark detection / observation / parameterization strategies"



Localization precision required for a DTM"

DTM resolution ~ 10cm, height precision ~ 3cm"

•  Velodyne lidar provides chunks of 64 points @ 3.5 kHz:!
1° error on pitch yields a 17cm elevation error @ 10m"

2m/s, GPS RTK @ 20Hz "
+ Xsens AHRS @ 50Hz!

+ FOG gyro @ 50Hz	
  
2m/s, RT-SLAM @ 100Hz "



(known) SLAM issues"

•  SLAM processes complexity grows with the number of landmarks"

" The map size canʼt scale up"

•  The consistency of Kalman filter based solutions canʼt be guaranteed"

" The map size canʼt scale up, loop closures may lead 
inconsistencies"



(Multi-map hierarchical SLAM )"

Hierarchical	
  SLAM	
  [Tardos-­‐2005],	
  a	
  graph	
  of	
  “submaps”:	
  
Local	
  maps	
  (EKF)	
  of	
  current	
  vehicle	
  pose	
  and	
  landmarks	
  pose	
  
(nodes)	
  
Global	
  map	
  of	
  rela.ve	
  transforma.ons	
  (edges)	
  

Local	
  maps:	
  

•  Fully	
  correlated	
  maps	
  (robot	
  and	
  
landmark	
  states)	
  

•  No	
  informa.on	
  shared	
  between	
  local	
  
maps	
  

•  Each	
  map	
  is	
  ini.alized	
  with	
  no	
  
uncertainty	
  



(Multi-map hierarchical SLAM )"

Hierarchical	
  SLAM	
  [Tardos-­‐2005],	
  a	
  graph	
  of	
  “submaps”:	
  
Local	
  maps	
  (EKF)	
  of	
  current	
  vehicle	
  pose	
  and	
  landmarks	
  pose	
  
(nodes)	
  
Global	
  map	
  of	
  rela.ve	
  transforma.ons	
  (edges)	
  

Global	
  graph	
  of	
  maps:	
  

•  Robot’s	
  pose	
  

•  The	
  state	
  is	
  the	
  rela.ve	
  transforma.on	
  
between	
  local	
  maps	
  

•  Block	
  diagonal	
  covariance	
  before	
  loop	
  
closure	
  



Multi-robot multi-map hierarchical SLAM "

Local level: A set of 
fully correlated 
submaps!

Towards a distributed framework to integrate any localisation information	
  

Global level: A 
graph of map poses!



Multi-robot multi-map hierarchical SLAM "

Absolute	
  localiza.on	
  	
  
(GPS	
  fix	
  /	
  localiza.on	
  	
  
wrt.	
  an	
  ini.al	
  map)	
  

“Rendez-­‐vous”:	
  inter-­‐robot	
  
pose	
  es.ma.on	
  

Inter-­‐robot	
  landmark	
  
(or	
  map)	
  matches	
  

	
  Various	
  loop-­‐closing	
  events	
  



SLAM issues"

•  SLAM processes complexity grows with the number of landmarks"

" The map size canʼt scale up"

•  The convergence of Kalman filter based solutions canʼt be guaranteed"

" The map size canʼt scale up, loop closures may lead 
inconsistencies"

•  Detecting loop closures is an issue"

" Dedicated environment models are required"



Detecting loop closures"

"Data association is mainly a perception problem"

Powerful image indexing techniques (bag of words, e.g. FabMap)"

Can be extended to Lidar scans (at least with global signatures)"

Landmark maps + image indices	
  

Such robotcentric (or even 
sensorcentric) representations 

can not be shared / fused 
among robots	
  



Detecting loop closures between air/ground robots"

Geometry is (again) the key"
Need to focus on the M of SLAM"



Points vs. lines in vision"



SLAM with visual line segments"



Loop closures within air/ground robots"

Inter-­‐robot	
  map	
  matches	
  



Loop closures within air/ground robots"

“Rendez-­‐vous”:	
  inter-­‐robot	
  
pose	
  es.ma.on	
  



Perspectives"

Keep the focus on geometric (3d, vectorized) 
representations"
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Integrate existing data (GIS)"
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Perspectives"

Keep the focus on geometric (3d, vectorized) 
representations"

Integrate existing data (GIS)"

Distributed models "
Management"

•  APIs for clients"
•  Maintain the inter-robot"
inter-model consistency"
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Perspectives"

Keep the focus on geometric (3d, vectorized) 
representations"

Integrate existing data (GIS)"

Distributed models "
Management"

•  APIs for clients"
•  Maintain the inter-robot"
inter-model consistency"

Humans in the loop: information sharing (cf spatial 
ontologies)"

Exhaustive 
environment 
description 	
  

Geometry	
  

Physical 
properties	
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properties	
  

Lighting 
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Summary"

Autonomous decision making in air/ground systems"
"On the importance of environment representations"

Environment models"
"On the importance of localization"

Localization"
On the importance of the environment representations"
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