The 15th IEEE International Symposium on Safety, Security and Rescue Robotics Oct 11-13, 2017 Shanghai, China # **Conference Digest** ### **Copyright and Reprint Permission** ISBN number: 978-1-5386-3922-1 Part number: CFP17SSR-USB Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Operations Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved. Copyright © 2017 IEEE. #### WiFi: WIFI: ShanghaiTech ID: i-sist Password: M38K37AH http://www.ssrr-conference.org/2017 ## **Welcome Message** #### Dear SSRR 2017 Attendees! A warm welcome to Shanghai! We are honored to host you at the 15th IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR) 2017, held at ShanghaiTech University, Shanghai, China. This year's edition of the annual event is held from October 11 to 13, and it is fully sponsored by the IEEE Robotics and Automation Society. This is the first time that SSRR is held in China, but it is also the first IEEE conference held at ShanghaiTech University, which was founded in 2013. We are proud to welcome all participants on the brand-new campus (opened in Summer 2015) and hope that you will have a wonderful experience at ShanghaiTech, Shanghai and China. Shanghai is the most populous "city proper" in the world and of global importance, also with respect to science and research. China is the biggest and fastest growing robotics market worldwide and Shanghai is aiming to become a global center for robotics development and manufacturing. Unfortunately, China also has a great demand for effective disaster relief and safety technology, such that it is timely to finally host SSRR here. This year the conference had 55 submitted papers, with 39 being accepted after a rigorous peer-review process. Besides the technical sessions, the program also features four exciting plenary talks. On Wednesday, October 11, Sven Behnke will report on "Perception and Planning for Autonomous Mobile Robots in Complex Environments". Thursday's talk will be held by Tetsuya Kimura and it has the title "Standardization and Robot Innovation". On Friday, Satoshi Tadokoro will present on "ImPACT Tough Robotics Challenge Program for Disaster Response and Prevention". We are especially happy to also present a speaker from Industry. Shuo Yang from DJI Innovations will also talk on Friday about "The Present and Future of Search & Rescue Drones". Besides the plenary talks and technical sessions, we furthermore warmly invite you to our social program, consisting of a Welcome Reception, a Conference Banquet in the heart of Pudong, right next to the Oriental Pearl TV tower, an Awards Lunch and a Farewell Party. Lastly and most importantly, I would like to thank all the committee members, session chairs, reviewers, and authors; without their participation and help, this conference could not run successfully. Furthermore, I am really thankful for the help of the SIST staff members and student volunteers. I wish for everyone a pleasant and useful experience at SSRR 2017. Sören Schwertfeger General Chair SSRR 2017 ShanghaiTech University, Shanghai, China ## **Table of Contents** | Committee | 5 | |---------------------------|----| | Sponsors | 6 | | Local Information | 7 | | Social Activities | 8 | | Program at a Glance | 9 | | Plenary Talks | 10 | | Technical Sessions Oct 11 | 14 | | Technical Sessions Oct 12 | 17 | | Technical Sessions Oct 13 | 20 | | Author Index | 23 | | Keyword Index | 25 | | List of Reviewers | 26 | #### Committee #### **General Chair:** **Sören Schwertfeger**, ShanghaiTech University soerensch@shanghaitech.edu.cn #### **Program Chair:** Kazunori Ohno, Tohoku University #### **International Program Committee:** Brittany Duncan, University of Nebraska-Lincoln Gerald Steinbauer, Graz University of Technology **Shaojie Shen**, Hong Kong University of Science and Technology #### **Local Arrangements Committee:** Weidong Chen, Shanghai Jiao Tong University Hong Lu, Fudan University Xinyu Zhang, East China Normal University Jie Lu, ShanghaiTech University Boris Houska, ShanghaiTech University #### **Local Conference Secretary:** **Ying Xue,** ShanghaiTech University xueying@shanghaitech.edu.cn Yongxia Shen, ShanghaiTech University shenyx@shanghaitech.edu.cn ### **Sponsors** http://www.ieeeorg.org http://www.ieee-ras.org http://www.shanghaitech.edu.cn/eng http://star-center.shanghaitech.edu.cn #### **Local Information** SSRR 2017 is held in ShanghaiTech University, at the School of Information Science and Technology (SIST). The venue is located in the new campus in the Zhangjiang Hi-Tech park in Pudong, Shanghai. The address of the campus is: 393 Middle Huaxia Road, Pudong, Shanghai, 201210 上海市浦东新区华夏中路393号 邮编: 201210 All sessions take place in the SIST Auditorium. It is on the ground floor of the SIST building number 1, right inside the lobby (you can't miss it – there will be big SSRR 2017 advertisement). Please print the following taxi cards to show to your taxi driver: http://www.ssrr-conference.org/2017/SSRR2017_TaxiCard_ShanghaiTech.pdf http://www.ssrr-conference.org/2017/SSRR2017_TaxiCard_Parkyard.pdf The conference hotel is the Parkyard Hotel: http://www.parkyardhotelshanghai.com Phone: +86 021 6162 1168 Address: No.699 Bibo Road, Pudong New Area, Shanghai There will be a shuttle bus between the hotel and ShanghaiTech University. Arriving at Pudong International Airport you have three options to reach the hotel: - Take the Maglev Train (up to 430 km/h). Arriving at Longyang Road you will then take a taxi (maybe 10 minutes) to the hotel. - Take a taxi from the airport. Be sure not to follow anybody offering you "taxi" service (this would be an expensive limousine service) but to go to the marked taxi waiting area just outside the arrival hall. - Take the subway line number 2 to Zhangjiang High Technology Park station. #### **Social Activities** The **Welcome Reception** will be open between 18:00 and approx. 21:00 on Tuesday, Oct 11. It will be held at the Parkyard Hotel. You will be able to register for the conference. Drinks and a finger food will be served. The **Conference Banquet** will be held in the "Old Shanghai No. 8 Restaurant" right next to the famous Shanghai TV tower, in the center of Pudong, Shanghai. Buses will bring your from ShanghaiTech University and Parkyard Hotel to the restaurant and back – details will be announced on Oct 12. You will enjoy Chinese food and culture. Afterwards you can have the chance to do some sightseeing in Lujiazui, the heart of Pudong. Options are: - Visit the highest observation deck in the world (561m) in the Shanghai Tower (Open 8:30 – 22:00; tickets stop selling at 21:00 and are 200RMB) - Visit the Shanghai World Financial Center with a glass-bottom observation deck at 474m. (Open 8:00 23:00; tickets stop selling at 22:00 and are 180 RMB) - Visit the Oriental Pearl Radio and TV Tower right next to the restaurant, with an observation deck at 350 m. (Open 8:00 – 22:00; tickets stop selling at 21:00 and are 220 RMB) - Explore Lujiazui and walk along the river promenade. - Take the tourist tunnel to the other side of the river (PuXi) to explore the Bund and Nanjing Road. (Tunnel open 8:00 22:30; 50RMB) For your return you can take subway line number 2 from Lujiazui (or East Nanjing Lu if you are in PuXi) back to Zhangjiang Hi-Tech Park station (6 stations; 17 minutes; last train leaves around 23:10). The **Awards Lunch** will be held on October 13 in the faculty restaurant of ShanghaiTech University. The **Farewell Party** in the evening of October 13 will take place at Chantime Plaza, one subway stop from the Hotel (Jinke Road station). ## **Program at a Glance** The program is also available online at: https://ras.papercept.net/conferences/conferences/SSRR17/program/ | | Tue, Oct 10 | Wed, Oct 11 | Thu, Oct 12 | Fri, Oct 13 | |-------------------------|----------------------------|---|--|--| | 08:00 | | Registration | | | | 08:50 | | Opening | Registration | Registration | | 09:00
09:30 | | Keynote
Sven Behnke
9:00 - 10:00 | Keynote
Tetsuya Kimura
9:00 - 10:00 | Keynote
Satoshi Tadokoro
9:00 - 10:00 | | 10:00 | | Coffee Break | Coffee Break | Coffee Break | | 10:30
11:00
11:30 | | We3T1: Robotics and
Automation for Safety
and Security I
10:30 - 12:10 | Th8T1: Perception for
Navigation, Hazard
Detection, and Victim
Identification | Fr12T1: Mechanisms,
Mechatronics, and
Embedded Control | | | | 10:30 - 12:10 | 10:30 - 12:10 | 10:30 - 12:10 | | 12:10 | | Lunch (Cafeterias)
12:10 - 13:10 | Lunch (Cafeterias)
12:10 - 13:10 | Awards Lunch
at Faculty Restaurant | | 13:00 | | We4T1: SLAM in | Th9T1: Unmanned | 12:10 - 13:30 | | 13:30 | | Complex And/or
Extreme Environments | Ground, Aerial, and
Marine Vehicles I | Keynote | | 14:10 | | 13:10 - 14:30 | 13:10 - 14:30 | Shuo Yang
13:30 - 14:30 | | 14:30 | | Demo + Comp. + Coffee | | Fr14T1: Unmanned | | 15:00 | | Break
14:30 - 15:30 | Break
14:30 - 15:30 | Ground, Aerial, and
Marine Vehicles II | | 15:30 | | We5T1: Human-Robot
Interaction and | Th10T1: Robotics and | 14:30 - 15:50 | | 16:00 | | Interfaces
15:30 - 16:50 | Automation for Safety and Security II | Coffee Break | | 16:30 | | Coffee Break | 15:30 - 16:50 | Fr15T1: Autonomous | | 17:00 | Registration | Panel Discussion | | Search and Rescue | | s17:30 |
17:00 – 18:00 | 17:00 – 17:45 | | 16:10 – 17:50 | | 18:00 | | | | SSRR Farewell Party | | 18:30 | | | Dinner Panguet | 18:30 - 19:30 | | 19:00 | Registration & Welcome | | Dinner Banquet | (only finger food) | | 19:30 | Reception Conference Hotel | | Shuttle Bus Service | | | 20:00 | (Parkyard) | | | | | 20:30 | 18:00 - 21:00 | | | | | 21:00 | | | | | #### Plenary Talk I ## Perception and Planning for Autonomous Mobile Robots in Complex Environments Speaker: Sven Behnke Institute for Computer Science, Universität Bonn, Germany Date: Wednesday, October 11, 2017 Time: 9:00 – 10:00 #### **Abstract:** Mobile robots in complex environments, like rough terrain or inside buildings need to perceive their environment in 3D in order to act. We equipped autonomous ground vehicles and micro aerial vehicles with 3D laser scanners, cameras, and other sensors. The distance measurements are registered and aggregated in an efficient way in order to create 3D representations of the robot surroundings. By categorizing surfaces, detecting objects, and estimating their pose, these maps are enriched with semantics and segmented into meaningful parts. We developed efficient methods for semantic perception, e.g. using deep learning. Based on these percepts, navigation and manipulation plans are made. Our team demonstrated 3D navigation in challenging application domains: for ground robots in search & rescue and space exploration scenarios and for flying robots in indoor and outdoor inspection tasks. Our robots also performed challenging manipulation tasks, like the use of tools and the collection of objects with micro aerial vehicles. #### **Speaker Bio:** Sven Behnke received his MS degree in Computer Science (Dipl.-Inform.) in 1997 from Martin-Luther-Universität Halle-Wittenberg. In 2002, he obtained a PhD in Computer Science (Dr. rer. nat.) from Freie Universität Berlin. He spent the year 2003 as postdoctoral researcher at the International Computer Science Institute, Berkeley, CA. From 2004 to 2008, Professor Behnke headed the Humanoid Robots Group at Albert-Ludwigs-Universität Freiburg. Since April 2008, he is professor for Autonomous Intelligent Systems at the University of Bonn and director of the Institute of Computer Science VI. His research interests include cognitive robotics, computer vision, and machine learning. #### **Plenary Talk II** #### Standardization and Robot Innovation Speaker: Tetsuya Kimura Department of System Safety, Nagaoka University of Technology, Japan Date: Thursday, October 12, 2017 Time: 9:00 - 10:00 #### **Abstract:** In ISO/IEC Guide 2, standardization is defined as "activity of establishing, with regard to actual or potential problems, provisions for common and repeated use, aimed at the achievement of the optimum degree of order in a given context," or summary of "lessons learned." From this viewpoint, the standardization can be an effective tool to accelerate the utilization of innovative technology. In this talk, the effectiveness of the standardization for robot innovation is introduced by considering DHS-NIST-ASTM standard performance test method for the response robots and ISO 13482(safety standard for personal care robots). #### **Speaker Bio:** Tetsuya Kimura received Dr.of Eng. from Tokyo Institute of Technology related to nonlinear robust control of a pneumatic system in 1995. He was a research associate of Kobe University and Osaka Prefecture University and since 2001, he has been an associate professor of Nagaoka University of Technology. His research interest is the utilization of the response robots considering both technology and social system development. He is also working for several Japanese government projects, e.g., World Robot Summit and FUKUSIMA Robot Test Field, and standard development, e.g., personal care robot(ISO 13482) and consumer products(walking pole and riding gear). #### **Plenary Talk III** ## ImPACT Tough Robotics Challenge Program for Disaster Response and Prevention Speaker: Satoshi Tadokoro Graduate School of Information Sciences, Tohoku University, Japan Date: Friday, October 13, 2017 Time: 9:00 - 10:00 #### **Abstract:** ImPACT Tough Robotics Challenge Program (ImPACT-TRC) focuses on research into robust disaster robot technologies for accessibility, sensing & recognition, recovery, and environmental compatibility. Five types of robots, i.e. UAVs, construction robots, serpentine robots, legged robots and cyber rescue canine, are being developed with advanced visual, auditorial & haptic sensing, robust actuators, mechanisms & control, human interface, and robust wireless communication. A field evaluation meetings is held periodically for the milestones of R&D. It shows the applicable technologies to the users and industry to promote disruptive innovation in disaster response, recovery and preparedness as well as new field robot business. This plenary talk will present a part of its research results and products of this two years as well as application to real disaster. #### **Speaker Bio:** Satoshi Tadokoro graduated from the University of Tokyo in 1984. He was an associate professor in Kobe University in 1993-2005, and is a professor of Tohoku University since 2005, a vice dean in 2014, and a research professor since 2014. He is a president of International Rescue System Institute since 2002 and IEEE RAS President in 2016-2017. He served as a project manager of MEXT DDT Project on rescue robotics in 2002-2007 having contribution of more than 100 professors nationwide, and PI of NEDO projects related to disaster robotics. His team developed various rescue robots, two of which called Quince and Active Scope Camera are well-known because they were used in disasters such as in nuclear reactor buildings of the Fukushima-Daiichi Nuclear Power Plant Accident. He is a project manager of Japan Cabinet Office ImPACT Project in 2014-18. IEEE Fellow, RSJ Fellow, JSME Fellow, and SICE Fellow. #### **Plenary Talk IV** #### The Present and Future of Search & Rescue Drones Speaker: Shuo Yang DJI Innovations, Shenzhen, China Date: Friday, October 13, 2017 Time: 13:30 – 14:30 #### **Speaker Bio:** Shuo Yang is the Director of Intelligent Navigation Technologies at DJI. He obtained his B.Eng and M.Phil degrees from Hong Kong University of Science and Technology (HKUST). He is involved in developing flight control and navigation technologies for several DJI flagship products, such as the Inspire 1, Phantom 4 and Matrice 100 drones and the A3 flight controller. He has coauthored 4 academic papers and obtained near 10 US patents. Shuo is also leading an educational robotics competition project called RoboMaster at DJI. #### Robotics and Automation for Safety and Security I 10:30–10:50 We3T1.1 #### 10:50–11:10 We3T1.2 ## Formation Obstacle Avoidance using RRT and Constraint Based Programming #### <u>F. Båberg, P. Ögren</u> KTH Royal Institute of Technology - · Formation keeping in cluttered environment - Combination of CBP and RRT - Compared to RRT with Linear Interpolation - Fewer nodes and shorter time in scenarios with high obstacle densities ## Survey in Fukushima Daiichi NPS by Combination of Human and Remotely-Controlled Robot Tomoki Sakaue, Shin Yoshino, Koju Nishizawa, Kohei Takeda Tokyo Electric Power Company Holdings (TEPCO) #### Outline: 11:30-11:50 A small remotely-controlled robot and an overlook camera device were developed by TEPCO Research Institute for surveying water leakage in Fukushima Daiichi Nuclear Power Station. This robot system was deployed in Fukushima Daiichi going through several tests and a risk assessment for confirming its reliability. The survey was executed successfully by combination of human and the robot system in November 2015, and finally traces of water leakage were found. Appearance of the robot We3T1.4 11:10–11:30 We3T1.3 #### 11.10–11.50 WC511.5 # Robotic Bridge Statics Assessment Within Strategic Flood Evacuation Planning Using Low-Cost Sensors Maik Benndorf¹, Thomas Haenslemann¹, Maximilian Garsch², Norbert Gebbeken², Christian A. Mueller³, Tobias Fromm³, Tomasz Luczynski³ and Andreas Birk³ ¹University of Applied Sciences Mitweida, Germany ² University of the Bundeswehr, Germany ³Jacobs University Bremen, Germany ## On 3D Simulators for Multi-Robot Systems in ROS: MORSE or Gazebo? - Literature review of different ROS-compatible simulators for multi-robot systems. - Qualitative and quantitative analysis (such as CPU load, GPU load and real-time factor) between MORSE and Gazebo using a multi-robot patrolling case study. - ROS used as a middleware for both simulators. - Overall, MORSE performed better than Gazebo. 11:50–12:10 We3T1.5 #### Field Experiment Report for Exploration of Abandoned Lignite Mines with Teleinvestigation Robot System Hiroyasu Miura, Aichi Institute of Technology Ayaka Watanabe, Aichi Institute of Technology Masayuki Okugawa, Aichi Institute of Technology Masamitsu Kurisu, Tokyo Denki University Susumu Kurahashi, Aichi Institute of Technology #### **SLAM in Complex and/or Extreme Environments** 13:10–13:30 We4T1.1 ## 13:30–13:50 We4T1.2 #### 3D Registration of Aerial and Ground Robots for Disaster Response: An Evaluation of Features, Descriptors, and Transformation Estimation Abel Gawel¹, Renaud Dubé¹, Hartmut Surmann², Juan Nieto¹, Roland Siegwart¹, Cesar Cadena¹ ¹Autonomous Systems Lab, ETH Zurich, Switzerland ²Fraunhofer IAIAS / University of Applied Sciences Gelsenkirchen, Germany - Fusion of Heterogeneous robotic sensor data can be challenging in SaR scenarios. - We propose to use 3D feature descriptors to globally align aerial reconstructions and ground-robot LiDAR maps. - Several 3D registration techniques are evaluated in SaR indoor and outdoor scenarios #### SLAM auto-complete: completing a robot map using an emergency Malcolm Mielle, Martin Magnusson, Henrik Andreasson, and Achim J. Lilienthal MRO Lab AASS, Örebro University, Sweden - Robot exploration time can be quicken by using prior information. We
focus on emergency maps (EM). - A graph-SLAM formulation with information from both modalities is implemented. - The graph is optimized, fusing the EM and the robot map into one map. - The EM's inaccuracies in scale are corrected. We handle up to 70% of wrong correspondences between corners. 14:10-14:30 Robot map completed with an emergency map We4T1.4 13:50–14:10 We4T1.3 ## Robust SLAM system based on monocular vision and LiDAR for robotic urban search and rescue Xieyuanli Chen, Hui Zhang, Huimin Lu, Junhao Xiao, Qihang Qiu and Yi Li > College of Mechatronics and Automation, National University of Defense Technology, China - It is The first trial to use a monocular SLAM in the USAR on ground mobile robots, which can complete most USAR missions, including localization, mapping and object recognition using the same local visual feature. - A monocular and 2D LiDAR combined SLAM system is proposed to solve the problem of the scale drift and the unreadable map in monocular SLAM, as well as the problem that the robot pose cannot be tracked by the 2D LiDAR SLAM when the robot climbing stairs and ramps. The overview of the proposed SLAM system ### Evaluation of LIDAR and GPS based SLAM on Fire Disaster in Petrochemical Complexes Abu Ubaidah bin Shamsudin*, Naoki Mizuno*, Jun Fujita**, Kazunori Ohno*, Ryunosuke Hamada*, Thomas Westfechtel*, Satoshi Tadokoro* and Hisanori Amano*** "Graduate School of Information Sciences, Tohoku University, Japan "Mitsubishi Heavy Industries LTD., Nudear Plant Component Designing Department, Japan "National Research Institute of Fire and Disaster, Fire and Disaster Management Agency, Japan - We want to know if SLAM with interval heat cover protection can be used in fire disasters - We build simulator a fire disaster and evaluated the accuracy of the SLAM. - The average accuracy of GPS and LIDAR based SLAM was in the range 0.25-0.36m with sensor's heat cover protection interval; 1s open for measurement and 9 s covering for cooling. #### **Human-Robot Interaction and Interfaces** 15:30-15:50 We5T1.1 #### Robotic Teleoperation: Mediated and Supported by **Virtual Testbeds** Torben Cichon, Jürgen Roßmann Institute for Man-Machine Interaction (MMI), RWTH Aachen, Germany - Using a digital twin in a Virtual Testbed for training, support, prediction, and analysis before, after or during mission - · Abstraction for the user - Natural interaction and control - Intuitive Visualization - · Symbiosis of virtuality and 16:10-16:30 We5T1.3 #### **UAS-Rx Interface for Mission Planning, Fire** Tracking, Fire Ignition, and Real-Time Updating Evan Beachly, Carrick Detweiler, Sebastian Elbaum, and Brittany Duncan Department of Computer Science and Engineering, University of Nebraska-Lincoln, USA Dirac Twidwell Department of Agronomy and Horticulture, University of Nebraska-Lincoln, USA - · Describes the development and initial testing of an Unmanned Aerial System interface for prescribed fires - · This system allows fire experts to reach previously inaccessible terrain and better monitor current fire state - to update a simple fire model in real time outside Western, Nebraska of the fire results in a better projection of fire · Initial results indicate that allowing users Example from the prescribed fire model spread (top left), GoPro video (bottom left), FLIR video (bottom right), and updated model with manual updates of the fire position (top right) 15:50-16:10 We5T1.2 #### A Pre-offering View System for Teleoperators of Heavy Machines to Acquire Cognitive Maps Ryuya Sato, Mitsuhiro Kamezaki, Satoshi Niuchi, Shigeki Sugano, and Hiroyasu Iwata Waseda University - This study determined a view system for teleoperators before work based on knowledge in cognitive science. - · Although previous studies focus on only views during work and views were determined based on only their experiences. 16:30-16:50 We5T1.4 #### **Proposal of Simulation Platform for Robot Operations with Sound** Masaru Shimizu, Chukyo University Tomoichi Takahashi, Meijo University #### Perception for Navigation, Hazard Detection, and Victim Identification 10:30-10:50 Th8T1.1 #### 10:50-11:10 Th8T1.2 #### **Reliable Real-Time Change Detection and** Mapping for 3D LiDARs Lorenz Wellhausen, Renaud Dubé, Abel Roman Gawel, Roland Siegwart, Cesar Cadena Lerma Autonomous Systems Lab, ETH Zürich, Switzerland - · Changes in 3D maps when patrolling environment are of special interest - · Compute Mahalanobis Hausdorff distance as measure for change likelihood - Clusters of points are classified with Random Forest Classifier - · Changes are continuously mapped and reported online during a sortie commissioned powe nlant data set Tempered Point Clouds and OctoMaps: A Step Towards True 3D Temperature Measurement in Unknown Environments Björn Zeise and Bernardo Wagner - · Remotely measuring temperatures in unknown environments can be error-prone due to unknown surface emissivities Combining thermal images and viewing angle - information allows: - Classification of regarded material and Estimation of improved surface - temperature values Evaluation was done by using OctoMaps holding 40 temperature measurements per - cell (each taken at a different viewing angle) Distinction between metal and dielectric surface areas and extensive temperature improvement were demonstrated 11:30-11:50 11:10-11:30 Th8T1.3 Fusing of Radar, LiDAR and Thermal Information for Hazard **Detection in Low Visibility Environments** Paul Fritsche, Björn Zeise, Patrick Hemme and Bernardo Wagner Real Time Systems Group, Leibniz Universität Hannover, Germany - · Building maps of environments with changing visibility for search and rescue missions - · Detecting thermal hazards through fused radar, LiDAR and thermal information - · Experiments involving real fog 11:50-12:10 Th8T1.5 #### INTELLIGENT VEHICLE FOR SEARCH, **RESCUE AND TRANSPORTATION PURPOSES** Abdulla Al-Kaff, Francisco Miguel Moreno, Arturo de la Escalera and José María Armingol Intelligent Systems Lab - Universidad Carlos III de Madrid - The system is able to detect and classify the human bodies and the objects using low-cost depth sensor. - · Victims bodies are detected using SVM and HOG features. - · Moreover, a semi-autonomous reactive control is implemented; to control the position and the velocity of the UAV for safe approaching maneuvers to the detected objects. #### Vehicle Detection and Localization on Bird's Eye View **Elevation Images Using Convolutional Neural Network** Shang-Lin Yu 1, Thomas Westfechtel 2, ¹ National Cheng Kung University, Taiwan Ryunosuke Hamada², Kazunori Ohno², Satoshi Tadokoro² ² Tohoku University, Japan · Point cloud data of the LIDAR is transformed into - a 3 channel bird's eye view (BV) elevation image which allows us to utilize common RGB-based detection networks. - Due to the nature of the bird's eve view image detected vehicles are directly localized with their ground coordinates. - Our proposed method achieves an average precision of 87.9% for an intersection over union value of 0.5 and 75% of the detected cars are localized with an absolute error of below 0.2m Th8T1.4 Fig: Results of the vehicle ection on BV (lower) and ected to RGB (upper) #### Unmanned Ground, Aerial, and Marine Vehicles I 13:10-13:30 Th9T1.1 13:30-13:50 Th9T1.2 #### Visual Pose Stabilization of Tethered Small Unmanned Aerial System to Assist Drowning Victim Recovery #### A Decentralized Multi-Agent Unmanned Aerial System to Search, Pick Up, and Relocate Objects Rik Bähnemann, Dominik Schindler, Mina Kamel, Roland Siegwart, and Juan Nieto Autonomous Systems Lab, ETH Zürich, Switzerland - · A modular, decentralized, collision-free multiagent aerial search, pick up and delivery - · Image to position commands visual servoing - Electropermanent magnet gripper design - · Evaluation and deployment of the system in different Environments. - Second place MBZIRC 2017 in Challenge 3 and Grand Challenge 14:10-14:30 Public demonstration of our system voutu.be/sk0XZ01Pagw ETH zürich M al Éxitanomous Systems L Th9T1.4 13:50-14:10 Th9T1.3 #### **Competition Task Development for Response Robot Innovation in World Robot Summit** T.Kimura¹, M. Okugawa², K. Oogane³, Y. Ohtsubo⁴, M. Shimizu⁵, T. Takahashi⁶, and S. Tadokoro⁷ ¹Nagaoka Univ. of Tech., ²Aichi Inst. of Tech., ³Niigata Inst. of Tech., ⁴Kindai Univ., ⁵Chukyo Univ., ⁵Meijo Univ., ⁷Tohoku Univ., Japan - · Japanese government hosts a robot competition World Robot Summit in 2020 to promote robot innovation. - · The tasks of the disaster robotics category of WRS are introduced, - The consideration of robot innovation promotion with the WRS tasks is carried out. Figure. Plant Disaster Prevention Challenge Mission P4[Disaster Response] ### **Events for the Application of Measurement Science** ## to Evaluate Ground, Aerial, and Aquatic Robots Adam Jacoff, NIST Richard Candell, National Institute of Standards and Anthony Downs, NIST Hui-Min Huang, National Institute of Standards and Technology Kenneth Kimble, National Institute of Standards and Technology Kamel Saidi, National Institute of Standards and Technology Raymond Ka-Man Sheh, Curtin University Ann-Marie Virts, National Institute of Standards and Technology #### Robotics and Automation for Safety and Security II 15:30–15:50 Th10T1.1 #### 15:50–16:10 Th10T1.2 Autonomous Observation of Multiple USVs from UAV While Prioritizing Camera Tilt and Yaw Over UAV Motion Leela Krishna C. G., Mengdie Cao, Robin R. Murphy Department of Computer Science and Engineering, Texas A&M University, College Station, Texas 77843 #### An Investigation of Goal Assignment for a Heterogeneous Robotic Team Jason Gregory, Iain Brookshaw, Jonathan Fink, S.K. Gupta ARL, UMD, USC - Present a framework and quantitative metric for goal assignment strategies - Consider a team of 1 UGV and 3 UAVs in simulation - Propose 3 feasible policies - Consider real-world constraints including failure, battery life, and communications Prioritizing camera movements
increased the number of times each USV is visited (on an average by 6.2 times more). · Autonomous repositioning of the UAV at better situational awareness 16:30-16:50 regular intervals to observe USVs during a disaster scenario will provide the operator with It also reduced the percentage of the duration that the UAV is not observing any USV (on an average by 19.8\%). UAV Path (in Blue) With & Without Tilt, Yaw Th10T1.4 16:10–16:30 Th10T1.3 ## Visual Servoing for Teleoperation Using a Tethered UAV Xuesu Xiao, Jan Dufek, and Robin Murphy Department of Computer Science and Engineering, Texas A&M University, TX - Perception for teleoperation is usually limited by the robot's onboard camera. - Teleoperated visual assistant is used but causes problems, such as increased teamwork demand, miscommunication, and suboptimal view points. - An autonomous tethered UAV is used as visual assistant in this work - Visual servoing algorithm is developed to maintain a constant 6-DOF configuration to the teleoperation Point of Interest Visual Assistant Servoing the primary robot #### Paving Green Passage for Emergency Vehicle: Real-Time Motion Planning under the Connected and Automated Vehicles Environment Bai Li et al. College of Control Science and Engineering, Zhejiang University, China - Emergency vehicle clearance task is described as a multi-vehicle motion planning (MVMP) problem using connected and automated vehicles; - A multi-stage decentralized MVMP method is proposed; - Through dividing the nominal formulation into multiple stages, the online computation burdens are avoided, thereby achieving realtime computation capability. #### Mechanisms, Mechatronics, and Embedded Control 10:30–10:50 Fr12T1.1 10:50–11:10 Fr12T1.2 Inertia-based ICR Kinematic Model for Tracked Skid-Steer Robots Jorge L. Martínez, Jesús Morales, Anthony Mandow, Salvador Pedraza and Alfonso García-Cerezo Dpto. Ingeniería de Sistemas y Automática, Universidad de Málaga, Spain #### Position Estimation of Tethered Micro Unmanned Aerial Vehicle by Observing the Slack Tether Seiga Kiribayashi, Keiji Nagatani New Industry Creation Hatchery Center, Tohoku University, Japan Kaede Yakushigawa The graduate school of engineering, Tohoku University, Japan - To extend the operation time of a MUAV, the authors proposed a power-feeding tethered MUAV - A position estimation method for the MUAV by observing the slack is proposed. - To evaluate the method, the authors developed a prototype of a helipad with a tether winding mechanism for the tethered MUAN, and conducted indoor experiments. tracks is analyzed by means of dynamic simulations of a mobile robot moving on hard horizontal terrain A new kinematic model is proposed in terms The effect of inertial forces on the instantaneous centers of rotation (ICRs) of of three indices for sliding, eccentricity and steering efficiency that allows to estimate actual track ICR positions as a function of inertia measurements and track speeds Estimation of track ICR distributions 11:10–11:30 Fr12T1.3 #### WAREC-1 - A Four-Limbed Robot Having High Locomotion Ability with Versatility in Locomotion Styles Kenji Hashimoto, Shunsuke Kimura, Nobuaki Sakai, Shinya Hamamoto, Ayanori Koizumi, Xiao Sun, Takashi Matsuzawa, Tomotaka Teramachi, Yuki Yoshida, Asaki Imai, Kengo Kumagai, Takanobu Matsubara, Koki Yamaguchi, Gan Ma and Atsuo Takanishi Waseda University, Japan - A four-limbed robot having various locomotion styles such as bipedal/quadrupedal walking, crawling and ladder climbing - WAREC-1 has commonly structured limbs with 28-DoFs in total with 7-DoFs in each limb - The robot is 1,690 mm tall when standing on two limbs and weighs 155 kg - The robot realized vertical ladder climbing and moving on rubble by creeping on its stomach 11:50–12:10 Fr12T1.5 # A Preliminary Study on a Groping Framework without External Sensors to Recognize Near-Environmental Situation for Risk-Tolerance Disaster Response Robots Kui Chen¹, Mitsuhiro Kamezaki², Takahiro Katano¹, Taisei Kaneko¹, Kohga Azuma¹, Yusuke Uehara¹, Tatsuzo Ishida², Masatoshi Seki³, Ken Ichiryu³, Shigeki Sugano¹ Modern Mechanical Engineering, Waseda University 2. Research Institute for Science and Engineering (RISE), Waseda University 3. Kikuchi Seisakusho Co., Ltd. - Arms actively touch the environment, record the contact information, then re-construct a three-dimensional local map - This method can recognize different terrains and shapes of objects without using external sensors Four-arm four-flipper crawler robot OCTOPUS 11:30–11:50 Fr12T1.4 #### **Design of Special End Effectors for First Aid Robot** Taesang Park, DGIST Choong-Pyo Jeong, DGIST jaeseong Lee, DGIST Seonghun Lee, DGIST Ikho Lee, Daegu Gyongbuk Institute of Science & Technology HYEON JUNG KIM, DGIST Jinung An, DGIST Dongwon Yun, Daegu Gyeongbuk Institute of Science and Technology (DGIST) #### **Unmanned Ground, Aerial, and Marine Vehicles II** 14:30–14:50 Fr14T1.1 **ICES** Monocular Visual-Inertial State Estimation on 3D Large-Scale Scenes for UAVs Navigation Junqin Su¹, Yunming Ye¹, Xutao Li¹, Yan Li² Harbin Institute of Technology ²School of Computer Engineering Shenzhen Polytechnic The 15th IEEE International Symposium on Safety, Security, and Rescue Robotics 2017 15:10–15:30 Fr14T1.3 ## Vision-based Autonomous Quadrotor Landing on a Moving Platform D. Falanga, A. Zanchettin, A. Simovic, J. Delmerico, and D. Scaramuzza Robotics and Perception Group, University of Zurich, Switzerland #### Letting quadrotors autonomously land on moving platforms through: - Onboard, vision-based state estimation and control - Platform detection and tracking - Real-time trajectory generation to follow the moving target 14:50–15:10 Fr14T1.2 #### A Review on Cybersecurity Vulnerabilities for Unmanned Aerial Vehicles Leela Krishna C. G. and Robin R. Murphy Department of Computer Science and Engineering, Texas A&M University, College Station, Texas 77843 - 6 attacks on GPS, 2 attacks on the control communications stream and 2 attacks on data communications stream. - UAV-related research to counter cybersecurity threats focuses on GPS Jamming and Spoofing, but ignores attacks on the controls and data communications stream. - Operator can see a UAV flying off course due to a control stream attack but has no way of detecting a video replay attack (substitution of a video feed). UAV Attack Taxonomy 15:30–15:50 Fr14T1.4* ## Case Study and Analysis of Small Unmanned Aerial Vehicle Operations for Post-Disaster Assessment Juan Augusto Paredes, Pontificia Universidad Católica del Perú Carlos Saito, Pontificia Universidad Catolica del Peru Julio Ramírez, PUCP Monica Abarca, Pontificia Universidad Catolica del Peru Andres Flores, Pontificia Universidad Catolica del Peru #### **Autonomous Search and Rescue** 16:10–16:30 Fr15T1.1 ## Optimizing Autonomous Surveillance Route Solutions from Minimal Human-Robot Interaction - Goal: Maximize the probability of detecting a target while traversing an environment subject to resource constraints that make full coverage infeasible. - Observation: Human teammate often possesses essential knowledge of the mission, environment, or other agents. - Solution: Human-robot Autonomous Route Planning (HARP) system that explores the space of surveillance solutions to maximize task-performance using information provided through minimal interactions with humans. - Outcome: Experimental results have shown that with minimal interaction we can successfully leverage human knowledge to create more successful surveillance routes under resource constraints. 16:30–16:50 Fr15T1.2 ## Continuously Informed Heuristic A* - Optimal path retrieval inside an unknown environment Athanasios Kapoutsis, Christina Malliou, Savvas Chatzichristofis and Elias Kosmatopoulos ECE, DUTH, Greece - Optimal path retrieval between two points inside an unknown environment, utilizing a physical robot-scouter. - Proposed CIA* inherits the A* optimality and efficiency guarantees. - Exploits the learnt formation of the obstacles to revise the robot's searching plan. - Achieves an average enhancement of 40% over the typical A*, on the cells that have to be visited. 17:10-17:30 Comparison between A and CIA* Fr15T1.4 16:50–17:10 Fr15T1.3 #### Crawling Gait Generation Method for Four-limbed Robot Based on Normalized Energy Stability Margin Takashi Matsuzawa, Kenji Hashimoto, Xiao Sun, Tomotaka Teramachi, Shunsuke Kimura, Nobuaki Sakai, Yuki Yoshida, Asaki Imai, Kengo Kumagai, Takanobu Matsubara, Koki Yamaguchi, Tan Wei Xin and Atsuo Takanishi Waseda University, Tokyo, Japan - Crawling motion consists of limb-stance phase and torso-stance phase. - Crawling gait generation method is based on normalized energy stability (NESM) margin of the torso support area. - The method can reduce the possibility of collision between the feet and the ground caused by the torso rolling. - It is confirmed that proposed method contributes to improvement of stability during crawling on rough terrain. Overview of crawling gait generation method #### Collaborative Air-Ground Target Searching in Complex Environments <u>Changsheng Shen, Yuanzhao Zhang, Zimo Li,</u> <u>Fei Gao and Shaojie Shen</u> Hong Kong University of Science and Technology - · EKF-based robot pose estimation. - Dynamic obstacle avoidance for UGV with online trajectory generation. - Fully autonomous navigation in previously unknown environments. 1191 • Flexibility of being easily modified into distributed EKF. 17:30–17:50 Fr15T1.5 ## Safe Navigation in Dynamic, Unknown, Continuous, and Cluttered Environments ## Mike D'Arcy, Pooyan Fazli, and Dan Simon Cleveland State University - Navigate safely around static and moving obstacles - New samping-based local planner (ProbLP) + DRRT global planner - Probability distribution to bias trajectory sampling - 77% less collisions than the baseline local planner #### SSRR 2017 Author Index | | & | | |
--|--------|--|--| | Łuczyński, Tomasz | | We3T1.3 | 13 | | , | Α | | | | Abarca, Monica | | Fr14T1.4 | * | | Al-Kaff, Abdulla | | Th8T1.5 | 110 | | Amano, Hisanori | | We4T1.4 | 48 | | An, Jinung | | | 179 | | Andreasson, Henrik | | | 35 | | Armingol, Jose | | | 110 | | Azuma, Kohga | | Fr12T1.5 | <u> 181</u> | | | В | | | | Baberg, Fredrik | | | 1 | | Bähnemann, Rik | | | 123 | | Beachly, Evan | | | 67 | | Behnke, Sven | | | | | Benndorf, Maik | | | 13 | | Birk, Andreas | | | 13 | | Brookshaw, lain | | | 133 | | | | | 07 | | Cadena Lerma, Cesar | | | 27 | | Candall Dishard | | | 81
131 | | Candell, Richard | | | 141 | | Cao, Mengdie
Chatzichristofis, Savvas | | | 216 | | Chen, Kui | | | 181 | | Chen, Xieyuanli | | | 41 | | Cichon, Torben | | | 55 | | Couceiro, Micael | | | 19 | | Coucono, Micaoi | D | | 10 | | D'Arcy, Michael | | Fr15T1 5 | 238 | | de la Escalera, Arturo | | | 110 | | Delmerico, Jeffrey | | | 200 | | Detweiler, Carrick | | | 67 | | Downs, Anthony | | | 131 | | Dubé, Renaud | | | 27 | | | | Th8T1.1 | 81 | | Dufek, Jan | | Th9T1.1 | 116 | | | | | | | | | | 147 | | Duncan, Brittany | | | 147
67 | | Duncan, Brittany | E | We5T1.3 | 67 | | Duncan, Brittany | E | We5T1.3 | | | Duncan, Brittany Elbaum, Sebastian | E | We5T1.3 | 67 | | Elbaum, Sebastian | E
F | We5T1.3We5T1.3 | 67 | | Elbaum, Sebastian Falanga, Davide Fazli, Pooyan | E
F | We5T1.3We5T1.3Fr14T1.3Fr15T1.5 | 67
67
200
238 | | Elbaum, Sebastian Falanga, Davide Fazli, Pooyan Fink, Jonathan | F | We5T1.3We5T1.3Fr14T1.3Fr15T1.5Th10T1.1 | 67
67
200
238
133 | | Elbaum, Sebastian Falanga, Davide Fazli, Pooyan Fink, Jonathan | E
F | We5T1.3We5T1.3Fr14T1.3Fr15T1.5Th10T1.1Fr15T1.1 | 67
67
200
238 | | Elbaum, Sebastian Falanga, Davide Fazli, Pooyan Fink, Jonathan Flores, Andres | F | | 67
67
200
238
133
208 | | Elbaum, Sebastian Falanga, Davide Fazli, Pooyan Fink, Jonathan Flores, Andres Fritsche, Paul | F | | 67
67
200
238
133
208
* | | Elbaum, Sebastian Falanga, Davide Fazli, Pooyan Fink, Jonathan Flores, Andres Fritsche, Paul Fromm, Tobias | F | | 67
67
200
238
133
208
*
96
13 | | Elbaum, Sebastian Falanga, Davide Fazli, Pooyan Fink, Jonathan Flores, Andres Fritsche, Paul | F | | 67
67
200
238
133
208
* | | Elbaum, Sebastian Falanga, Davide Fazli, Pooyan Fink, Jonathan Flores, Andres Fritsche, Paul Fromm, Tobias Fujita, Jun | F | | 67
67
200
238
133
208
*
96
13 | | Elbaum, Sebastian Falanga, Davide Fazli, Pooyan Fink, Jonathan Flores, Andres Fritsche, Paul Fromm, Tobias | E
F | | 67
200
238
133
208
*
96
13
48 | | Elbaum, Sebastian Falanga, Davide Fazli, Pooyan Fink, Jonathan Flores, Andres Fritsche, Paul Fromm, Tobias Fujita, Jun Gao, Fei | E
F | | 67
200
238
133
208
*
96
13
48 | | Elbaum, Sebastian Falanga, Davide Fazli, Pooyan Fink, Jonathan Flores, Andres Fritsche, Paul Fromm, Tobias Fujita, Jun Gao, Fei García-Cerezo, Alfonso | F G | | 67
200
238
133
208
*
96
13
48
230
166 | | Duncan, Brittany Elbaum, Sebastian Falanga, Davide Fazli, Pooyan Fink, Jonathan Flores, Andres Fritsche, Paul Fromm, Tobias Fujita, Jun Gao, Fei García-Cerezo, Alfonso Garsch, Maximilian | F G | | 67
200
238
133
208
*
96
13
48
230
166
13
27
81 | | Duncan, Brittany Elbaum, Sebastian Falanga, Davide Fazli, Pooyan Fink, Jonathan Flores, Andres Fritsche, Paul Fromm, Tobias Fujita, Jun Gao, Fei García-Cerezo, Alfonso Garsch, Maximilian Gawel, Abel Roman Ge, Yuming | F G | | 67
200
238
133
208
*
96
13
48
230
166
13
27 | | Duncan, Brittany Elbaum, Sebastian Falanga, Davide Fazli, Pooyan Fink, Jonathan Flores, Andres Fritsche, Paul Fromm, Tobias Fujita, Jun Gao, Fei. García-Cerezo, Alfonso Garsch, Maximilian Gawel, Abel Roman Ge, Yuming Gebbeken, Norbert | F | | 67
200
238
133
208
*
96
13
48
230
166
13
27
81
153
13 | | Duncan, Brittany Elbaum, Sebastian Falanga, Davide Fazli, Pooyan Fink, Jonathan Flores, Andres Fritsche, Paul Fromm, Tobias Fujita, Jun Gao, Fei. García-Cerezo, Alfonso Garsch, Maximilian Gawel, Abel Roman Ge, Yuming Gebbeken, Norbert Gottumukkala, Leela Krishna C | F | | 67
200
238
133
208
*
96
13
48
230
166
13
27
81
153
13
141 | | Duncan, Brittany Elbaum, Sebastian Falanga, Davide Fazli, Pooyan Fink, Jonathan Flores, Andres Fritsche, Paul Fromm, Tobias Fujita, Jun Gao, Fei García-Cerezo, Alfonso Garsch, Maximilian Gawel, Abel Roman Ge, Yuming Gebbeken, Norbert Gottumukkala, Leela Krishna C | F G | | 67
200
238
133
208
*
96
13
48
230
166
13
27
81
153
13
141
194 | | Duncan, Brittany Elbaum, Sebastian Falanga, Davide Fazli, Pooyan Fink, Jonathan Flores, Andres Fritsche, Paul Fromm, Tobias Fujita, Jun Gao, Fei García-Cerezo, Alfonso Garsch, Maximilian Gawel, Abel Roman Ge, Yuming Gebbeken, Norbert Gottumukkala, Leela Krishna C Gregory, Jason M | F | | 67
200
238
133
208
*
96
13
48
230
166
13
27
81
153
13
141
194
133 | | Duncan, Brittany Elbaum, Sebastian Falanga, Davide Fazli, Pooyan Fink, Jonathan Flores, Andres Fritsche, Paul Fromm, Tobias Fujita, Jun Gao, Fei García-Cerezo, Alfonso Garsch, Maximilian Gawel, Abel Roman Ge, Yuming Gebbeken, Norbert Gottumukkala, Leela Krishna C | F G | | 67
200
238
133
208
*
96
13
48
230
166
13
27
81
153
141
194 | | Elbaum, Sebastian Falanga, Davide Fazli, Pooyan Fink, Jonathan Flores, Andres Fritsche, Paul Fromm, Tobias Fujita, Jun Gao, Fei García-Cerezo, Alfonso Garsch, Maximilian Gawel, Abel Roman Ge, Yuming Gebbeken, Norbert Gottumukkala, Leela Krishna C Gregory, Jason M. Gupta, Satyandra K. | E
F | | 67
200
238
133
208
*
96
13
48
230
166
13
27
81
153
13
141
194
133
133 | | Duncan, Brittany Elbaum, Sebastian Falanga, Davide Fazli, Pooyan Fink, Jonathan Flores, Andres Fritsche, Paul Fromm, Tobias Fujita, Jun Gao, Fei García-Cerezo, Alfonso Garsch, Maximilian Gawel, Abel Roman Ge, Yuming Gebbeken, Norbert Gottumukkala, Leela Krishna C Gregory, Jason M Gupta, Satyandra K Haenselmann, Thomas | E
F | | 67
200
238
133
208
*
96
13
48
230
166
13
27
81
153
13
141
194
133
133 | | Elbaum, Sebastian Falanga, Davide Fazli, Pooyan Fink, Jonathan Flores, Andres Fritsche, Paul Fromm, Tobias Fujita, Jun Gao, Fei García-Cerezo, Alfonso Garsch, Maximilian Gawel, Abel Roman Ge, Yuming Gebbeken, Norbert Gottumukkala, Leela Krishna C Gregory, Jason M Gupta, Satyandra K Haenselmann, Thomas Hamada, Ryunosuke | F G H | | 67
200
238
133
208
*
96
13
48
230
166
13
27
81
153
13
141
194
133
133
134
48 | | Elbaum, Sebastian Falanga, Davide Fazli, Pooyan Fink, Jonathan Flores, Andres Fritsche, Paul Fromm, Tobias Fujita, Jun Gao, Fei García-Cerezo, Alfonso Garsch, Maximilian Gawel, Abel Roman Ge, Yuming Gebbeken, Norbert Gottumukkala, Leela Krishna C Gregory, Jason M Gupta, Satyandra K Haenselmann, Thomas Hamada, Ryunosuke | E
F | | 67
200
238
133
208
*
96
13
48
230
166
13
27
81
153
13
141
194
133
133
48
102 | | Elbaum, Sebastian Falanga, Davide Fazli, Pooyan Fink, Jonathan Flores, Andres Fritsche, Paul Fromm, Tobias Fujita, Jun Gao, Fei García-Cerezo, Alfonso Garsch, Maximilian Gawel, Abel Roman Ge, Yuming Gebbeken, Norbert Gottumukkala, Leela Krishna C Gregory, Jason M Gupta, Satyandra K Haenselmann, Thomas Hamada, Ryunosuke Hamamoto, Shinya | E F | | 67
200
238
133
208
*
96
13
48
230
166
13
27
81
153
13
141
194
133
133
141
194
133
133
141
194
133
134
135
137
137
147
148
148
148
148
148
148
148
148 | | Duncan, Brittany Elbaum, Sebastian Falanga, Davide Fazli, Pooyan Fink, Jonathan Flores, Andres Fritsche, Paul Fromm, Tobias Fujita, Jun Gao, Fei. García-Cerezo, Alfonso Garsch, Maximilian Gawel, Abel Roman Ge, Yuming Gebbeken, Norbert Gottumukkala, Leela Krishna C Gregory, Jason M Gupta, Satyandra K Haenselmann, Thomas Hamada, Ryunosuke Hamamoto, Shinya Han, Fei. | F G H | | 67
200
238
133
208
*
96
13
48
230
166
13
27
81
153
13
141
194
133
133
131
141
194
133
131
141
194
132
133
134
134
135
136
137
137
137
137
137
137
137
137 | | Duncan, Brittany Elbaum, Sebastian Falanga, Davide Fazli, Pooyan Fink, Jonathan Flores, Andres Fritsche, Paul Fromm, Tobias Fujita, Jun Gao, Fei. García-Cerezo, Alfonso Garsch, Maximilian Gawel, Abel Roman Ge, Yuming Gebbeken, Norbert Gottumukkala, Leela Krishna C Gregory, Jason M. Gupta, Satyandra K. Haenselmann, Thomas Hamada, Ryunosuke Hamamoto,
Shinya Han, Fei. Hashimoto, Kenji | E F | | 67
200
238
133
208
*
96
13
48
230
166
13
27
81
153
13
141
194
133
133
133
141
194
133
131
141
194
132
133
134
134
135
137
137
137
137
137
137
137
137 | | Duncan, Brittany Elbaum, Sebastian Falanga, Davide Fazli, Pooyan Fink, Jonathan Flores, Andres Fritsche, Paul Fromm, Tobias Fujita, Jun Gao, Fei. García-Cerezo, Alfonso Garsch, Maximilian Gawel, Abel Roman Ge, Yuming Gebbeken, Norbert Gottumukkala, Leela Krishna C Gregory, Jason M. Gupta, Satyandra K. Haenselmann, Thomas Hamada, Ryunosuke Hamamoto, Shinya Han, Fei. Hashimoto, Kenji | E
F | | 67
200
238
133
208
*
96
13
48
230
166
13
27
81
133
141
194
133
133
133
48
102
172
208
172
208
172
223 | | Elbaum, Sebastian Falanga, Davide Fazli, Pooyan Fink, Jonathan Flores, Andres Fritsche, Paul Fromm, Tobias Fujita, Jun Gao, Fei García-Cerezo, Alfonso Garsch, Maximilian Gawel, Abel Roman Ge, Yuming Gebbeken, Norbert Gottumukkala, Leela Krishna C Gregory, Jason M Gupta, Satyandra K Haenselmann, Thomas Hamada, Ryunosuke Hamamoto, Shinya Han, Fei Hashimoto, Kenji Hemme, Patrick | F G H | | 67
200
238
133
208
*
96
13
48
230
166
13
27
81
153
13
141
194
133
133
131
141
194
133
131
131
141
194
132
133
134
134
134
135
137
137
137
137
137
137
137
137 | | Elbaum, Sebastian Falanga, Davide Fazli, Pooyan Fink, Jonathan Flores, Andres Fritsche, Paul Fromm, Tobias Fujita, Jun Gao, Fei García-Cerezo, Alfonso Garsch, Maximilian Gawel, Abel Roman Ge, Yuming Gebbeken, Norbert Gottumukkala, Leela Krishna C Gregory, Jason M Gupta, Satyandra K Haenselmann, Thomas Hamada, Ryunosuke Hamamoto, Shinya Han, Fei Hashimoto, Kenji Hemme, Patrick Hong, Liu | F G H | | 67
200
238
133
208
*
96
13
48
230
166
13
27
81
153
13
141
194
133
133
133
48
102
172
208
172
208
172
208
172
208
172
208
172
208
172
208
172
208
172
208
172
208
172
208
172
208
172
208
172
208
172
208
172
208
172
208
208
208
208
208
208
208
20 | | Elbaum, Sebastian Falanga, Davide Fazli, Pooyan Fink, Jonathan Flores, Andres Fritsche, Paul Fromm, Tobias Fujita, Jun Gao, Fei García-Cerezo, Alfonso Garsch, Maximilian Gawel, Abel Roman Ge, Yuming Gebbeken, Norbert Gottumukkala, Leela Krishna C Gregory, Jason M Gupta, Satyandra K Haenselmann, Thomas Hamada, Ryunosuke Hamamoto, Shinya Han, Fei Hashimoto, Kenji Hemme, Patrick | F G H | | 67
200
238
133
208
*
96
13
48
230
166
13
27
81
153
13
141
194
133
133
133
148
102
172
208
172
208
172
208
172
208
172
209
172
209
172
209
173
174
175
175
175
175
175
175
175
175 | | Elbaum, Sebastian Falanga, Davide Fazli, Pooyan Fink, Jonathan Flores, Andres Fritsche, Paul Fromm, Tobias Fujita, Jun Gao, Fei García-Cerezo, Alfonso Garsch, Maximilian Gawel, Abel Roman Ge, Yuming Gebbeken, Norbert Gottumukkala, Leela Krishna C Gregory, Jason M Gupta, Satyandra K Haenselmann, Thomas Hamada, Ryunosuke Hamamoto, Shinya Han, Fei Hashimoto, Kenji Hemme, Patrick Hong, Liu | F G H | | 67
200
238
133
208
*
96
13
48
230
166
13
27
81
153
13
141
194
133
133
133
148
102
172
208
172
208
172
208
172
208
172
209
172
209
172
209
173
174
175
175
175
175
175
175
175
175 | | | | 223 | |--|---|---| | Ishida, Tatsuzo | | 181 | | Iwata, Hiroyasu | We511.2 | 61 | | J | TLOTA A | 404 | | Jacoff, Adam | | 131 | | Jeong, Choong-Pyo | | 179 | | Ji, Ce | | 153
153 | | Jia, NingK | 1111011.4 | 153 | | Kamel, Mina | ThOT1 2 | 123 | | Kamezaki, Mitsuhiro | | 61 | | Transcari, micanio | | 181 | | Kaneko, Taisei | | 181 | | Kapoutsis, Athanasios | Fr15T1.2 | 216 | | Katano, Takahiro | Fr12T1.5 | 181 | | Ken, Ichiryu | Fr12T1.5 | 181 | | KIM, HYEON JUNG | Fr12T1.4 | 179 | | Kimble, Kenneth | | 131 | | Kimura, Shunsuke | | 172 | | | | 223 | | Kimura, Tetsuya | | 400 | | Visibayashi Caisa | | 129 | | Kiribayashi, Seiga | | 159
172 | | Koizumi, Ayanori | | 216 | | Kumagai, Kengo | | 172 | | Kumagai, Kengo | | 223 | | Kurahashi, Susumu | | 25 | | Kurisu, Masamitsu | | 25 | | L | | | | Lee, Ikho | Fr12T1.4 | 179 | | Lee, jaeseong | | 179 | | Lee, Seonghun | Fr12T1.4 | 179 | | Li, Bai | Th10T1.4 | 153 | | Li, Xutao | | 187 | | Li, Yan | | 187 | | Li, Yi | | 41 | | Li, Zimo | | 230 | | Lilienthal, Achim J | | 35 | | L. L | \\/a\T1 2 | | | Lu, Huimin | We4T1.3 | 41 | | M | | | | MA, Gan | Fr12T1.3 | 172 | | MA, Gan Magnusson, Martin | Fr12T1.3
We4T1.2 | 172
35 | | MA, Gan | Fr12T1.3
We4T1.2
Fr15T1.2 | 172
35
216 | | MA, Gan Magnusson, Martin | Fr12T1.3
We4T1.2
Fr15T1.2
Fr12T1.2 | 172
35
216 | | MA, Gan | Fr12T1.3We4T1.2Fr15T1.2Fr12T1.2Fr12T1.2 | 172
35
216
166 | | MA, Gan | Fr12T1.3 We4T1.2 Fr15T1.2 Fr12T1.2 Fr12T1.2 Fr12T1.3 | 172
35
216
166
166
172 | | MA, Gan | Fr12T1.3 We4T1.2 Fr15T1.2 Fr12T1.2 Fr12T1.2 Fr12T1.3 Fr15T1.3 Fr15T1.3 | 172
35
216
166
166
172
223 | | MA, Gan Magnusson, Martin Malliou, Christina Mandow, Anthony Martinez, Jorge L Matsubara, Takanobu Matsuzawa, Takashi | Fr12T1.3 We4T1.2 Fr15T1.2 Fr12T1.2 Fr12T1.2 Fr12T1.3 Fr15T1.3 Fr15T1.3 Fr15T1.3 | 172
35
216
166
166
172
223
172
223 | | MA, Gan | Fr12T1.3 We4T1.2 Fr15T1.2 Fr12T1.2 Fr12T1.2 Fr12T1.3 Fr15T1.3 Fr15T1.3 Fr15T1.3 Th10T1.4 | 172
35
216
166
166
172
223
172
223
153 | | MA, Gan | Fr12T1.3 We4T1.2 Fr15T1.2 Fr12T1.2 Fr12T1.2 Fr12T1.3 Fr15T1.3 Fr15T1.3 Fr15T1.3 Th10T1.4 We4T1.2 | 172
35
216
166
166
172
223
172
223
153
35 | | MMA, Gan | Fr12T1.3We4T1.2Fr15T1.2Fr12T1.2Fr12T1.3Fr15T1.3Fr15T1.3Fr15T1.3Fr15T1.3Fr15T1.3Ve4T1.2We4T1.2We3T1.5 | 172
35
216
166
166
172
223
172
223
153
35
25 | | MMA, Gan | Fr12T1.3 We4T1.2 Fr15T1.2 Fr12T1.2 Fr12T1.2 Fr12T1.3 Fr15T1.3 Fr15T1.3 Fr15T1.3 We4T1.4 We4T1.2 We4T1.4 | 172
35
216
166
166
172
223
172
223
153
35
25
48 | | MMA, Gan | Fr12T1.3 We4T1.2 Fr15T1.2 Fr12T1.2 Fr12T1.3 Fr15T1.3 Fr15T1.3 Fr15T1.3 Me4T1.4 We4T1.2 We4T1.4 Fr12T1.2 | 172
35
216
166
166
172
223
172
223
153
35
25
48 | | MA, Gan | Fr12T1.3 We4T1.2 Fr15T1.2 Fr12T1.2 Fr12T1.3 Fr15T1.3 Fr15T1.3 Fr15T1.3 Me4T1.4 We4T1.2 We3T1.5 We4T1.4 Fr12T1.2 Th8T1.5 | 172
35
216
166
166
172
223
172
223
153
35
25
48
166
110 | | MA, Gan | Fr12T1.3 We4T1.2 Fr15T1.2 Fr12T1.2 Fr12T1.3 Fr15T1.3 Fr15T1.3 Fr15T1.3 Me4T1.4 We4T1.2 We3T1.5 We4T1.4 Fr12T1.2 Th8T1.5 We3T1.3 | 172
35
216
166
166
172
223
172
223
153
35
25
48
166
110 | | MA, Gan Magnusson, Martin Malliou, Christina Mandow, Anthony Martinez, Jorge L Matsubara, Takanobu Matsuzawa, Takashi Meng, Wei Mielle, Malcolm Miura, Hiroyasu Mizuno, Naoki Morales, Jesús Moreno, Francisco Miguel Mueller, Christian Atanas Murphy, Robin | Fr12T1.3 We4T1.2 Fr15T1.2 Fr12T1.2 Fr12T1.2 Fr12T1.3 Fr15T1.3 Fr15T1.3 Th10T1.4 We4T1.2 We3T1.5 We4T1.4 Fr12T1.2 Th8T1.5 We3T1.3 Th9T1.1 | 172
35
216
166
166
172
223
172
223
153
355
25
48
166
110
13 | | MA, Gan | Fr12T1.3 We4T1.2 Fr15T1.2 Fr12T1.2 Fr12T1.2 Fr12T1.3 Fr15T1.3 Fr15T1.3 Tr15T1.3 Th10T1.4 We4T1.2 We3T1.5 We4T1.2 Th8T1.5 We3T1.3 Th9T1.1 Th10T1.2 | 172
35
216
166
166
172
223
172
223
153
355
25
48
166
110 | | MA, Gan | Fr12T1.3 We4T1.2 Fr15T1.2 Fr12T1.2 Fr12T1.3 Fr12T1.3 Fr15T1.3 Fr15T1.3 Th10T1.4 We4T1.2 We3T1.5 We4T1.2 Th8T1.5 We3T1.5 Th9T1.1 Th10T1.2 Th10T1.2 | 172
35
216
166
166
172
223
172
223
153
35
25
48
166
110
13 | | MA, Gan Magnusson, Martin Malliou, Christina Mandow, Anthony Martinez, Jorge L Matsubara, Takanobu Matsuzawa, Takashi Meng, Wei Mielle, Malcolm Miura, Hiroyasu Mizuno, Naoki Morales, Jesús Moreno, Francisco Miguel Mueller, Christian Atanas Murphy, Robin | Fr12T1.3 We4T1.2 Fr15T1.2 Fr12T1.2 Fr12T1.3 Fr12T1.3 Fr15T1.3 Fr15T1.3 Th10T1.4 We4T1.2 We3T1.5 We4T1.2 Th8T1.5 We3T1.5 Th9T1.1 Th10T1.2 Th10T1.2 | 172
35
216
166
166
172
223
172
223
153
35
25
48
166
110
13
116
141 | | MA, Gan | Fr12T1.3 We4T1.2 Fr15T1.2 Fr12T1.2 Fr12T1.3 Fr12T1.3 Fr15T1.3 Fr15T1.3 Th10T1.4 We4T1.2 We3T1.5 We4T1.4 Fr12T1.2 Th8T1.5 We3T1.3 Th9T1.1 Th10T1.2 Th10T1.2 Th10T1.2 Th10T1.2 Th10T1.2 | 172
35
216
166
166
172
223
173
25
48
166
110
13
116
141
147
194 | | MA, Gan | Fr12T1.3
We4T1.2 Fr15T1.2 Fr12T1.2 Fr12T1.2 Fr12T1.3 Fr15T1.3 Fr15T1.3 Fr15T1.3 Fr15T1.3 Me4T1.4 We4T1.2 We3T1.5 We4T1.4 Fr12T1.2 Th8T1.5 We3T1.3 Th9T1.1 Th10T1.2 Th10T1.2 Th10T1.3 Fr14T1.2 Fr12T1.1 We4T1.1 | 172
35
216
166
166
172
223
173
25
48
166
110
13
116
141
147
194 | | MA, Gan | Fr12T1.3 We4T1.2 Fr15T1.2 Fr12T1.2 Fr12T1.2 Fr12T1.3 Fr15T1.3 Fr15T1.3 Fr15T1.3 Fr15T1.3 Th10T1.4 We4T1.2 We3T1.5 We4T1.4 Fr12T1.2 Th8T1.5 We3T1.3 Th9T1.1 Th10T1.2 Th10T1.2 Th10T1.2 Th10T1.2 Th10T1.3 Fr14T1.2 | 172
35
216
166
166
172
223
173
35
25
48
166
110
13
116
141
147
194 | | MA, Gan | Fr12T1.3 We4T1.2 Fr15T1.2 Fr12T1.2 Fr12T1.2 Fr12T1.3 Fr15T1.3 Fr15T1.3 Fr15T1.3 Fr15T1.3 Th10T1.4 We4T1.2 We3T1.5 We4T1.4 Fr12T1.2 Th8T1.5 We3T1.3 Th9T1.1 Th10T1.2 Th10T1.2 Th10T1.2 Th10T1.2 Th10T1.3 Fr14T1.2 Fr12T1.1 We4T1.1 We4T1.1 Th9T1.2 We3T1.2 | 172
35
216
166
166
172
223
173
25
48
166
110
13
116
141
147
194
159
27
123
7 | | MA, Gan Magnusson, Martin Malliou, Christina Mandow, Anthony Martinez, Jorge L Matsubara, Takanobu Matsuzawa, Takashi Meng, Wei Mielle, Malcolm Miura, Hiroyasu Mizuno, Naoki Morales, Jesús Moreno, Francisco Miguel Mueller, Christian Atanas Murphy, Robin N Nagatani, Keiji Nieto, Juan Nishizawa, Koju NIUCHI, Satoshi | Fr12T1.3 We4T1.2 Fr15T1.2 Fr12T1.2 Fr12T1.3 Fr12T1.3 Fr15T1.3 Fr15T1.3 Th10T1.4 We4T1.2 We3T1.5 We4T1.4 Fr12T1.2 Th8T1.5 We3T1.3 Th10T1.2 Th10T1.2 Th10T1.2 Th10T1.2 Th10T1.3 Fr14T1.2 Fr12T1.1 We4T1.1 Th9T1.2 We3T1.1 | 172
35
216
166
166
172
223
172
223
153
35
25
48
166
110
13
141
147
194
159
27
123
7
61 | | MA, Gan Magnusson, Martin Malliou, Christina Mandow, Anthony Martinez, Jorge L Matsubara, Takanobu Matsuzawa, Takashi Meng, Wei Mielle, Malcolm Miura, Hiroyasu Mizuno, Naoki Morales, Jesús Moreno, Francisco Miguel Mueller, Christian Atanas Murphy, Robin Nagatani, Keiji Nieto, Juan Nishizawa, Koju NIUCHI, Satoshi Noori, Farzan Majeed | Fr12T1.3 We4T1.2 Fr15T1.2 Fr12T1.2 Fr12T1.3 Fr12T1.3 Fr15T1.3 Fr15T1.3 Th10T1.4 We4T1.2 We3T1.5 We4T1.4 Fr12T1.2 Th8T1.5 We3T1.3 Th10T1.2 Th10T1.2 Th10T1.2 Th10T1.2 Th10T1.3 Fr14T1.2 Fr12T1.1 We4T1.1 Th9T1.2 We3T1.1 | 172
35
216
166
166
172
223
173
25
48
166
110
13
116
141
147
194
159
27
123
7 | | MA, Gan Magnusson, Martin Malliou, Christina Mandow, Anthony Martinez, Jorge L Matsubara, Takanobu Matsuzawa, Takashi Meng, Wei Mielle, Malcolm Miura, Hiroyasu Mizuno, Naoki Morales, Jesús Moreno, Francisco Miguel Mueller, Christian Atanas Murphy, Robin N Nagatani, Keiji Nieto, Juan Nishizawa, Koju NIUCHI, Satoshi Noori, Farzan Majeed | Fr12T1.3 We4T1.2 Fr15T1.2 Fr12T1.2 Fr12T1.2 Fr12T1.3 Fr12T1.3 Fr15T1.3 Fr15T1.3 Th10T1.4 We4T1.2 We3T1.5 We4T1.4 Fr12T1.2 Th8T1.5 We3T1.3 Th10T1.1 Th10T1.2 Th10T1.3 Fr14T1.2 Th8T1.5 We4T1.1 Th9T1.1 We4T1.1 We5T1.2 We3T1.2 | 172
35
216
166
166
172
223
172
223
153
35
25
48
166
110
141
147
194
159
27
123
7
61
19 | | MA, Gan | Fr12T1.3 We4T1.2 Fr15T1.2 Fr12T1.2 Fr12T1.2 Fr12T1.3 Fr12T1.3 Fr15T1.3 Fr15T1.3 Th10T1.4 We4T1.2 We3T1.5 We4T1.4 Fr12T1.2 Th8T1.5 We3T1.3 Th10T1.2 Th10T1.3 Fr14T1.2 Th10T1.2 Th10T1.3 Fr14T1.2 We4T1.4 We4T1.1 We4T1.1 We4T1.1 We4T1.1 We4T1.1 We4T1.1 We4T1.1 We4T1.1 We4T1.1 We3T1.2 We3T1.2 | 172
35
216
166
166
172
223
172
223
153
35
25
48
166
110
13
116
141
147
194
159
27
123
7
61
19 | | MA, Gan | Fr12T1.3 We4T1.2 Fr15T1.2 Fr12T1.2 Fr12T1.3 Fr12T1.3 Fr12T1.3 Fr15T1.3 Fr15T1.3 Th10T1.4 We4T1.2 We3T1.5 We4T1.4 Fr12T1.2 Th8T1.5 We3T1.3 Th10T1.2 Th10T1.3 Fr14T1.2 Th9T1.1 Th9T1.2 We3T1.1 We4T1.1 We4T1.1 We4T1.1 We4T1.1 We3T1.2 We3T1.2 We3T1.2 We3T1.2 We3T1.4 | 172
35
216
166
166
172
223
173
25
48
166
110
13
116
141
147
194
159
27
123
7
61
19 | | MA, Gan | Fr12T1.3 We4T1.2 Fr15T1.2 Fr12T1.2 Fr12T1.3 Fr12T1.3 Fr12T1.3 Fr15T1.3 Fr15T1.3 Th10T1.4 We4T1.2 We3T1.5 We4T1.2 Th8T1.5 We4T1.2 Th9T1.1 Th10T1.2 Th10T1.3 Fr12T1.1 We4T1.2 We3T1.1 We4T1.2 | 172
35
216
166
166
172
223
172
223
153
35
25
48
166
110
13
116
141
147
194
159
27
123
7
61
19 | | MA, Gan | Fr12T1.3 We4T1.2 Fr15T1.2 Fr12T1.2 Fr12T1.3 Fr12T1.3 Fr15T1.3 Fr15T1.3 Fr15T1.3 Th10T1.4 We4T1.2 We3T1.5 We4T1.4 Th9T1.1 Th9T1.2 We3T1.1 We4T1.1 We4T1.2 We3T1.1 We4T1.1 We4T1.1 We4T1.1 Th9T1.2 We3T1.1 We3T1.2 We3T1.1 We4T1.1 Th9T1.2 We3T1.1 We4T1.1 Th9T1.2 | 172
35
216
166
166
172
223
173
35
25
48
166
110
13
116
141
147
194
159
27
123
7
61
19 | | MA, Gan | Fr12T1.3 We4T1.2 Fr15T1.2 Fr12T1.2 Fr12T1.3 Fr12T1.3 Fr15T1.3 Fr15T1.3 Fr15T1.3 Th10T1.4 We4T1.2 We3T1.5 We4T1.4 Fr12T1.2 Th8T1.5 We4T1.1 Th9T1.2 We3T1.1 We4T1.2 We3T1.1 We4T1.2 We3T1.1 We4T1.2 We3T1.1 Th9T1.2 We3T1.2 We3T1.3 Fr14T1.2 | 172
35
216
166
166
172
223
173
25
48
166
110
13
116
141
147
194
159
27
123
7
61
19
148
102
129 | | MA, Gan | Fr12T1.3 We4T1.2 Fr15T1.2 Fr12T1.2 Fr12T1.3 Fr12T1.3 Fr15T1.3 Fr15T1.3 Fr15T1.3 Fr15T1.3 Th10T1.4 We4T1.2 We3T1.5 We4T1.4 Fr12T1.2 Th8T1.5 We4T1.1 Th10T1.2 Th10T1.3 Fr14T1.2 Fr12T1.1 We4T1.1 Th9T1.2 We3T1.5 We3T1.1 We4T1.1 Th9T1.2 We3T1.1 Th9T1.2 We3T1.3 Fr14T1.2 | 172
35
216
166
166
172
223
173
35
25
48
166
110
13
116
141
147
194
159
27
123
7
61
19
148
102
129
25 | | MA, Gan | Fr12T1.3 We4T1.2 Fr15T1.2 Fr12T1.2 Fr12T1.3 Fr12T1.3 Fr15T1.3 Fr15T1.3 Fr15T1.3 Fr15T1.3 Th10T1.4 We4T1.2 We3T1.5 We4T1.4 Fr12T1.2 Th8T1.5 We4T1.1 Th10T1.2 Th10T1.3 Fr14T1.2 Fr12T1.1 We4T1.1 Th9T1.2 We3T1.5 We3T1.1 We4T1.1 Th9T1.2 We3T1.1 Th9T1.2 We3T1.3 Fr14T1.2 | 172
35
216
166
166
172
223
173
35
25
48
166
110
13
116
147
194
159
27
123
7
61
19
148
102
129
25
129 | | Paredes, Juan Augusto | | | * | |--|---|-----------|------------| | Park, Taesang | | | 179 | | Pedraza, Salvador
Portugal, David | | | 166
19 | | Fortugal, David | Q | VVE311.4 | 19 | | Qiu, Qihang | | We4T1.3 | 41 | | | R | | | | Ramírez, Julio | | Fr14T1.4 | * | | Reardon, Christopher M
Rocha, Rui P | | | 208
19 | | Rossmann, Juergen | | | 55 | | rtocomami, odorgom | S | | | | Saidi, Kamel | | Th9T1.4 | 131 | | Saito, Carlos | | | * | | Sakai, Nobuaki | | | 172 | | Sakaue, Tomoki | | | 223
7 | | Sato, Ryuya | | | 61 | | Scaramuzza, Davide | | | 200 | | Schindler, Dominik | | Th9T1.2 | 123 | | Seki, Masatoshi | | | 181 | | Shamsudin, Abu Ubaidah | | | 48 | | Sheh, Raymond Ka-Man
Shen, Changsheng | | In911.4 | 131
230 | | Shen, Shaojie | | | 230 | | Shimizu, Masaru | | | 75 | | | | | 129 | | Siegwart, Roland | | | 27 | | | | | 81 | | Cimon Dan | | | 123 | | Simon, DanSimovic, Alessandro | | | 238
200 | | Su, Junqin | | | 187 | | Sugano, Shigeki | | | 61 | | | | Fr12T1.5 | 181 | | Sun, Xiao | | | 172 | | 0 | | | 223 | | Surmann, Hartmut | т | vve411.1 | 27 | | Tadokoro, Satoshi | | | 48 | | Tudokoro, Guloom | | | 102 | | | | Th9T1.3 | 129 | | | | | * | | Takahashi, Tomoichi | | | 75 | | Takanishi, Atsuo | | | 129
172 | | Takanishi, Alsuu | | | 223 | | Takeda, Kohei | | | 7 | | TAN, Wei Xin | | Fr15T1.3 | 223 | | Teramachi, Tomotaka | | | 172 | | T '1 - II D' | | | 223 | | Twidwell, Dirac | U | VVe511.3 | 67 | | Uehara, Yusuke | | Fr12T1.5 | 181 | | | V | | | | Virts, Ann-Marie | | Th9T1.4 | 131 | | | W | | | | Wagner, Bernardo | | | 88
96 | | Watanabe, Ayaka | | | 25 | | Wellhausen, Lorenz | | | 81 | | Westfechtel, Thomas | | | 102 | | | Χ | | | | Xiao, Junhao | | | 41 | | Xiao, Xuesu | | | 116
147 | | | Υ | 1111011.3 | 147 | | Yakushigawa, Kaede | | Fr12T1.1 | 159 | | YAMAGUCHI, Koki | | Fr12T1.3 | 172 | | | | | 223 | | Ye, Yunming | | | 187 | | Yoshida, Yuki | | | 172 | | Yoshino, Shin | | | 223
7 | | Yu, ShangLin | | | 102 | | Yun, Dongwon | | | 179 | | | Z | | | | Zanchettin, Alessio | | Fr14T1.3 | 200 | | | | | | | Zeise, Björn | Th8T1.2 | 88 | |-----------------|----------|-----| | | Th8T1.3 | 96 | | Zhang, Hao | | 208 | | Zhang, Hui | We4T1.3 | 41 | | Zhang, Youmin | Th10T1.4 | 153 | | ZHANG, Yuanzhao | Fr15T1.4 | 230 | | Zhou, Changjun | Th10T1.4 | 153 | #### SSRR 2017 Keyword Index | | Α | |---|---| | Autonomous search and | Fr15T1.1, Fr15T1.2, Fr15T1.3, | | rescue | Fr15T1.4, Th10T1.1, Th10T1.2, | | | Th8T1.5, Th9T1.1, Th9T1.2, We2T1.1 | | | E | | Emerging technologies | Th10T1.3 | | (sensors, power sources, | | | micro robots, etc) | | | , | Н | | Human-robot interaction | Fr15T1.1, We4T1.2, We5T1.1, | | and interfaces | We5T1.2, We5T1.3, We5T1.4 | | una interraces | I | | Inspection of critical | Fr1/T1 2 Fr1/T1 / Fr15T1 2 | | infrastructure | Fr14T1.2, Fr14T1.4, Fr15T1.3, | | | Th9T1.3, We3T1.2, We3T1.4, We5T1.4 | | Intelligent behaviors to | Fr12T1.1,
Fr12T1.3, Fr12T1.5, | | | Fr15T1.5, Th10T1.1, Th10T1.3, | | and survivability | Th10T1.4, Th8T1.2, Th9T1.1, We5T1.1 | | | M | | Manipulation | We5T1.4 | | Mechanisms, | Fr12T1.2, Fr12T1.3, Fr12T1.4, | | Mechatronics, and | We3T1.5 | | Embedded Control | | | Multi-agent coordination | Fr15T1.4, Th10T1.1, Th10T1.2, | | | Th10T1.4, Th9T1.2, We3T1.1, | | | We3T1.4 | | | N | | Novel sensors and | Fr12T1.5 | | mechanisms | | | Nuclear decommissioning | We3T1.2 | | 3 | Р | | Perception for navigation, | Fr12T1.5, Fr14T1.3, Th8T1.1, Th8T1.2, | | hazard detection, and | Th8T1.3, Th8T1.4, Th8T1.5, We2T1.1, | | victim identification | 11101 1.3, 11101 1.4, 11101 1.3, WEZ1 1.1, | | Vicum identification | We4T1.4. We5T1.2. We5T1.3 | | vicum identification | We4T1.4, We5T1.2, We5T1.3 | | | We4T1.4, We5T1.2, We5T1.3 | | Robotics and Automation | We4T1.4, We5T1.2, We5T1.3 R Fr11T1.1, Fr12T1.1, Fr12T1.2, | | | We4T1.4, We5T1.2, We5T1.3 R Fr11T1.1, Fr12T1.1, Fr12T1.2, Fr12T1.3, Fr14T1.4, Fr15T1.1, | | Robotics and Automation | We4T1.4, We5T1.2, We5T1.3 R Fr11T1.1, Fr12T1.1, Fr12T1.2, Fr12T1.3, Fr14T1.4, Fr15T1.1, Fr15T1.2, Fr15T1.4, Fr15T1.5, | | Robotics and Automation | We4T1.4, We5T1.2, We5T1.3 R Fr11T1.1, Fr12T1.1, Fr12T1.2, Fr12T1.3, Fr14T1.4, Fr15T1.1, Fr15T1.2, Fr15T1.4, Fr15T1.5, Th10T1.2, Th10T1.3, Th10T1.4, | | Robotics and Automation | We4T1.4, We5T1.2, We5T1.3 R Fr11T1.1, Fr12T1.1, Fr12T1.2, Fr12T1.3, Fr14T1.4, Fr15T1.1, Fr15T1.2, Fr15T1.4, Fr15T1.5, Th10T1.2, Th10T1.3, Th10T1.4, Th7T1.1, Th8T1.1, Th8T1.5, Th9T1.4, | | Robotics and Automation | We4T1.4, We5T1.2, We5T1.3 R Fr11T1.1, Fr12T1.1, Fr12T1.2, Fr12T1.3, Fr14T1.4, Fr15T1.1, Fr15T1.2, Fr15T1.4, Fr15T1.5, Th10T1.2, Th10T1.3, Th10T1.4, Th7T1.1, Th8T1.1, Th8T1.5, Th9T1.4, We3T1.3, We3T1.4 | | Robotics and Automation for safety and security | We4T1.4, We5T1.2, We5T1.3 R Fr11T1.1, Fr12T1.1, Fr12T1.2, Fr12T1.3, Fr14T1.4, Fr15T1.1, Fr15T1.2, Fr15T1.4, Fr15T1.5, Th10T1.2, Th10T1.3, Th10T1.4, Th7T1.1, Th8T1.1, Th8T1.5, Th9T1.4, We3T1.3, We3T1.4 S | | Robotics and Automation for safety and security Safety standards for robots | We4T1.4, We5T1.2, We5T1.3 R Fr11T1.1, Fr12T1.1, Fr12T1.2, Fr12T1.3, Fr14T1.4, Fr15T1.1, Fr15T1.2, Fr15T1.4, Fr15T1.5, Th10T1.2, Th10T1.3, Th10T1.4, Th7T1.1, Th8T1.1, Th8T1.5, Th9T1.4, We3T1.3, We3T1.4 S | | Robotics and Automation for safety and security Safety standards for robots and systems | We4T1.4, We5T1.2, We5T1.3 R Fr11T1.1, Fr12T1.1, Fr12T1.2, Fr12T1.3, Fr14T1.4, Fr15T1.1, Fr15T1.2, Fr15T1.4, Fr15T1.5, Th10T1.2, Th10T1.3, Th10T1.4, Th7T1.1, Th8T1.1, Th8T1.5, Th9T1.4, We3T1.3, We3T1.4 S Fr14T1.2, Th9T1.4 | | Robotics and Automation for safety and security Safety standards for robots and systems | We4T1.4, We5T1.2, We5T1.3 R Fr11T1.1, Fr12T1.1, Fr12T1.2, Fr12T1.3, Fr14T1.4, Fr15T1.1, Fr15T1.2, Fr15T1.4, Fr15T1.5, Th10T1.2, Th10T1.3, Th10T1.4, Th7T1.1, Th8T1.1, Th8T1.5, Th9T1.4, We3T1.3, We3T1.4 S Fr14T1.2, Th9T1.4 Fr14T1.1, Th8T1.1, Th8T1.2, Th8T1.3, | | Robotics and Automation for safety and security Safety standards for robots and systems Sensing and sensor fusion | We4T1.4, We5T1.2, We5T1.3 R Fr11T1.1, Fr12T1.1, Fr12T1.2, Fr12T1.3, Fr14T1.4, Fr15T1.1, Fr15T1.2, Fr15T1.4, Fr15T1.5, Th10T1.2, Th10T1.3, Th10T1.4, Th7T1.1, Th8T1.1, Th8T1.5, Th9T1.4, We3T1.3, We3T1.4 S Fr14T1.2, Th9T1.4 Fr14T1.1, Th8T1.1, Th8T1.2, Th8T1.3, Th8T1.4, We3T1.3, We4T1.1 | | Robotics and Automation for safety and security Safety standards for robots and systems Sensing and sensor fusion SLAM in complex and/or | We4T1.4, We5T1.2, We5T1.3 R Fr11T1.1, Fr12T1.1, Fr12T1.2, Fr12T1.3, Fr14T1.4, Fr15T1.1, Fr15T1.2, Fr15T1.4, Fr15T1.5, Th10T1.2, Th10T1.3, Th10T1.4, Th7T1.1, Th8T1.1, Th8T1.5, Th9T1.4, We3T1.3, We3T1.4 S Fr14T1.2, Th9T1.4 Fr14T1.1, Th8T1.1, Th8T1.2, Th8T1.3, Th8T1.4, We3T1.3, We4T1.1 Fr14T1.1, Th8T1.3, We3T1.5, | | Robotics and Automation for safety and security Safety standards for robots and systems Sensing and sensor fusion | We4T1.4, We5T1.2, We5T1.3 R Fr11T1.1, Fr12T1.1, Fr12T1.2, Fr12T1.3, Fr14T1.4, Fr15T1.1, Fr15T1.2, Fr15T1.4, Fr15T1.5, Th10T1.2, Th10T1.3, Th10T1.4, Th7T1.1, Th8T1.1, Th8T1.5, Th9T1.4, We3T1.3, We3T1.4 S Fr14T1.2, Th9T1.4 Fr14T1.1, Th8T1.1, Th8T1.2, Th8T1.3, Th8T1.4, We3T1.3, We4T1.1 Fr14T1.1, Th8T1.3, We3T1.5, We4T1.1, We4T1.2, We4T1.3, | | Robotics and Automation for safety and security Safety standards for robots and systems Sensing and sensor fusion SLAM in complex and/or extreme environments | We4T1.4, We5T1.2, We5T1.3 R Fr11T1.1, Fr12T1.1, Fr12T1.2, Fr12T1.3, Fr14T1.4, Fr15T1.1, Fr15T1.2, Fr15T1.4, Fr15T1.5, Th10T1.2, Th10T1.3, Th10T1.4, Th7T1.1, Th8T1.1, Th8T1.5, Th9T1.4, We3T1.3, We3T1.4 S Fr14T1.2, Th9T1.4 Fr14T1.1, Th8T1.1, Th8T1.2, Th8T1.3, Th8T1.4, We3T1.3, We4T1.1 Fr14T1.1, Th8T1.3, We3T1.5, We4T1.1, We4T1.2, We4T1.3, We4T1.4 | | Robotics and Automation for safety and security Safety standards for robots and systems Sensing and sensor fusion SLAM in complex and/or | We4T1.4, We5T1.2, We5T1.3 R Fr11T1.1, Fr12T1.1, Fr12T1.2, Fr12T1.3, Fr14T1.4, Fr15T1.1, Fr15T1.2, Fr15T1.4, Fr15T1.5, Th10T1.2, Th10T1.3, Th10T1.4, Th7T1.1, Th8T1.1, Th8T1.5, Th9T1.4, We3T1.3, We3T1.4 S Fr14T1.2, Th9T1.4 Fr14T1.1, Th8T1.1, Th8T1.2, Th8T1.3, Th8T1.4, We3T1.3, We4T1.1 Fr14T1.1, Th8T1.3, We3T1.5, We4T1.1, We4T1.2, We4T1.3, We4T1.4 Th9T1.3 | | Robotics and Automation for safety and security Safety standards for robots and systems Sensing and sensor fusion SLAM in complex and/or extreme environments Structural assessment | R Fr11T1.1, Fr12T1.1, Fr12T1.2, Fr12T1.3, Fr14T1.4, Fr15T1.1, Fr15T1.2, Fr15T1.4, Fr15T1.5, Th10T1.2, Th10T1.3, Th10T1.4, Th7T1.1, Th8T1.1, Th8T1.5, Th9T1.4, We3T1.3, We3T1.4 S Fr14T1.2, Th9T1.4 Fr14T1.1, Th8T1.1, Th8T1.2, Th8T1.3, Th8T1.4, We3T1.3, We4T1.1 Fr14T1.1, We4T1.3, We4T1.1 Fr14T1.1, We4T1.2, We4T1.3, We4T1.4 Th9T1.3 U | | Robotics and Automation for safety and security Safety standards for robots and systems Sensing and sensor fusion SLAM in complex and/or extreme environments | R Fr11T1.1, Fr12T1.1, Fr12T1.2, Fr12T1.3, Fr14T1.4, Fr15T1.1, Fr15T1.2, Fr15T1.4, Fr15T1.5, Th10T1.2, Th10T1.3, Th10T1.4, Th7T1.1, Th8T1.1, Th8T1.5, Th9T1.4, We3T1.3, We3T1.4 S Fr14T1.2, Th9T1.4 Fr14T1.1, Th8T1.1, Th8T1.2, Th8T1.3, Th8T1.4, We3T1.3, We4T1.1 Fr14T1.1, Th8T1.3, We3T1.5, We4T1.4, We4T1.2, We4T1.3, We4T1.4 Th9T1.3 U Fr12T1.1, Fr12T1.2, Fr14T1.1, | | Robotics and Automation for safety and security Safety standards for robots and systems Sensing and sensor fusion SLAM in complex and/or extreme environments Structural assessment | R Fr11T1.1, Fr12T1.1, Fr12T1.2, Fr12T1.3, Fr14T1.4, Fr15T1.1, Fr15T1.2, Fr15T1.4, Fr15T1.5, Th10T1.2, Th10T1.3, Th10T1.4, Th7T1.1, Th8T1.1, Th8T1.5, Th9T1.4, We3T1.3, We3T1.4 S Fr14T1.2, Th9T1.4 Fr14T1.1, Th8T1.1, Th8T1.2, Th8T1.3, Th8T1.4, We3T1.3, We4T1.1 Fr14T1.1, Th8T1.3, We3T1.5, We4T1.4, We4T1.2, We4T1.3, We4T1.4 Th9T1.3 U | | Robotics and Automation for safety and security Safety standards for robots and systems Sensing and sensor fusion SLAM in complex and/or extreme environments Structural assessment Unmanned ground, aerial, | R Fr11T1.1, Fr12T1.1, Fr12T1.2, Fr12T1.3, Fr14T1.4, Fr15T1.1, Fr15T1.2, Fr15T1.4, Fr15T1.5, Th10T1.2, Th10T1.3, Th10T1.4, Th7T1.1, Th8T1.1, Th8T1.5, Th9T1.4, We3T1.3, We3T1.4 S Fr14T1.2, Th9T1.4 Fr14T1.1, Th8T1.1, Th8T1.2, Th8T1.3, Th8T1.4, We3T1.3, We4T1.1 Fr14T1.1, Th8T1.3, We3T1.5, We4T1.4, We4T1.2, We4T1.3, We4T1.4 Th9T1.3 U Fr12T1.1, Fr12T1.2, Fr14T1.1, | | Robotics and Automation for safety and security Safety standards for robots and systems Sensing and sensor fusion SLAM in complex and/or extreme environments Structural assessment Unmanned ground, aerial, | We4T1.4, We5T1.2, We5T1.3 R Fr11T1.1, Fr12T1.1, Fr12T1.2, Fr12T1.3, Fr14T1.4, Fr15T1.1, Fr15T1.2, Fr15T1.4, Fr15T1.5, Th10T1.2, Th10T1.3, Th10T1.4, Th7T1.1, Th8T1.1, Th8T1.5, Th9T1.4, We3T1.3, We3T1.4 S Fr14T1.2, Th9T1.4 Fr14T1.1, Th8T1.1, Th8T1.2, Th8T1.3, Th8T1.4, We3T1.3, We4T1.1 Fr14T1.1, Th8T1.3, We3T1.5, We4T1.1, We4T1.2, We4T1.3, We4T1.1 We4T1.4 Th9T1.3 U Fr12T1.1, Fr12T1.2, Fr14T1.1, Fr14T1.2, Fr14T1.3, Fr14T1.4, | | Robotics and Automation for safety and security Safety standards for robots and systems Sensing and sensor fusion SLAM in complex and/or extreme environments Structural assessment Unmanned ground, aerial, | We4T1.4, We5T1.2, We5T1.3 R Fr11T1.1, Fr12T1.1, Fr12T1.2, Fr12T1.3, Fr14T1.4, Fr15T1.1, Fr15T1.2, Fr15T1.4, Fr15T1.5, Th10T1.2, Th10T1.3, Th10T1.4, Th7T1.1, Th8T1.1, Th8T1.5, Th9T1.4, We3T1.3, We3T1.4 S Fr14T1.2, Th9T1.4 Fr14T1.1, Th8T1.1, Th8T1.2, Th8T1.3, Th8T1.4, We3T1.3, We4T1.1 Fr14T1.1, We4T1.3, We3T1.5, We4T1.1, We4T1.2, We4T1.3, We4T1.4 Th9T1.3 U Fr12T1.1, Fr12T1.2, Fr14T1.1, Fr14T1.2, Fr14T1.3, Fr14T1.4, Fr15T1.2, Fr15T1.5, Th8T1.4, Th9T1.1, | | Robotics and Automation for safety and security Safety standards for robots and systems Sensing and sensor fusion SLAM in complex and/or extreme environments Structural assessment Unmanned ground, aerial, | We4T1.4, We5T1.2, We5T1.3 R Fr11T1.1, Fr12T1.1, Fr12T1.2, Fr12T1.3, Fr14T1.4, Fr15T1.1, Fr15T1.2, Fr15T1.4, Fr15T1.5, Th10T1.2, Th10T1.3, Th10T1.4, Th7T1.1, Th8T1.1, Th8T1.5, Th9T1.4, We3T1.3, We3T1.4 S Fr14T1.2, Th9T1.4 Fr14T1.1, Th8T1.1, Th8T1.2, Th8T1.3, Th8T1.4, We3T1.3, We4T1.1 Fr14T1.1, Th8T1.3, We3T1.5, We4T1.1, We4T1.2, We4T1.3, We4T1.1 Fr14T1.1, Th8T1.3, Fr14T1.3, We4T1.4 Th9T1.3 U Fr12T1.1, Fr12T1.2, Fr14T1.1, Fr14T1.2, Fr14T1.4, Fr15T1.2, Fr15T1.5, Th8T1.4, We3T1.2, Th9T1.1, Th9T1.2, Th9T1.3, Th9T1.4, We3T1.2, | #### **List of Reviewers** Birk, Andreas Bradley, Justin Brüggemann, Bernd Cadena Lerma, Cesar Chen, Hao Chen, Weidong de la Escalera, Arturo Delmerico, Jeffrey Detweiler, Carrick Duncan, Brittany Fink, Jonathan Fregene, Kingsley Gasteratos, Antonios Hashimoto, Kenji Houska, Boris Ishigami, Genya ito, kazuyuki Kamegawa, Tetsushi Kamezaki, Mitsuhiro Kimura, Tetsuya Kinugasa, Tetsuya Kosmatopoulos, Elias Liu, Ming Loianno, Giuseppe Ma, Lu Martinez, Jorge L. Murphy, Robin Muscato, Giovanni Nagatani, Keiji Nakanishi,
Hiroaki Nalpantidis, Lazaros Nardi, Daniele Neira, José Nuechter, Andreas Ogren, Petter Ohno, Kazunori Okada, Yoshito Okugawa, Masayuki Oliva, Gabriele Onosato, Masahiko Parasuraman, Ramviyas Peschel, Joshua Pfingsthorn, Max Portugal, David Rahiman, Wan Reardon, Christopher M. Rohmer, Eric Romero, Roseli Ap. Francelin Sa, Inkyu Saito, Carlos Saripalli, Srikanth Sato, Noritaka Schwertfeger, Sören Sheh, Raymond Ka-Man Shen, Shaojie Steinbauer, Gerald Surmann, Hartmut Takamatsu, Jun Wagner, Bernardo Wu, Amy Xiao, Junhao ZHANG, Xinyu Zhao, Lanying