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Abstract

We present a robust and efficient approach to simultaneous
pose tracking and updating of the world models in chang-
ing environments. The estimation of the robot's pose and
the corresponding uncertainties is based on very simple
models which are used in the context of extra information
extracted from the observation of the localization process.
A special attention is payed to the consistency of the esti-
mator. The presented pose estimator is very robust and
reactive at the same time, since the lack of modelling
details is compensated through on-line learning of the
pose errors. In addition, geometric consistency of the por-
tions of the world model is estimated with the help of the
Bayes’ rule. The estimated consistency serves for selec-
tive updating of the world model and the robot’s pose. The
presented approach allows reliable navigation also in
environments which do not contain any static objects. The
only requirement is that a sufficient amount of objects
remains static over a certain period of time.

1 Introduction

For reliable navigation and execution of complex tasks
over longer periods of time, a mobile robot must be able to
estimate its pose! with respect to its environment. The sim-
plest way of pose estimation is integration of odometric
data which, however, is associated with unbounded errors,
resulting from uneven floors, limited resolution of encod-
ers, wheel slippage etc. Clearly, over longer runs pure odo-
metric pose estimation is not reliable. Therefore, a mobile
robot must be able to localize, i.e. estimate its pose also
with respect to an internal world model (map) by using the
information obtained with its exteroceptive sensing system.
However, map-based pose estimation in typical indoor en-
vironments is quite challenging. Namely, such environ-
ments are populated by humans and certain objects can be
moved easily (e.g. doors, desks, boxes, etc.) which inevita-
bly results in partially inconsistent maps; geometric incon-

1. A pose in a 2D reference frame is completely defined
by a vector p=(x, y, o).
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sistencies in maps as well as other unpredictable aspects of
the interaction between the robot and its environment (e.g.
sensor noise and failures) can result in great pose errors.

Often approaches to pose estimation are based on the
Kalman-Filter. These approaches work well as long as the
used information can be described by simple statistics well
enough. The lack of relevant information is compensated
by using models of various processes. However, often such
model-based approaches require assumptions about the
physical world which are often violated and, therefore, the
process is not optimal or it can even diverge. An interesting
solution to this problem was proposed in [2], where obser-
vation of the pose corrections is used for updating of the co-
variance matrices. However, in contrast to our approach,
this approach seems to be vulnerable to significant geomet-
ric inconsistencies of the world models, since inconsistent
information can influence the estimated covariance matri-
ces. Markow localization, on the other hand, is very robust
since it supports multi modal probability representation.
Especially, it is suitable also for the global localization.
However, appropriate discretization represents a substan-
tial problem. Some approaches to Markow localization are
based on very coarse tessellation, which results in low lo-
calization accuracy such as [6]. On the other hand, the ap-
proach presented in [1] is based on dense grids which, how-
ever, requires substantial computing power.

In contrast to common approaches to pose tracking, the
presented approach is based on very simple models and the
robustness and reactivity are achieved through the use of
appropriate information. In addition, the proposed ap-
proach allows robust updating of world models, which is
indispensable for the operation in dynamic environments.

The key to robust and efficient pose tracking and map
updating, however, are different uncertainty models used
for the matching and filtering of inconsistent information,
respectively. Matching process is based on simple bounded
pose uncertainty models while filtering of information is
based on adaptive estimation of localization errors.
Namely, the presented Adaptive Pose Estimator (APE) sup-
ports on-line learning of the localization uncertainties by
observing and averaging pose updates over a certain time-
window (fig. 1).
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Moreover, simple heuristic rules are used for detection of
inconsistencies of the estimation process itself, which can
result from significant odometric errors (thresholds etc.)
and changing environments.
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Fig. 1: Simultaneous localization and map-updating process. The local-
ization is based on the Aduptive Pose Estimator. The Decision about cor-
recting either the robot’s or the map’s state is based on the results of the
Consistency Filter. L(C;) denotes the likelihood that the reference feature
fiis consistent, S; and M, denote the initial robot’s state and the initial
map, respectively.

In addition, the presented APE allows efficient imple-
mentation of Consistency Filters [4], which can be used for
reliable estimation of the map’s consistency. Namely, due
to a very selective determination, the localization weights
can be used as evidence for cumulative estimation of con-
sistency of the geometric information stored in maps. The
estimated consistency allows reliable decision making be-
tween updating the robot’s state and updating of portions of
the world model (fig. 1).

2 Consistency of the Localization Process

In general, localization requires focusing on relevant in-
formation and filtering of unreliable information. There-
fore, estimation of the greatest possible position/orientation
errors is indispensable for the determination of the space in
which the relevant information can be located, There are
different sources of possible pose errors and we need ap-
propriate models of the propagation of such errors through
the navigation process. In general, possible pose errors can

be taken into account through the pose uncertainties, i.e.
sets of possible poses of the robot and other objects (see
fig. 2) with respect to the world model. In the presented
work, pose uncertainties of a modelled object in a 2D world
model are represented by a rectangle &, and an interval =,
of possible orientations (see fig. 2). Such uncertainties are
used primarily for determination of different kinds of vali-
dation gates and they are based on simple error models.

In general, a localization process is consistent if the true
pose of the robot is within the space defined by the esti-
mated pose uncertainty intervals. If this is not the case the
localization process usually fails. Namely, it the matching
and weighting validation gates are smaller than the actual
discrepancy between the estimated and the true pose, either
the matching process does not yield matches or computed
innovations are ignored. Of course, the estimator’s consis-
tency can be improved by using modelled uncertainties
which are much larger than the actual errors. However, by
using such “loose” models inconsistent information can in-
fluence the localization process to a great extent; inconsis-
tent information originates from mobile objects or objects
which cannot be perceived reliably. Therefore, the pre-
sented Adaptive Pose Estimator (APE) simultaneously
maintains different models of uncertainties for the match-
ing and filtering processes, respectively.

3 Matching

The matching is based on validation gates which repre-
sent the space in which relevant information can be found.
A currently extracted feature f; can be matched with the
mapped feature f; if both features are of the same type and
simple conditions are satisfied. Namely, the vector x, con-
necting the centers of f; and £, as well as the orientation dis-
crepancy Y6 between £; and f; must be within the validation
gate, defined relative to the center of the feature f;

['nix<,jur; [ tix<,Ju's |Pol< U’ (1)

In (1) the vector/n is parallel and the unit vector /tis nor-
mal to the currently obtained feature f, respectively. ,U"
., wU" and ,JU?, on the other hand, define the relative
pose uncertainties between the features f and f. Note, that
the matching validation gates are based on loose uncer-
tainties; i.e. assumed worst case errors are greater than the
actual errors. Possible error models are presented in {5].

4 Pose Estimation

As soon as the robot obtains an unambiguous match the
corresponding pose update relative to the reference frame



is computed through alignment of the mapped and ob-
served features f; and f, respectively. For each localization
step the robot uses only a single pair of linear features. The
orientation discrepancy A8, is identical to the orientation
discrepancy between the matched features while the trans-
lation discrepancy Ax, is identical to the normal distance
between the matched features, which would be obtained if
the robot’s orientation would be changed by A8, (fig. 2).
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Fig. 2: Localization step based on linear features. f; denotes Lhe reference

A6,

(mapped) feature while f; represents the currently extracted leature.
Dashed rectangle on the left represents position uncertainties which cor-
respond to the position X, ., resulting from the &-1™" localization step.

The pose Py =gV Fex)’ is updated according to

P =Pug-1 +APgWy (2)

where w, denotes the localization weight corresponding to
the &-th localization step (see section 5), py.; and py,
denote the pose vectors prior to and after the k-th pose cor-
rection while Ap, =(Ax; Ay, ,ABk)T denotes the estimated
pose discrepancy between the matched features f; and f;. In
addition, with each correction the robot’s pose uncertain-
ties "Upy_y , "Uly, and "Ug, | are updated according to

U =(1-w ) Uy +w CUS +min(TUE, TUE ), (3)

where &€{x, y, 8}, "U5,_, and U}, define the relative
pose uncertainties between the robot and the reference f;
prior to and after the k-th localization step, respectively;
with such pose uncertainties we take into account the
worst case sensing errors. Moreover, ‘U define pose
uncertainties associated with the reference feature' f.

Note, that estimation of bounded uncertainties is crucial
for determination of the matching validation gates.

1. As a new feature f, is extracted and accumulated into
the map, it is associated with the current robot’s pose
uncerlainties: ‘U§=’Uﬁ.
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5 Adaptive Filtering of Information

The localization process, however, is vulnerable to in-
consistent information. Therefore, with the APE we intro-
duce a simple and very efficient adaptive approach to filter-
ing of inconsistent information. Namely, the robot tracks
the average translation/orientation corrections ¢, and ¢’
which are based on a sequence of position/orientation dis-
crepancies Ax; and AG,

Trar =|AX[Aw, +(1-Aw )T ”

T =|A0 [ Aw +(1=Aw)E?

where A is a leamning factor and w, denotes the localization
weight (see below). ¢’ and ¢,% can be viewed as a kind of
learned localization uncertainty intervals which normally
converge toward certain intervals. Therefore, ¢,’ and ¢,°
are used for the determination of the influence of a certain
information on the localization process. Namely, the cur-
rent pose discrepancies between the matched features and
the corresponding average corrections are compared with
the help of the mappings w,'=u{lAx,l, ¢,") and w,? =
p(IAB,c.®); the function p: :#2— [0,1] yields rather low
weights if the current discrepancies IAx,| and IA8,] are sig-
nificantly greater than the average corrections ¢’ and c;°.
In the presented work we use a very simple mapping

Lifk.c>cvt, . >c
c-k.C
el )E

0,ifk,c<c

wec)=41- Jdfk,C>c>k.C,

(5)

where ¢ denotes the average position/orientation correc-
tion and k, and &, are appropriate scaling factors. Finally,
the localization weight w, is defined as

wy= min(w,, w5, 6)

By using the localization weights defined by (6) a signif-
icant portion of the inconsistent information is eliminated
from the localization process.

6 Maintenance of the Estimator’s Consistency

However, often the weighing validation gates ¢, and %,
determined with (4), converge to relatively small intervals.
Therefore, the estimator could easily become inconsistent
if the odometric or localization errors would suddenly in-
crease significantly. For example, significant odometric er-
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rors could be introduced through passing a threshold, turn-
ing on a carpet etc. In such cases the resulting discrepancies
1Ax;| and IA@J are usually much greater than the localiza-
tion bounds ¢,/ and ¢, and, therefore, the corresponding lo-
calization weight w; is small or zero. Consequently, the re-
quired corrections would be simply ignored and the robot
could get lost.

Therefore, the APE attempts to detect such inconsisten-
cies of the pose estimator and temporarily increase the lo-
calization bounds ¢’ and ¢;%. The detection of inconsisten-
cies is based on the observation of subsequent pose
discrepancies Ap; and Ap,.;, which were based on differ-
ent reference features and both were out of the localization
bounds; i.e. either IAX, >¢,/ A 1AX,, | >cp, ,  or 1AG)>c,? A
1A, I>c,, P,

If a significant odometric or localization error takes place
and the map is consistent, the subsequent pose discrepan-
cies satisfy relations

A AXy
|Ax, Ax,.|

AB, 1
=cos(c)=0 and kg, SF:HS/C— 7))

<im
Relations (7) are satisfied if the subsequent pose discrep-
ancy vectors have similar directions and subsequent orien-
tation corrections are similar to a certain degree; the
factor O<k,;, </ defines the required similarity between
the subsequent orientation discrepancies.

With the help of (7) the APE can detect the filter’s incon-
sistency and adapt to different odometric errors automati-
cally. After a temporary increase of the uncertainty inter-
vals the localization validation gates normally get smaller
as the robot navigates relative to a consistent world model,
Clearly, if a significant portion of the perceived objects in a
certain neighborhood would be moved in the same way, the
rules (7) could erroneously indicate an odometric error.
However, in this case, the error is usually compensated as
soon as the robot enters an area corresponding to a consis-
tent portion of the world model.
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\ Ax,
\

A J

.
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Fig. 3: a) Odometric or localization errors result in a sequence of discrep-
ancies, which are out of bounds E;f and Ek" and satisfy relations (8}, if the
map is consistent. (b) Conditions (8) are not satisfied since the map is in-
consistent.

7 Maintenance of the Map’s Consistency

With the Geometric Consistency Filters [4] we can esti-
mate geometric consistency of the portions of the worid
model. The Geometric Consistency Filter basically accu-
mulates evidence and determines the likelihood LICKw}p)
that the reference feature f; is consistent. Since the pre-
sented localization process is very selective, the localiza-
tion weights (see (6)) represent reliable evidence which is
fused with the help of the Bayes’ rule

wiL(CHwh ) +H(1=w) L(=C;Kw}) |

L(Cj )= ®)

where L(~ Cl{w}=1-L(Cj{w},). Each w; can be inter-
preted as a likelihood, that current discrepancy vector Ap;
could be observed, given that the reference featureﬁ is
consistent. It should be noted that the Bayes’ rule is used
rather in a qualitative manner as a practical tool for infor-
mation fusion. Namely, assumptions about the indepen-
dence of subsequent pieces of evidence are partially vio-
lated; pose discrepancy Ap;influences Ap,,; to a certain
extent. While these dependencies cannot be eliminated
completely, they can be reduced significantly by weighting
the pose corrections (see (2)). In most cases dependencies
can be reduced such, that the updating process converges
to correct values; consistent features are usually associated
with L(C{w})’s which converge to /, while L(le{w}‘.)’s
of inconsistent features converge to 0.

If the likelihood L(le{w}k) is smaller than the threshold
T, pdure» the Tobol’s pose is not updated while the reference
feature f, is removed and the currently extracted feature is

accumulated into the world model (see fig. 1).

8 Experimental Results

The proposed approach to the localization and map up-
dating has been verified in typical office environments. The
robot initially generated a simple world model (fig. 4) by
using a ring of 24 Polaroid sonars and the wheel encoders
[3]. With the help of the generated world model the robot
was able to estimate its pose without artificial beacons.

Moreover, the implementation was simplified by assum-
ing that the learned uncertainties ¢’ are isotropic; i.e. they
are assumed to be uniform in all directions. This is in gen-
eral not true and temporary inconsistencies of the APE can
be introduced through this assumption. However, the APE
normally adapts very quickly to such situations and, there-




fore, the mentioned simplification does not influence the lo-
calization significantly.
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Fig. 4: A simple world model consisting of linear features was generated
autonomously by the robot. Solid and dashed lines correspond to the ini-
tial and final slates of the workspace, respectively. Grey regions represent
the initial layout of the workspace. The objects corresponding to the fea-
tures fp and f; were moved simultancously.

While the pose estimation was based on the presented
APE, also “raw” discrepancies IAx,| and A6, between the
matched features were recorded. Initially, the used world
model was geometrically consistent and, as the robot
moved in the known environment, both the pose correc-
tions resulting from the APE and discrepancies |Ax,| and
A6, were relatively small. After a while, however, geomet-
ric inconsistencies were introduced gradually by moving
two doors and desks (dashed lines in fig. 4). These objects
were moved in such a way, that they were still within the
matching validation gates during the following navigation.

Diagrams (a) and (b) in fig. 5 show “raw” discrepancies
IAx,] and AB), between the matched features. After incon-
sistencies in the map were introduced, however, a signifi-
cant portion of the discrepancies IAx,] and Af, was errone-
ous. Diagrams (c) and (d) in fig. 5, on the other hand, show
corrections computed with the APE during the same exper-
iment.

Up to the localization step 400 the used world model was
geometrically consistent. The peaks between the steps 200
and 400 in fig. 5 (a-b) correspond to corrections following
significant abrupt odometric errors, which were introduced
through motion over thresholds and thick carpets. After the
step 400, however, geometric inconsistencies were intro-
duced by gradually moving some objects in the workspace
(fig. 4), which is evident from the huge pose discrepancies
IAX,] and A6,.

However, It is evident that the APE could cope with in-
consistencies in the world model; erroneous “raw™ pose
discrepancies between the matched features could be fil-
tered out and the accuracy of the APE was not significantly
influenced. Note also peaks in diagrams (c) and (d) in fig. 5,

which correspond to corrections after abrupt and large odo-
metric errors.

Moreover, with the help of the Consistency Filter, the
world model was updated on-line, which resulted in re-
duced geometric inconsistencies and relatively small dis-
crepancies between the matched features; e.g. between the
steps 630 and 850 in fig. 5 (a-b).
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Fig. 5: (a-b) Raw discrepancics between the matched features. (c-d) Pose
corrections based on the APE were not significantly influenced by incon-
sistencies introduced alter the step 400. Innovations based on inconsis-
tent information were set to 0.

Selective filtering of relevant evidence was based on the
learned average pose corrections, which were in average
relatively “tight” (see fig. 6). Therefore, the unmodelled
odometric and localization errors occasionally resulted in
temporarily inconsistent estimator. However, APE could
detect such situations with the help of (7) and adapt
quickly; the peaks in fig. 6 correspond to adapted average
pose corrections which resulted from detection of the
APE’s inconsistency.

Moreover, the deviation between the robot’s true and the
estimated pose was controlled at different control points in
the workspace. The robot was centered at each control
point by the operator and the discrepancy was recorded. It
turns out that the deviations between the true and the esti-
mated poses are bounded and they are relatively small. In
average, the pose discrepancy remained below 3 cm and 4°



which is evident also from the small pose corrections
(fig. 5-c and fig. 5-d).
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Fig. 6: Magnitudes of average translation and orientation corrections. Be-
tween the steps 200 and 400 the average corrections were increased due
to detection of estimator’s inconsistency resulting from odometric errors.

The consistency of each feature in the world model
(fig. 7) was estimated on-line with the help of the Consis-
tency Filter (8); each localization step yielded a piece of
evidence. If the likelihood of consistency L(C;1{r};) < 0.1,
the corresponding reference feature f; was removed and the
currently extracted feature was accumulated instead. In this
way the world model could be adapted to new configura-
tions of the workspace on-line. Note, that all features ob-
served between the control points A and B were gradually
moved during the experiment (fig. 4). However, the accu-
racy of the pose estimation was not influenced significantly.
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Fig. 7: Evolution of the likelihood of consistency L(C, {r}). (a)
L(C,l{r},) associated with the feature f, corresponding to a wall, (b)
L(C,{r},) associated with f|, corresponding to the door. After the door
was moved, L(C{r},) decreased and, as soon as L(CI{r};)<0.1, the fea-
ture’s position was changed which resulted in increasing L(C,|{r},), since
the corrected feature was consistent.

9 Discussion

A combination of the Adaptive Pose Estimator (APE)
and the Consistency Filter allows robust localization in
partially unpredictable indoor environments and on-line
updating of internal world models. In general, the APE can
cope with different kinds of unpredictable aspects of the
environments such as mobile objects, sensing and odomet-
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ric errors etc. This is achieved in a very simple way.
Namely, the presented approach uses simple models in con-
junction with the information obtained through observation
of the localization process. In contrast to common ap-
proaches to pose tracking, the APE requires only few
coarse assumptions about properties of the world.

Also, the localization weights determined by the Adap-
tive Pose Estimator provide useful evidence about the con-
sistency of the portions of the world model. By fusing such
evidence with the Consistency Filter, we are able to isolate
information which is inconsistent and even improve the
consistency of the world models. The knowledge about
consistency of information can further enhance robustness
of the APE, because possible erroneous interpretations of
the constellations can be significantly reduced.

Finally, it should be noted that the APE is relevant espe-
cially for the robots using simple sensors, which require
clustering of data along relatively [ong paths in order to ex-
tract reliable geometric features. Consequently, odometric
errors can introduce significant geometric inconsistencies
within the sets of subsequently obtained features which, in
turn, can result in devastating errors if the pose is estimated
by solving a set of equations. In addition, it can be shown,
that the pose errors remain bounded if the robot’s pose is
corrected with one linear reference feature at a time, given
that not all mapped features are parallel.

Acknowledgments
This work is fully supported by FWF, grant P12861-MAT.,
References

[1]1 D.Fox, W. Burgard, S. Thrun, A.B. Cremers: Position Esti-
mation for Mobile Robots in Dynamic Environments, In J. of
Artificial Intelligence Research, 1999,

L. Jetto, S. Longhi, G. Venturini: Development and Experi-
mental Validation of an Adaptive Extended Kalman Filter for
the Localization of Mobile Robots, In I[EEE Transactions on
Robotics and Automation, YOL. 15, No. 2, April 1999,

G. Pavlin, R. Braunstingl: Context-Based Feature Extraction
With Wide-Angle Sonars, In proc. of International Conf. on
Intelligent Robots and Systems, Takamatsu, Japan, 2000.

G. Pavlin, R. Braunstingl: Estimating Consistency of Geo-
metric World Models Through Observation of the Localiza-
tion Process, In proc. of International Conference on
Robotics and Automation, ICRA2001, Seoul, Korea, 2001.
G. Pavlin, R. Braunstingl: Robust Pose Estimation for
Mobile Robots in Unpredictable Environments, IFAC Work-
shop on Mobile Robot Technology, Jejudo, Korea, 2001.

R. Simmons, S. Koenig: Probabilistic Navigation in Partially
Observable Environments, In proceedings of AAAI Interna-
tional Joint Conference on Artificial Intelligence, 1993,

2]

(5]

(6]



