691

A Function Block Based Approach for the
Development of Distributed IPMCS Applications

K. Thramboulidis, Member IEEE, C. Tranoris, Member IEEE

Abstract- Today’s rapidly changing market requirements
impose the need of improving the agility of manufacturing
systems. The function block concept, promises to improve
productivity in terms of re-use, reliability, flexibility and
interoperability. IEC, with standards like 61499, defines the
basic concepts and a methodology, for the design of modular,
re-usable distributed Industrial Process Measurement and
Control Systems {PMCSs). In this paper we present our
approach for the development of function block oriented
distributed IPMCS applications. This approach is based on a
d-layer architecture that was defined to facilitate the design
and development of the new generation function block
oriented Engineering Support Systems (ESSs). The approach
greatly exploits the modular architecture of the interworking
unit that is used to interconnect different types of fieldbus
segments. We adopt the steam boiler system as a case study
and we consider the development of a function block based
IPMCS application for the control of it.

Index Terms—Fieldbus, Interoperability,
distributed IPMCS, Profibus

Interconnection,

I. INTRODUCTION

Today’s rapidly changing market requirements impose
the need to improve the agility of manufacturing systems.
The always growing need for innovative products, forces
manufacturing plants to improve their ability to quickly
respond to market demands by designing competitive
products and modifying existing ones. Until recently, most
of the industrial control systems have been based either on
traditional distributed control systems or on programmable
logic controllers. In both cases, the systems are composed
of monolithic applications that are almost impossible to
integrate and even to expand. Modularity, flexibility,
extensibility, reusability and interoperability are dimensions
slightingly addressed by many traditional proprietary
engineering tools and products. Even more, the most of the
traditional products and tools are far away from the new
challenging technologies of Software Engineering. The
software industry of Industrial Process Measurement and
Control Systems (IPMCSs) increasingly faces today, the
challenge of creating complex custom-made distributed
systems within time and budget, while high competition
forces prices down.

Evolving standards, like IEC 61499 and the more recent
IEC61804, define the basic concepts as well as a
methodology for the design of modular, re-usable,
distributed industrial process, measurement and control
systems [1][2]. They define, the function block construct as
the main building block of IPMCS applications, in a format

Electrical & Computer Engineering Dept., University of Patras, 265 00
Patras, Greece, Tel: +30-61-997304; Fax: +30-61-997316 ,
e-mail: {tranoris, thrambo } @ ee.upatras.gr

that is independent of implementation. They also define, the
way that function blocks can be used to define robust, re-
usable software components that constitute the distributed
IPMCSs.

The above standards define also a methodology to be
used by system designers to construct distributed control
systems. It allows systems to be defined in terms of
logically connected function blocks that run on different
processing resources. Complete applications, can be built
from network of function blocks, formed by
interconnecting their inputs and outputs. New generation
function block oriented Engineering Support Systems
(ESS), are highly required to support the whole life cycle of
IPMCS applications. An ESS must support the engineer, in
both the analysis and design phase as well as in the
implementation phase. Using such a system, the engineer
must be able to start with the analysis of the plant diagram
$0 as to capture the control requirements. Then, he should
be able to define the major areas of functionality and their
interaction with the plant. During this task, he should be
able, to exploit function blocks provided by intelligent field
devices such as smart valves, but also to assign
functionality into physical resources such as PLCs,
instruments and controllers. All the above should be
accomplished independent of the underline communication
subsystem and in the extreme case, where it is an
aggregation of interconnected independent fieldbus
segments, even from different vendors.

In the context of this work, we consider the process of
developing function block based IPMCS applications that
must be distributed over heterogeneous fieldbuses. We
exploit the architecture of the interworking unit that was
defined to obtain interoperability in fieldbus level, to allow
a uniform development of applications, independent of the
underlying profibuses. This architecture enables the
interworking unit to:

e Meet the real-time constraints imposed by the fieldbus-
to-fieldbus communication channel

* Provide a uniform, independent of the underlying
communication subsystems, interface to the ESS

¢ Provide a uniform interface to SCADA client systems

¢ Provide the interoperability mechanisms required by
any communication channel in the [IPMCS
environment.

Our intention is to highlight the main steps an engineer
has to follow for the development of distributed [PMCS
applications using the function block construct. We use the
steam boiler control system as a running example, and
demonstrate the process of developing a distributed IPMCS
application using the function block construct.

We assume the existence of an interoperable IEC
61499-compliant interworking unit that will provide the

692

ability to utilize heterogeneous software environments, with
[EC 61499-compliant software tools. We utilize our 4-layer
IPMCS architecture, to capture the key abstractions, that
will become the basis for the development of the function
block oriented IPMCS. This architecture identifies the main
layers of abstraction involved in the development of
distributed IPMCS applications and provides the
framework for the required assignments from layer to layer.

The rest of this paper is organized as follows. In section
2 of this paper, we briefly describe the steam boiler control
problem. In section 3, we introduce the function block
construct as the primary building block for the design of
IPMCS applications. We next, in section 4, use the function
block construct to build a draft function block interaction
diagram of the steam boiler control application, In section
5, we proceed to the mapping of the resulting function
block interaction diagram to the constructs of the
appropriate system layer diagram. Section 6 refers to the
architecture of the interworking unit and the way this
architecture automates the mapping and configuration
process of the IPMCS application. We finally conclude the
paper in the last section,

Il. THE STEAM-BOILER CONTROL SYSTEM

The steam-boiler control specification problem has been
proposed for testing the various design formalisms with
respect to their versatility and applicability to embedded
control system design. An informal specification of the
original problem is presented in detail in [3]. The
specification concerns a control application that serves to
control the level of water within some safe range in a steam
boiler. The physical environment comprises the following
units:

s the steam boiler: A water tank of total capacity C in
liters, which generates steam.

e a water sensor: A device to measure the quantity q in
liters of water in the steam boiler

e four pumps to provide the steam boiler with water.
Each pump has its capacity P in liters/sec.

e four devices to supervise the pumps (one controller for
each pump)

e asteam sensor: A device to measure the quantity & in
liters/sec of steam which comes out of the steam boiler.

There are two normal water quantity bounds N1 and N2
in liters, within which the water quantity should be
maintained during regular operation. The plant provides the
control application with information from various physical
units and sensors, while the control application controls the
plant based on the messages received from the plant. The
control application communicates with the physical units
i.e. the plant and the controllers through messages
transmitted via communication channels. The time for the
transmission can be neglected. The control application
follows a cycle and a priori does not terminate. A sampling
event occurs every five seconds. When it happens, the
control application first receives messages coming from the
physical units. Then the control application analyzes the
information, which have been received and calculates the
suitable pump control value p. Finally the calculated control
value p is transmitted to the physical pump by the
controller. The water quantity g, the steam output d and the
throughput of the pump p are continuous functions of time.

The control application uses the corresponding sampling
data.

We also assume that all messages coming from or going

to the physical units are supposed to be received or emitted
simultaneously by the program at each cycle and there is no
communication failure during system operation.
There are two dangerous bounds for the water quantity in
the boiler: The minimum limit quantity M1 and the
maximum limit quantity M2. Below M1 the steam boiler
would be in danger after five seconds, if the steam
continued to come out at its maximum quantity without
supply of water from the pumps. Above M2 the steam
boiler would be in danger after five seconds, if the pumps
continue to supply the steam boiler with water without
possibility to evacuate the steam.

III. THE FUNCTION BLOCK APPROACH

The latest trends in the development of IPMCS are
concentrated in the development of the evolving
international standards IEC 61499 and IEC 61804, They
both ameliorate the function block construct first introduced
by the IEC 1131 standard on programming languages for
programmable logic controllers, extending it to the new
requirements of distributed control systems.

A function block may be primitive i.e. small enough to
provide a solution to a small problem, such as the control of
a valve, or composite, that is an aggregation of function
blocks, i.e. big enough to control a major unit of plant such
as the steam-boiler. The function block construct is an
abstraction mechanism that allows industrial algorithms to
be encapsulated in a form that can be readily understood
and applied by industrial engineers who are not specialists
in the implementation of complex algorithms. The
functionality of the function block is provided by means of
algorithms, which process inputs and internal data and
generate output data. A function block consists of a head
and a body. The head is connected to the event flows and
the body to the data flows.

The function block concept, as is very well pointed out
in [4], shares many of the well defined, and already widely
acknowledged benefits of the object concepts introduced by
the Object Technology. Objects are stable; they reduce the
complexity of the system and are highly reusable. The
function block shares these attributes and constitutes a well-
established concept for defining robust, re-usable IPMCS
software components.

The TIEC 61499 further defines a general model and
methodology for describing IPMCS applications in a form
that is independent from a specific implementation. An
application consists of one or more function block
instances, interconnected by event connections and data
connections. Process inputs and outputs define the interface
of the application with the controlled industrial process. We
have defined the Industrial Process Terminator (IPT)
construct, to represent, in the function block diagram, the
sources and sinks of the application’s events and data.

IV. THE FUNCTION BLOCK DIAGRAM OF THE STEAM
BOILER

To facilitate the development of the steam boiler
[PMCS application we use the 4-layer architecture
presented in [S]. The bottom layer, that is the real world
layer, is the actual IPMCS system. It consists of the

693

controlled industrial processes, the fieldbus segments used
to interconnect the field devices, the interworking units, the
backbone, the enterprise intranet, the control room and the
engineering workspace. For the development of an
efficient, robust and reliable steam-boiler system, the higher
layers of abstraction must be directly assigned to this layer
and this assignment must be invisible to the engineer. The
next layer, that is the system layer, includes the required
abstractions, used by the ESS to support the function
block’s distribution and assignment process. [t consists of
appropriate abstract representations of field devices,
fieldbuses, interworking units, the backbone
communication subsystem and the related interconnections.
These abstract representations are in the form of proxies of
the actual real world objects in the developer’s workspace.
The appropriate system level editor allows the engineer to
construct the system design and directly map it to the lower
level. Device specification is an example of the means used
to support such a direct mapping.

The third layer, that is called application layer, is used
to represent the required constructs used in the design and
implementation of the IPMCS applications. Function
blocks, data and event connections, Industrial Process
Terminators (IPTs), and industrial process parameters, are
the key abstractions and correspondingly the main building
blocks of the application layer diagrams that are
constructed by means of an application layer editor. The
IPT instances of the diagram, must directly be mapped into
the actual devices that interface the IPMCS with the
controlled processes of the industrial environment.

In this phase of the development process, we mainly
concentrate in the application layer and we construct the
function block diagram of the steam boiler control
application. We assume that the function block types shown
in figure 1 are available for the implementation of the
system.

LT |
LT BT e e R

Rayd § e

Lt

w1

& b - AR AALA.
PR

Figure 1. Function block types used in the steam boiler
control application.

The PUMP_CONTROL_FB and IN_ANALOG_
DATA function block types implement a service interface
for the pump control unit and the water level measurement
unit, respectively. The FB_WLMU type checks for the
following water level measurement unit failures:

a) ifthe unit indicates a value that is out of the valid static
limits- i.e. between 0 and C and

b) if the unit indicates a value that is incompatible with
the dynamics of the system that is expressed by Qest.

Qest is the estimation of water level produced by
another function block. Qvalid is either Qmeasured or
Qestim. The FB_SU function block type captures the
behavior of the system in the case where the water level is
above NI or below N2. The FP_PID function block type

represents a PID controller for maintaining the water level
between N1 and N2.

Using instances of the above function block types, we
proceed to the construction of the steam boiler function
block interaction diagram. Figure 2 represents part of a
draft function block interaction diagram that is mainly used
to highlight the distribution process of the function blocks
and the assignments required to take place in the
interworking units. The ANALOG_INPUT function block
instance has an event connection with CLK. When the
ANALOG_INPUT accepts the event REQ it reads the
digital value q of the water level and transforms the value to
an [EC 61499 type. This value is read by the

WATER_LEVEL_MU through the data connection QO-
QMEASURED and is compared with the estimated water
value QEST for it's correctness. [f the measured value is
valid, the SUPERVISION function block reads it, and

e -

e b

Figure 2. Part of a draft function block interaction diagram
of the steam boiler control application.

The PUMP_CONTROL function block is connected to
both the PID and the SUPERVISION function blocks.
During normal operation the water level is between N1 and
N2 and PUMP_CONTROL accepts the XQUT of PID.
Otherwise, and when the water level is outside of the range
N1-N2 the PUMP_CONTROL accepts the PUMPVAL
from the SUPERVISION function block instance,

For the construction of the function block diagram we
utilized the IEC 61499 Editor v20010203, provided by
Rockwell Automation [6]. This demonstration software,
which is in the form of a Function Block Development Kit,
enables to build and test data types, function block types,
resource types, device types and system configurations
according to the [EC 61499 Publicly Available
Specification (PAS).

V. DISTRIBUTING THE IPMCS APPLICATION

The next phase of the development process, after the
construction of the function block diagram, deals with the
mapping of the functionality captured by the IPMCS
application into physical resources such as field devices.
According to the IEC61499, drvices may communicate
with each other over one or more communication links, and
may interface to controlled machines and processes. The
IPMCS applications may be distributed among one or more
devices. As far as, the field devices are interconnected with
the same fieldbus, the distribution of the IPMCS application
is a simple task. Data and event connections are mapped to
the specific’s fieldbus communication mechanisms and real
time constraints are satisfied by the fieldbus nature.
However, things are going to become more complicated,
when the application’s function blocks must be distributed

694

among devices assigned to different ficldbuses of the same
or different type.

This is a common situation in the industry, where a lot
of proprietary fieldbuses have been installed in different
time periods under different circumstances. [f, for example,
an enterprise wants to transfer data between two buildings,
with each one having its own fieldbus, it has to interconnect
the two heterogeneous fieldbuses. There is also a
requirement, from the corporate level to have integrated
monitor and control of industrial process assigned to
different fieldbus segments, through the enterprise’s
intranet.

The obvious solution to the above problem, is to use
interworking units to interconnect each fieldbus segment
with the enterprise intranet. Although this solution, address
the requirements for the integrated monitoring in corporate
level, it does not satisfy the requirement for real-time
interconnection between fieldbus segments. To satisfy this
requirement, we were guided to adopt the network topology
shown in figure 3. Our approach to use interworking units
between each fieldbus and the enterprise intranet, leaves
unchanged the already defined process of each fieldbus and
only requires the extra effort for the interconnection of
function blocks assigned to different fieldbus segments.
This would result, in the least effort that the enterprise
should spend over the configuration of the new system.

¥

30 . g
-- ..x:,‘:?_,,..‘f,_h_(‘f‘,,,w‘w.,..m,.._,m.‘w% ,"“ﬁ.fgn e
“ = :,\ ﬁm -t e g e ST

,,,, el Support Sveslem

SCARM clients "'"”'w“‘"'““m’"‘i.l

Tterweyriing
it

] i i
Inberworking Hep T t o BT
it pih 1 K\Q&ﬂl

,:;\\cé.{",,,wn_{-‘ 3

NG

a

5 Fiddbus &

R

Figure 3. The proposed network topology for the real-time
interconnection of fieldbus segments.

The communication subsystem used to interconnect the
fieldbus segments must provide the quality of service
required to meet the timing requirements. ATM is one of
the successfully used technologies for the interconnection
of fieldbuses [7][8]. However, to satisfy the key
requirement of the simplicity of the communication system
as well as the low cost of the equipment, switched Fast-
Ethernet was selected.

We were guided to use the above network topology
since the industry's solution to the problem of
interconnecting heterogeneous fieldbuses, is not very clear.
For example, Softing's Profigate is an Ethernet-Profibus
Gateway which consists of a PROFIBUS connector, CPU
board and an Ethernet TCP/IP software interface [9].
Another example is Siemens' SIMATIC OPC SERVER,
which offers libraries for distant connectivity [10]. Two
major reasons, though, put these solutions in question: first
the real-time transmission between two fieldbuses cannot
be guaranteed, due to the Ethernet backbone, and second
these gateways offer only PROFIBUS connections. Another
commercial product that promises connectivity between
independent fieldbus segments, is SST-X-Link from SST
Network gateways [11]. Although this product seems
promising, a great effort from user's part for configuring is

required, and additionally it doesn't offer the capability for
remote configuration, diagnosis, monitoring, etc.

Working in the system layer of our architecture for the
steam-boiler control system, we construct the system
diagram using the constructs of the system layer editor. We
next proceed to the distribution of the function block
instances and their associated data and event connections
from the application diagram to the system diagram
resources. Figure 4 represents such a distribution. We
assign the function block instance ANALOG_INPUT
(FBI) to a Profibus device and the PUMP_CONTROL
function block instance (FB5) to a Lonworks device. We
also assign the PID, the FB2 and the FB3 function block
instances to the Control Application module of the Profibus
interworking unit.

LONWORKS &,

S PR S g G
C-", iy {:i«gﬁ\ n;% [vI0ES ‘%
A 0 R T %
R S .
_'[J Pats %

Figure 4. Mapping of application-diagram to system-
diagram.

It is evident that an ESS must provide all the functionality
required by the function block’s distribution and
assignment process to the system layer building blocks and
mainly to field devices. Actions of the ESS that have no
meaning in the application design phase, but refer to the
configuration of the underlying communication subsystem
must be properly hided by encryption and encapsulation
mechanisms.

V1. CONFIGURING THE IPMCS SYSTEM

To implement the above mapping of the application’s
function block instances, to the system diagram constructs ,
a configuration phase is introduced. During this phase the
interconnections between function blocks across device
boundaries and filedbus boundaries must be considered. As
it will be evident, the most of the actions may be automated
by the appropriate ESS, disengaging the engineer from the
particularities of the communication subsystem.

To proceed with the study of the configuration phase,
we assume the use of an interworking unit having a
modular and IEC compliant architecture as the one briefly
described in the followings. For the design of this open
interworking unit, we had to agree on some well-defined
rules to govern the interactions among its subsystems. We
use the term “architecture” to refer to the system’s structure
that consists of active modules, a mechanism to allow
interactions among these modules and a set of rules that
govern the interaction [12]. Figure 5, shows this part of the
interworking unit’s architecture, which covers the
operational phase of the system. It is composed of the
following active modules:

1. Local Fieldbus Proxy (LFP)

2. Control Application (CA)

3. Remote Fieldbus Proxies (RFP)
4. OPC server

695

Interworking Unit

»|ECT.
QPC Server| s s
*1 Remote Fiieldhus

proxie;

Cantrol B
Application
5¢ o
fevei Ty Fha prosies
\ ”:' i ECTs
BT B st P

i
)
LA
£

Leveal Fielddlyay
expotfed Fis

<5

r;;q"k e b 423) o

! v 1 Pty Weaprler) ,
v ‘
.k EFieIc'c:bus APil

Figure 5. Architecture of the inteworking unit.

The LFP module is used to abstract the specific
fieldbus, to the IEC 61499 level so as the interoperability in
fieldbus level may be achieved. It mainly consists of the
local fieldbus exported function block proxies. A function
block is considered as exported, if it provides or accepts an
event or data from a function block that is located, either in
the CA module or in a remote fieldbus.

The CA module is an optional module and is only
required when there is a need to assign function blocks to
the interworking unit. We usually discourage this design
choice, but there are cases that such a decision is enforced
by the system. In these cases, the performance of the
interworking unit is degraded and an upper limit to the
processing requirements of this module must be defined.

The RFP module acts as a container for all the remote
fieldbus proxies that must be present in the interworking
unit.

Finally the OPC server module is also an optional
module that is required when there is a need for
commercially available SCADA clients to be connected to
the controlled process. This module acts as a wrapper to our
architecture, to provide an OPC-compliant interface. A
detail description of the interworking unit’s architecture is
givenin [13].

For the implementation of the mechanism to support the
interactions among the above modules:

1. we use a daemon process and a set of data structures,
as is shown in figure 5 and described in detail in [5]
and

2. we have defined a set of rules to meet all functional
and non-functional (performance, extensibility and
fault-tolerance) requirements.

Due to the strict timing constraints imposed by the
application domain, the interworking unit is characterized
as hard real-time. Data processing is expected to recognize
and to react to events as soon as possible or even in the
ideal case instantaneously. The key issue is how efficiently
the interworking unit can handle such requests and how the
underlying communication subsystem can provide the
required quality of service (QoS). To satisfy these
requirements, RTLinux has been adopted for the
implementation of the interworking unit and IP over ATM
for the interconnection of filedbus segments [13].

The result of the distribution phase of the steam boiler
function block interaction diagram is a set of configuration

files. There is one configuration file for each interworking
unit of the real world layer. The configuration file that is
produced automatically by the ESS, contains in human
readable representation the configuration of the
interworking unit to meet the requirements of the specific
application. We adopted XML for the format of the
configuration file to allow the exchange of configuration
information among different ESSs. We have expanded the
XML specific tags introduced by the IEC61499 only for the
description of the information that is related to the RFP
module. In this part of the configuration file
interconnections with remote fieldbuses and function block
proxies should be described.

Figure 6, shows the layout of a configuration file, which
captures the information for one of the interworking units
of the steam boiler control system. We can discriminate the
three resources named LFP, CA, and RFP. Each part begins
with the declaration of the related resource as
RTL_MODULE, which is a custom type. Its body contains
references to the function blocks assigned to the resource as
well as the definition of the appropriate data and event
connections. References to algorithms that the function
blocks encapsulate, and they will be downloaded later to
the Interworking Unit are also contained.

The LFP and CA configuration parts, for example, refer
to the function blocks that exist in the corresponding
resource. These function blocks are real function blocks or
proxies of function blocks assigned to field devices.

Configuration files are downloaded to the target
interworking units. The interworking unit translates off-line
the human readable XML representation in machine
readable, which is the one expressed by the proper update
of ECT, DCT and required proxies.

Figure 7 shows a snapshot of the interworking units
internals that highlight the way that function blocks
communicate across device and fieldbus boundaries.

For the ANALOG_INPUT function block (FB1) to
communicate with the WATER_LEVEL_MU (FB2) that is
assigned to CA resource of the interworking unit a proxy is
automatically created by the ESS in the interworking unit’s
LFP module. At the same time the related DCTs and ECTs
entries are updated. The interaction mechanism uses this
information to interconnect the FB1 proxy with the FB2
function block. To implement the communication links
from FB3 and FB4 to FBS5 that is allocated to a field device
of a lonworks field bus, a proxy of the FBS is
automatically generated by the ESS in the interworking
unit’s LFP module. At the same time the related DCTs and
ECTs entries in both interworking units are updated.

VII. CONCLUSIONS

Using the steam boiler system as a case study, this paper
has discussed a general approach for the development of
distributed IPMCS applications. We adopted the function
block concept, to improve productivity in terms of re-use,
reliability, flexibility and interoperability.

We exploited the architecture of the interworknig unit,
which was defined to address the problem of
interconnecting heterogeneous fieldbus segments, to allow
a uniform development of applications from the ESS point
of view. Our architecture promotes re-usability, obtains
interoperability in the fieldbus level and favors automatic
code generation. We constructed the whole architecture

696

¢Fxml wernipnett 8 encpding= UTE-R"7r

Lo ABREERRL Lgsten SYSTER V. A dbParyElenent and” >

Chptben Hapes Interaneking DLt EnerenkstSysten DaFiopst kew”
fheratIfivabinn LLandarib" aEa09-2" 53

iPer
e

sioninba Broandeatinn="CLAE" Uersion="#.40 futhor="g317 Sate="T000-0%- 0% £t
Fiw HenseIntereorking Unit 0oy AR Type-~Fhask pERiLE~ »

CEesaarTe BaprsTLEPY Tgpes"RT(_MIDRIE" >

FEMECTE >

AT Hane<"FB_TINER™ Type<"TIRER™ 22

B Madiee TR Types"T0 2>

{Ferntbranentions>
ATpnnectian Sonrves"FR TIBER, THRIGLER™ Destisalimes S S fant i N
Chprner iy Soprnee-"FER, EVERT OUT Deatinat boa-"CA. F B0 05 SRLEPLRIE" 1}

£ Twent ConapetLonsy

Eabaloanrobionsr
thinaenli i Soircee abEE b Destlaation-Fh_EisER.si~ ¢
stoppettion Spurces="#* beszination-“FHR WNTER LEWEL % GBI~ 45
hpaieetdan Stircea 1 Mesd Lng® Lo FRZ W EER T80T 788 fuRE™ ¢

SHesnuye Fapes"AFP™ Types AT MIBELE™ >
SWldiriTwork LnFa>
= <Ingerlnit ManhineHeme BIELBOYS TIHITRE0™ IF Medress«"185 8.4 2"
F bebdbak Y gpe =" FROF LRI >
LFRPRUEY Mome="FRY” Eypas R SRR {5 FRY" >

SRR _PRIXY>
L/ fugerinityx
LInterinit HackineNapes FIELDSRT SELHET 1P Adgrescs"195.8.90, 127
Fied dbusppes"L OH0IKE" =
FR_PHOAY Mase<"FHAF™ Pyge<"F&" OTM-"TATHEIS >

SRFTGUNATIO

b LEFR, BHISY>
N Lfhngerumizs
LS R e B Lyl
LFRvsmircey

4 brvicrs
synTen:

= TrraneL K1on SOpene="RRRPER UTER SR Dt Dpat e = FRZ ABERR LEwr W 4" 0
by cLompentinn Spnrces WHAPPER _TTEM BEIA Dyat bnal Prae T3 SU0AN_1TUOEL MU INPUT L)
eponection Sunrpset 2 SUPERUUE LN ERECHEZ™ Dot kosllon"08 E52 250 RLG/
fFEatalpnnectionsy
L (P ieEwerks
Veiseroaries
Shenerere Hates"CAY Tppes"RTL, BIDILE™
1 crammtuack >
2 OFE Hanes FRYS Type="F4 PID* #>
Lo tSerntTonnertipnd
o <Eonaettion Jouries"FRE.FLD_UHE
3. Pestination<"NFP.F IELOSUS_[5H05000 . T %, PIR_CONTRQ) _CHMALL" 7
af= i penbtonhect Lonsy
[E 5 Pt aflanaect sy
§ CLBaEDELal SEDEH=EY DRaY LRt Lon="F RSP LB Mo 43
o rerenen
;-,;‘f hotorttive Sourcr-"FOR.0T0 doure
(g Dext ipation~HFP.FIELDRYS [SOROME.FRLFIR_ENPUE™ 4
13 tobbalusaptiiongy
- SFEERebunTil

§ FR s our Lyy

Figure 6. Outline of the Interworking unit’s configuration file.

having in mind the system properties of modularity,
expandability, robustness, and flexibility.

_./ ain

CA \,ﬂ\. = ji=2 RFR i Ca
f;‘ ; L & EL?P
?:sﬁ?msmlet * Lon Wrapner

Figure 7. Interworking unit’s configuration enables the
distribution of the steam boiler control application

We consider the process of developing [PMCS
applications in the three bottom layers of our 4-layer
architecture of IPMCSs. The result is the construction of an
application layer diagram that is independent of particular
field devices or even fieldbuses. The subsequent mapping
of the application-diagram to the system-diagram, fully
supports the distribution phase of the control application.
The adopted human readable representation enables the
exchange of configuration information among ESSs and the
refinement of the configuration file by the engineer to
increase performance. The automatic production of the
configuration file by the ESS disengages the engineer from
the particularities of the communication subsystem. The
engineer has only to concentrate to the actual application
and not to the implementation details,

We hope this work will help in the direction of
simplifying the development process of distributed IPMCS
applications and in the direction of developing
interoperable IEC 61499-compliant systems that will
provide the ability to the industry to utilize heterogeneous
software environments, with IEC 61499-compliant software
tools and devices available from a wide selection of
vendors.

Acknowledgements

Chris Tranoris was supported in part by the Greek General
Secretariat for Research and Technology in the context of
the PENED 99 ED 469 project. We gratefully thank Nick
Kousoulas and Stamatis Manesis for their helpful
discussions on the steam boiler control problem.

References

[1] 1EC Technical Committee TC65/WG6, “IEC61499 Industrial-Process
Measurement and Control — Specification”, IEC Draft 2000

[2] TEC SUB COMMITTEE No. 65C: DIGITAL COMMUNICATIONS,
WORKING GROUP 7; FUNCTION BLOCKS for PROCESS
CONTROL , “IEC1804 General Requirements”, [EC Draft 1999

[3] J.- R. Abrial, “Steam-boiler control specification problem”, August 10,
1994,

[4] R.W. Lewis, “Modeling Distributed Control Systems Using IEC61499
Function Blocks™, Technical Articles, URL:
http://www.searcheng.co.uk/ selection/ control/tech.htm

[5] K. Thramboulidis, C. Tranoris, “An Architecture for the Development
of Function Block Oriented Engineering Support Systems”, IEEE
International Symposium on Computational Intelligence in Robotics
and Automation, Canada August 2001.

[6] “Function Block Development Kit”,
http:/iwww.holobloc.com.

[7]1 O. Kunert, “ Interconnecting ficldbuses through ATM”, IEEE
international workshop on factory communication systems, 1997,

[8] C.Cseh, M.Jansen, JJaspemeite, “ATM networks for factory
communication”, 7 IEEE International Conference on Emerging
Technologies and Factory Automation, 1999.

[9] Softing's Profigate Datasheet, http://www.softing.com

[10] SIMATIC OPC Server, User guide http://www.siemens.com

[11] SST-X-Link gateway, http://www.mysst.com

[12] Maarten Boasson, “The Artistry of Software Architecture”, IEEE
Software, November 1995, vol, 12 No 6,

[13] C. Tranoris, S. Aslanis, K. Thramboulidis, “Using RT_Linux for the
interconnection of industrial fielsbuses” ASME intemational, First
National Conference on Recent Advances in Mechanical Engineering,
September 17-20, 2001 Patras, Greece.

Rockwell Automation,

