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Abstract — In the last few years certain
researchers exerted considerable effort to develop a
special branch of soft computing aiming at the
control of mechanical devices. This research started
from considerations strictly restricted to the realm
of classical mechanical systems from which the
Symplectic Group describing their general inner
symmetry was chosen as a source of uniform
structures in this new branch, while tuning their free
parameters as well as the possibilities of replacing
this process by simple abstract algebraic operations
of limited calculations were considered, too. Later
on via considering the mathematical properties of
these procedures more generally the potential
application of several Lie groups as well as using the
Symplectic Group in electric and electromechanical
systems was outlined. Till now the ''Generalized
Lorentz Group', the 'Stretched Orthogonal
Group"”, and the special, so-called 'Minimum
Operation Symplectic Transformations'" were
considered for this purpose. Observing the fact that
these methods apply rigid rotation of orthonormal
set of vectors in an abstract space one or two times,
the aim of the present paper is achieve further
reduction of computational complexity by
introducing the ''Partially Stretched Orthogonal
Matrices". As it is demonstrated via simulations
made for 3 DOF SCARA arm this group eliminates
the deficiencies of the originally used "Stretched
Orthogonal Group''.

I. INTRODUCTION

A new approach aiming at the adaptive control of
mechanical systems of which we have insufficient and
inaccurate  knowledge regarding their dynamic
properties and dynamic interaction with their
environment wag initiated in [1]. It was conform to the
need for developing a universally useful controller
making it unnecessary to include a particular model of
the robot-work-piece interaction in the control software.
Instead of this it aimed at a more intelligent control

which is able to "learn" the main features specific to the
technological operation under consideration. For this
purpose the Symplectic Transformations describing the
inner symmetry of the classical mechanical systems
were used as “uniform models", a ‘"deformation
principle"” as the basis of adaptivity, the idea of "partial
system identification" [2] as well as the "Standard
Symplectising Algorithm" described e.g. in [3], too,
were utilized. The main idea of this approach was
summarized in [4].

Following the first successes it cropped up soon that
essential phenomenological problems, that is that the
"momentum part” of the canonical coordinates cannot
be directly measured, the Symplectic Group as well as
the symplectising algorithm were temporarily dropped
and the Orthogonal Group diagonalizing a model inertia
matrix as well as rotational and stretch parameters tuned
in the conventional causal manner as usual in several
sub-fields of soft computing were considered [5-7]. This
approach was found to be strongly akin to the traditional
Soft Computing (SC) approaches.

Following the analysis of the "uncontrolled norms"
occurring in the "Standard Symplectising Algorithm"
the idea of the "Minimum Operation Symplectic
Transformations" was invented by Tar in [8]. The
"decent” behavior of this transformation made it
possible to drop the simultaneous tuning of numerous
parameters as it was done in the case of e.g. [5-7], and
to search further possibilities for realizing learning as
"partial system identification” carried out via explicit
algebraic procedures [9].

The present state of this approach seems to
correspond to the creation of a new branch of Soft
Computing for particular problem classes possibly
wider than that of the control of mechanical systems. On
this basis the author of the present paper has the opinion
that it would be expedient to contribute to its potential
success by further decreasing its computational
complexity via using a group of transformations far
simpler than the till investigated ones.

Formal analysis of the mathematical properties of the
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"Minimum Operation Symplectic Transformations"
opened the way to the potential application of other Lie
groups than the Symplectic Group. New ones as the
Generalized Lorentz Group and the "Stretched
Orthogonal Group" were investigated for this purpose
[10]. A study of these groups revealed that each of the
transformations till considered can be built up of rigid
rotations of orthonormal vectors and of certain stretch
and shrink operations. The difference between them
rather consists of the number and dimensions of the
vectors considered while the basic idea of the partial
system-identification essentially remains the same.

The paper is organized as follows: Part II briefly
summarizes the idea of "partial and temporal system
identification" and the role of the possible Lie groups in
it. In Part III analysis of the transformations related to
the "Minimum Operation Symplectic Transformations”,
the "Generalized Lorentz Group" and the "Stretched
Orthogonal Group" are given. Following that the
"Partially Stretched Orthogonal Transformations"” are
defined. In Part IV simulations results are analyzed,
while Part V contains the concluding remarks.

II. THE IDEA OF PARTIAL AND TEMPORAL
SYSTEM-IDENTIFICATION

Formally any adaptive control problem can be
formulated as follows: there is given some imperfect
model of the system to be controlled, on the basis of
which some command signal is calculated for a desired
input i as e=g(if). If the system's response to this
command (inverse dynamics) is described by the
unknown function ¥ =y(@(id))=f(i¥), normally the
realized response if differs from the desired one id.
Normally one can obtain information via observation
only on the "net" function f(), and that this function
considerably may vary in time for instance due to the
external environmental influences. Furthermore, in
general the only practical tool to "manipulate” the
nature of this function is only the deformation of its
actual input i%” in comparison with the desired one. The
aim is to achieve and maintain the i9=f(i4"):=g(i%) state,
that is the problem of adaptive control can also be
formulated as a fixed-point problem. [Only the nature of
the model function @() can be directly manipulated.]

On the basis of the idea of the renormalization
transformation applied in Chaos Theory, in [11] the so
called "Modified Renormalization Algorithm” was
suggested for finding the proper deformation factor for
a SISO systems in the form of a series as

Sﬂ+1f(.5'u.5'"_l il )= x* (n

If the situation of 5, —1,....s,5, ..., = 5 occurs sx’
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just corresponds to the desired deformation of the input

according to the above program (several convergence
issues also were investigated in [11]).

To For MIMO systems similar series of nonsingular
transformations can be invented but extra restrictions
must be made to eliminate the inherent ambiguity as
f(s Sy .5,0-5X")=x%,§5,.,5,.5,.,,....5, }. Appropriate

Y n-1"p-2"
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convergence is required not only in the norm of the
vectors but in their direction, too. For avoiding 0 to 0 or
0 to finite-type singularities we may introduce at least
one or more "formal", that is physically not interpreted
parameters in f and in x°, too. The idea is as follows: via
putting appropriate number of almost arbitrary column
vectors near f and x’, two quadratic matrices [f] and [x“]
can be obtained. Let us so utilize ambiguity to obtain
non-singular, easily invertible matrices also forming
some Lie group. In this case the [s,, ] [F]=[x’] matrix
equation can simply be solved as [5,:/1=[x"] [£]"", and
the solution so obtained will also belong to the same Lie
group.

III. THE PARTICULAR TRANSFORMATIONS
HERE CONSIDERED

For instance any Lie group defined by a basic
quadratic expression defined with a constant G as

M'GM =G, detG #0,detM =1 is appropriate since

M'=G"'M'G. The cases in which

0 1
G=Lg={1..1L-—c), 3:[ | 0} (c is the velocity of

light) correspond to the Orthogonal Group, the
Generalized Lorentz Group, and the Symplectic Group.

In the case of the Orthogonal Group it is easy to
create a rotation that rotates a given vector to be parallel
with an other one and leaves their orthogonal sub-space
unchanged, This means that only the minimum of the
necessary transformations is executed, so in this sense
the given transformation is as close to the identity
operator as possible.
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In similar way the "Minimum Operation Symplectic
Group” and the "Generalized Lorentz Group” S were
invented to obtain such "minimum transformations" as
given above. In them ", f* must be lincarly
independent non-zero vectors as the upper and the lower
components of the vector f. The unit vectors {e®:
i=3,...,2n] are pairwisely orthogonal to each other and
to the sub-space stretched by £, and f%. They can
simply be obtained via rigidly rotating a whole original
orthonormal set.

The situation is very similar in the case of the
Generalized Lorentz Group. If f is a physically
interpreted vector, f=|f|, c¢=1, and one additional
dimension must be added to it and a Lorentzian matrix
is obtained as

flll u(l) e(31 I _i-"lz) 7ﬁsl| 0
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Here €Y is the unit vector parallel with f, ¢=1, the other
ell’s are pairwisely orthogonal unit vectors, each of them
is orthogonal to e¥), too. These vectors can again be
obtained by rigidly rotating an initial orthonormal set in
the &%’ f plain, too.

The "Stretched Orthogonal Group” is the group of
matrices having the form of T=sW, in which W is
orthogonal matrix, and s>0 is a positive parameter.
These T matrices trivially form a Lie group and they
can be easily constructed for a pair of non-zero vectors
a and b as a=Tb. In this operation simply s=|a|/|b], and
W makes a rotation concerning only the two-
dimensional sub-space stretched by a and b.

It is clear that while the calculation of the "Stretched
Orthogonal  Transformations” is very simple, it
immediately yields the solution sought for, its stretch
factor s concerns any sub-spaces. This is in contrast to
the Lorentz matrices or the Minimum Operation
Symplectic Matrices, which apply stretch/shrink only in
the case of well-defined sub-spaces, while the other sub-
spaces are rotated only. This may explain that the
application of the "Stretched Orthogonal Group"
normally gave considerably weaker results than the
Generalized Lorentzian Matrices or the Minimum
Operation Symplectic Matrices gave,

It also is plausible that a relatively simple remedy can
be applied, namely replacing T=sW with

bb”
b'b’
It is evident that if a is orthogonal to b, then Ja=a. If

c=(Bb, then Je=sPb, that is these transformations apply
stretch/shrink only the desired direction, and leaves the

J=1+(s-1) T=WJ 4)

orthogonal sub-spaces unchanged. Following this
direction-selective shrink/stretch, rotation comes as a
gentle operation. It is worth noting that in spite to the
case of the matrices of "Stretched Orthogonal Group”,
these "partially stretched matrices” does not form a
special group. They are simply the elements of the
group of the non-singular quadratic matrices of positive
determinant.

The realization of such transformations in INRIA's
SCILAB 2.5 code is very simple:

// function [s,W,Fi)l=rotshr2(a,b)

// shrinks and rotates b to move it ino a
// the output is the appropriate //

// shrinking factor, the apprpropriate

// matrix, and the angle of rotation
function [s,W,Fil=rotshr2(a,b);
[DIM,col]l=size(a);

small=1le-12; // small factor to avoid

// division by 0

smalll0=10*small;

W=eye (DIM, DIM) ;

na=norm(a,'fro');

nb=norm(b, 'fro');

s=na/ (nb+kicsi) +small;

be=b/ (nb+small) ;
ae=a/ (na+small) ;
Fi=acos (ae'*be);
// rotation
sFi=sin(Fi);
cFi=cos (Fi);
c=ae- (be'*ae)*be; // the part of ae

// orthogonal to be

cnorm=norm(c, 'fro');

if (cnorm»small)&(nb>smalll0) // in this
// case rotation is needed otherwise the
// two vectors were parallel to each

// other

c=c/cnorm;

Wl=eye (DIM, DIM) -be*be' -

c*c'+cFi* {c*c'+be*be’ ) +gsFi* (-
be*c'+c*be’); // rotates b into a

end; // if cnorm>small

J=eye {(DIM,DIM) + (s-1) *be*be';

// stretches in the direction of b

// selectively

W=W1*J; //the output matrix

// the proper angle of

Apart from its last two lines this algorithm is the same
as the code of the "Stretched Orthogonal
Transformations"”.

IV. SIMULATION RESULTS

In the given simulation example a standard 3 DOF
SCARA arm of one telescopic, and two rotary joints
was considered. The calculations were made by using
INRIA's Scilab 2.5. The end-point of the arm was fixed
to a damped dashpot of viscous coefficient Vis=100
Ns/m and spring-constant Sp=1000 N/m to represent
unmodelled environmental interaction. In the space of
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the joint coordinates a PID type control was prescribed.
It could be exactly realized only in the possession of the
perfect dynamic model of the system and the
environmental interactions. It was supposed that the
electric drives of this system are "perfect” ones, that is
they immediately deliver the commanded torque without
any delay or internal dynamics. To avoid instabilities
due to very big transformations in the beginning
transient process, instead of a "full correction” a
"regulated correction" was applied with linear
interpolation in the deformation as

[x* -1l

d

3

1+ max |x

f

+

&)

A=l+e +(e,-1-¢) ¢ & =f+ AR -F)
1+&

For large relative difference y—&, a small value
moderating the norm of the transformation matrices to
be applied, while for small difference it approaches
(1+&). A small positive g means a kind of slight
extrapolation of the tendency, while small positive &
means a kind of "regulation” of the too considerable
differences. In the simulations &=10"" and & =0.2 was
applied.

In the simulations a "simple"” and a "more intricate”
nominal trajectory was prescribed. Fig. 1 displays the
results for the simple non-adaptive PID control, and the
adaptive versions based on the "symplectic”, the
"stretched orthogonal”, and the "partially stretched
orthogonal” matrices. In Fig.2 the appropriate
trajectory reproduction errors are given for the
simulated motion with respect to the workshop system
of coordinates in m units. Fig. 3 reveals that the new
approach has considerable success for the fast motion
and that the step-by-step rotations and stretches/shrinks
applied by it are very close to the unit operator.

V. CONLUSIONS

The figures make it evident that the ™partially
stretched orthogonal" quadratic of (DOF+1) dimension
seriously improve the quality of control, their result in a
trajectory reproduction of almost the same precision as
the much more complicated --also quadratic--
symplectic transformations of the dimension of
2(DOF+1). The weak quality resulted by the simple
"stretched  orthogonal  group” emphasizes the
significance of the sub-spaces of which no sufficient
information is available for the controller. It is
expedient to make further investigations for the
application of the "partially stretched orthogonal
matrices”.
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Fig. 1: The nominal and simulated phase space for
the "non-adaptive”, the "symplectic”, the
"stretched orthogonal”, and the "partially

stretched orthogonal" cases; q; [rad] solid, g,
[rad] dashed, q; [m] dotted.
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