91

Markov techniques for object localization with force-controlled
robots

Klaas Gadeyne, Herman Bruyninckx*
Dept. of Mechanical Engineering, Katholieke Universiteit Leuven, Belgium
Klaas.Gadeyne @mech.kuleuven.ac.be

Abstract

This paper deals with object localization with force-
controlled robots in the Bayesian framework [1]. It de-
scribes a method based on Markov Localization techniques
with a Monte Carlo implementation applied for solving 3D
(6 degrees of freedom) global localization problems with
force-controlled robots. The approach was successfully
applied to problems such as the recursive localization of
a box by a robot manipulator.

1 Introduction

In order to be able to automate force-controlled produc-
tion processes without the need for precise positioning of
the workpieces, fast and accurate localization methods are
required (Figure 1). This paper investigates what concepts
can be reused from successful mobile robotics research
{where Markov Localization methods have been proven
to work, e.g., [2]), and what are the fundamental differ-
ences between mobile robotics and force/tactile controlled
robots.

A broad range of techniques are used for pattern recog-
nition and object localization (neural networks [3], fuzzy
logic [4], possibility theory [5], Bayesian inference [6, 7],
...). Bayesian localization of 3D objects performs infer-
ence in the form of posterior probability distributions that
incorporate information about i) the prior knowledge (*be-
lief”’y about the problem, ii) sensor characteristics, and iii)
the shape of the object to be recognized or localized:

(1)

where P(1 | s, H;) denotes the conditional probability of
a certain position/orientation 1 of the object, given a mea-
surement vector s and background knowledge about the

P(l|'s,Hy) ~ P(s | 1, Ho)P(1| Hy)
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Figure 1: Localization of a casting piece by a robot manip-
ulator equipped with a force-controlled “tactile” sensor,

problem to be solved H (e.g., the shape of the object). In-
formation of both the sensor characteristics and the model
of the object is represented by the likelihood function (a
Probability Density Function (PDF)) P(s | 1, Hy). The
likelihood corresponds to a prediction: given the position
and the shape of the object and taking into account the sen-
sor characteristics, P(s | 1, Hp) indicates how likely the
sensor measurements are. Bayes’ rule combines the a pri-
ori PDF P(1 | Hg) about the position of the object, with
the likelihood PDF P(s | 1, Hp) to obtain the a posterior
PDF P(1 | s, Hy), that represents the information on the
problem after having seen the measurements.

Bayesian techniques are appropriate to incorporate
model-based information, [8, 9], although it might be dif-
ficult to turn available models into an appropriate a pri-
ori PDF. Computational issues such as huge memory re-
quirements and computation time often show up in practi-
cal cases; and therefore, most Bayesian models make sim-
plifying assumptions about the probability functions (e.g.,



Kalman Filters [10], Hidden Markov Models [11]), or rely
on sampling (e.g., Monte Carlo Markov Localization [2]).

The following Section describes a Markov approach for
object localization. Markov Localization (ML) is an iter-
ative way of using Bayes’ rule to update the available in-
formation each time new sensor data comes in. Then, Sec-
tion 3 reviews a case study where a Monte Carlo imple-
mentation of the ML algorithm is successfully applied. Fi-
nally, some considerations about efficiency improvements
are made.

2 Markov Techniques for object localization

Markov Localization [2] is often used in the mobile
robotics world. The approach is capable of solving a global
localization problem, i.e., given a map of its environment,
arobot should be able to localise itself without knowing its
initial position.

2.1 Theoretical derivation of ML for object local-
ization

Let Bel(Ly = 1) = P(Lx = 1| s) denote the robot’s
belief of the environment object’s position at timestep k
and sy the sensor measurement vector at that moment (note
that, in the general case Ly and sy are not of the same di-
mension!). s = sg, 81, ..., Sk represents all sensor mea-
surements until step k. The algorithm finds an a posteriori
PDF that reflects the robot’s belief of the object’s position,
given all available sensor data:

P(Ly=1|s) = P(Lx =1]sg,s1,...,5k).

The robot’s belief is recursively updated with each new
sensor measurement according to Bayes’ rule:

P(Lk :1|SQ,...,Sk) =
P(sk | Ly =1,s0,...,86-1)P(Lx =1 sp,...,51_1)
P(Sk i Sg,...,skfl)

(2)

A crucial factor for the efficiency of ML is the Markov
assumption:

P(sky1,5k4+2,- .- | Lk =1, 80,81,-..,8¢) =

P(skt1,8k42,-.- [ Lk =1). (3)

The Markov assumption says that old measurements si
can be forgotten, as soon as they have been used to update
P(Lx =1] sp,...,si). The Markov assumption reduces
Eq. (2) to

Bel(Ly =1) = aP(sy | VBel(Lk_, =1),  (4)
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where « is a normalization factor. P(sy | 1) is the likeli-
hood function that predicts the measurements for each lo-
cation L. Each new measurement allows the robot to im-
prove its estimate based on a model of its sensors and the
object,

The ML algorithm doesn’t specify anything about how
the robot’s belief is represented; for localization problems,
a Monte Carlo approach is an efficient implementation.

2.2 A Monte Carlo approach for Markov Local-
ization

An often used implementation technique of the ML-
algorithm is the Kalman-filter (KF). It minimizes the mean
squared error estimate (MMSE), which corresponds to
finding the mean value (first order moment) of Bel(Ly) =
1if the system and measurement equations are linear. Ma-
jor problems with KPFs are that (i) first-order and second-
order moments (i.e., the PDF is approximated by a Gaus-
sian PDF) are not enough to describe multi-modal distri-
butions, and (ii) the (Extendend) KF has problems dealing
with non-linear system and measurement equations. But
the KF remains the fastest means of localizing objects, pro-
vided that i) Bel(Ly = 1) and the sensor characteristics
can be modeled as a unimodal PDF, ii) both system and
measurement equations are linear. However, for complex
objects (such as the cast piece in Fig. 1) measurement equa-
tions are inherently non-linear. This limits the use of the
Kalman filter mainly to tracking problems, i.e., the object
has been localized already, but its position and orientation
change (due to the object’s proper motion, or motion of the
robot that carries the sensors).

Approximation by a Gaussian might not be a good op-
tion; then, sampling the state space 1 could be an alterna-
tive. Such a Monte Carlo approach (i.e., any method using
a grid on 1), is a slower but more powerful method of im-
plementing the ML algorithm. For every point of the grid,
the robot updates its belief about the object’s position at
every time step. In this way Bel(Ly = 1) can represent a
PDF of any form.

Monte Carlo methods sample the state space in an “in-
telligent,” problem-dependent way: the resolution of the
grid of the state space is refined where Bel(Ly = 1) attains
sensible values, whereas the grid is not updated in places
where the chance of finding the object is very small. An-
other way of improving performance is to do all prediction
step calculations off line. In this way, computing the like-
lihood function reduces to looking up a value in a lookup
table. However, compared to Kalman filtering, the imple-
mentation remains slower and more memory consuming.



Figure 2: Following a contour with a force-controlled
robot.

2.3 Differences between mobile robotics and
force-controlled robots

As demonstrated before, due to its construction, the use
of the KF is limited to tracking. For the global localization
of objects, a Monte Carlo approach will yield better re-
sults. In the mobile robotics field, localization is executed
in 3 degrees of freedom (DOFs)-—2 for position and 1 for
orientation—, whereas localization of a casting as in Fig-
ure 1 requires search in 6 DOFs (3 for position and another
3 for orientation).

However, following a contour of an object to get in-
formation about its shape and position (Figure 2) involves
only a 3D space, if one knows it is fixed on a horizontal
support. Localizing an object in an area of 40 x 40 x 40cm?
with a precision of 5mm in translation and 2° in rotation
requires a state space grid 3 x 10° times bigger than the
one of a mobile robot in a building of 100 x 100m? with a
grid of 20cm in z/y and 10° in rotation,

Some sensors are “factile,” and thus provide only lo-
cal information; sensor such as laser scanners can provide
global information about the environment or the position of
the object. However, data processing becomes more com-
plex as sensors become more powerful too. When tactile
sensors are used, the time between two sensor measure-
ments is rather high and a couple of seconds are available
between the measurements for updating the belief. When
information about the curvature is gathered by following
the contour of an object with a force-controlled sensor as
in Figure 2, the time delay between measurements is much
higher, because the control problem requires higher rates.
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In this case, a preprocessing of the data (e.g., integrating
the curvature along the trajectory) is possible. One can
choose whether to use likelihood functions that process
raw sensor data (point positions, forces or velocities), or
pre-processed data (e.g., curvature and arc length) derived
from the raw data.

A speed gain can also be obtained by an active sens-
ing approach [12]. In this way, every sensor measurement
gives a large increase in information. For example, when
localising a cube, it is not useful to do 20 measurements
on one side of the cube. The gathered sensor informa-
tion should be as complementary as possible in order to
reduce the second order moment (covariance) of the differ-
ent peaks in Bel(Ly = 1) as fast as possible.

The following section describes a case study where a
Markov/Monte Carlo approach has been successfully ap-
plied to an object localization problem. The case study
concerns a simple object geometry, and the state space lo-
calization problem contains only 3 degrees of freedom (po-
sition and orientation in a plane). (The same problem has
been solved with a Kalman Filter approach by De Geeter
etal., [13].)

3 Casestudy: Recursive localization of a box
by a robot manipulator

A KUKA robot with 6 degrees of freedom equipped
with a 6 DOF Schunk force sensor is programmed to move
until it touches a side of a cube in its environment (as in
Figure 1, with the casting piece replaced), and stops when
a threshold of 5V is reached. It then sends its position
to a program that implements a Markov approach. The
force/torque sensor measures forces in 6 dimensions (3
forces, 3 torques). Position errors are a consequence of i)
errors on the (6) joint positions of the robot, ii) the proper
compliance of the cube and the peg/force sensor (negligi-
ble in this case, due to their high stiffness), iii) measure-
ment noise, and iv) discretization “noise” due to sampling.
We assume a Gaussian characteristic for the error on the
measured position.

Even for this simple object, the combination of the
Gaussian sensor characteristics and the model of the box
results in a mathematically complex function. For an ob-
Ject whose contour can be described as a curve S (figure 3),
the likelihood function with a Gaussian sensor characteris-

tic becomes
1 5=l
L l:[]

where L is the arclength of 5, s indicates a parameter along
the curve S and f(z,y, s) is a function of 2,y and s. For

Plz,y) e/ Evds (5
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Figure 3: Construction of the likelihood function in 3
DOFs of an object with contour S.

one side of the cube, one obtains an expression of the form

1 s=L
- E /.‘3:0 c

where a, b and ¢ depend on x and y, and L is the length
of the side of the cube. The total likelihood function is
the sum along 4 sides. A numerical integration library al-
lows to construct a “likelihood look-up table”—a sampled
version of Pz, y)— off-line. The result in the case of the
cube where a sensor with Gaussian characteristics has been
used is shown in Figure 4. The resolution of the grid de-

P(:c,y) asz+bs+cds (6)
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Figure 4: Visualisation of the sampled version of the likeli-
hood function P(z, y) for a cube with its corner located at
(0,0). The look-up table has been constructed off-line with
the octave numerical integration library.

termines the possible accuracy of the estimated location of
the cube.

The result of an approach with the look-up table from
Figure 4 and a variable number of samples can be seen in
Figure 5. Samples whose probability gets under a certain
threshold are destroyed in order to be able to reduce the
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number of samples (and hence the required memory and
the necessary time to update all sample probabilities) as
fast as possible. For example, the number of samples in
the previous experiment after | measurement is reduced
with a factor 10! However, to be able to recover from bad
measurements, such an approach is dangerous! Notice that
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Figure 5: Result of the localisation of a cube in 3 dofs. The
considered state space is a “square” with corners (0,0,0°)
and (30,30,90°). The grid resolution is 0.2 cm (linear) and
1° (angular) respectively. This means an initial number
of 2.000.000 samples. With this number of samples, the
localisation can be performed in “real-time” (i.e. less than a
second on a AMD-K6 475MHz, 64 Mb RAM, running the
Linux OS, for all measurements). The “cloud” represents
the remaining samples after 6 sensor measurements. Each
sample represents the position of a corner (left under) of
the cube (different orientations at a certain position are not
visible on the plot!). The “exact” position of the cube is
(17,17,50°) and corresponds with the best estimate. All
coordinates are expressed in cm,

the (in this case simple)} shape of the object has nothing to
do with the (enline) calculation time. Localising the com-
plex shaped casting piece of Figure 1 requires more off-
line calculation time, but once the lookup table has been
calculated, the localisation is as fast as that of the cube.
The calculation effort is mainly important in the first steps
where a lot of samples have to be updated.

In 6 dofs, a stepwise approach where the granularity
of the grid is adapted online, will certainly be necessary
to be able to update all samples in “real-time”. For high



precision applications, one could extend the Monte Carlo
approach and really use different grids for different preci-
sions. A first grid could e.g., be used for localization up
to a precision of 5em, a second one for a precision up to
lem and so on. For this purpose, different sensors (with
different resolutions) could be used (or combined). The
probability of each sensor measurement can be found in a
likelihood function that takes into account the appropriate
sensor characteristics.

One can take into account the symmetry of the object
to reduce memory/time requirements. However, the time
gap of a couple of seconds between the different touches
allows to verify that the approach is well suited for multi-
modal distributions (generated by the symmetries of the
cube): the a posteriori distribution always contains four
peaks. Figure 6 represents the remaining samples after tak-
ing into account 6 measurements.

Figure 6: Localising a cube without taking into account
the symmetry of the object: The figure shows the remain-
ing samples after 4 measurements. The resulting PDF is
clearly multi-modal.

Comparison to (recursive) least-squares. As long as
one supposes that the sensor measurements are distributed
normally, a recursive weighted least squares approach
would yield the same results as the implementation of the
Markov localization algorithm. The major difference is
that the least squares method is only valid if the sensor
characteristics can be written as a Gaussian distribution.
When the sensor characteristic is differently distributed,
only a Markov approach is possible.

Another difference is that the complexity of the least
squares method will increase with the “complexity” of the
object, unlike with the Markov approach where the lookup
table contains a sampled version of the likelihood.
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4 Efficiency improvements

Complexity. Due to the complexity of the likelihood
functions and the large number of states, a Monte Carlo
sampling approach will always be necessary in practice.
Therefore it would be useful to be able to perform the local-
ization algorithm in a lower-dimensional recognition space
(Figure 7). In this way, it is possible to obtain a likelihood
function with fewer degrees of freedom (and thus faster to
evaluate).
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Figure 7: Localization in recognition space.

Another possibility is automating the construction of a
sampled version of the likelihood function starting from a
probability function expressing the sensor characteristics
and a CAD-model of the object.

Pattern recognition The robot should be able to make
a distinction between different objects to be manipu-
lated/machined. This is a pattern recognition problem and
can also be solved by a model-based approach. The con-
tinuous state variable 1 is replaced by a discrete number of
classes and thus less complex than the localization prob-
lem. A localization problem can be seen as a pattern recog-
nition problem where the number of patterns to be recog-
nized tends towards infinity,

To further reduce the computational effort of the pattern
recognition problem with complex objects, the use of lo-
cal/global invariants [14] as used in the object recognition
algorithms for images, has to be considered. An invari-
ant is a specific mathematical function that combines mea-
surements in such a way that the result does not change
under a specific group of transformations, For example,
consider the corner of the cube of section 3. When mea-
suring 2 points on both sides of the cube (in 1 horizontal
plane) and calculating the angle between the lines through
these points, one will allways obtain 90°, no matter what
the location of the box is. In this way, a complex model of
that corner can be replaced by a single value.



Active sensing An active sensing approach based on the
entropy of Bel(Ly = 1} allows i) to filter out “bad” mea-
surements, and ii) to take the most appropiate next sensor
action. The entropy of the robot’s belief is written as

E(Bei(t) = [

Ly

Bel(Ly = 1)log(Bel(Ly = 1))dLy.

It is maximal if the robot’s belief is a uniform PDF.

When using the entropy of the distribution for filtering
out bad measurements, one uses the assumption that a good
measurement will improve the robot’s position estimate of
the object and thus reduce the entropy of Bel(Ly). So

E(Bel(Lk+1)) < E(Bel(Lk))

This means that filtering out bad measurements already re-
quires a certain idea about the Tocation of the object, and
will not work well during the first measurements. One can
only reject measurements if one has already an idea of what
they should be!

The same goes for the choosing the most appropriate
next sensor action. That is the measurement that produces
maximal information and hence maximally reduces the en-
tropy of the robot’s belief. So syy; should be chosen in
order to minimize F(Bel(Liy1)).

5 Conclusions

Although the Bayesian framework in general, and
Markov Localization in particular, are well suited to solve
global object localization in 6 degrees of freedom, com-
putational requirements for representing the multi-modal
non-parametrical PDFs are high. Therefore, several im-
plementation issues are considered. A combination of a
Monte Carlo sampling of the state space 1, combined with
an off-line evaluation of the prediction step of Bayes’ rule
and the use of invariants allow the ML to be executed in
real-time. Construction of the likelihood function from
available CAD-models and solving a pattern recognition
problem would allow production processes to be more au-
tomated in a flexible way. Active sensing methods can help
to eliminate erroneous sensor measurements and speed up
the localization process by choosing the most appropriate
next sensor measurement.
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