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Abstract

We have developed omnidirectional vision systems by
combining digital colour video cameras with conical and
hyperbolic mirrors and applied it in mobile robots in in-
door environments. A learning based approach is intro-
duced for localising mobile robot mainly based on the vi-
sion data without relying on landmarks. In an off-line
learning step the system is trained on the compressed in-
put data so as to classify different situations and to asso-
ciate appropriate behaviours to these situations. Af run
time the compressed input data are used to determine the
correspondence between the actual situation and the sit-
uation they were trained for. The matching controller
may then directly realise the desired behaviour. The al-
gorithms are straightforward to implement and the com-
putational effort is much lower than with conventional vi-
sion systems. Preliminary experimental results validate
the approach.

1 Introduction

The issue we address is the application of a learning
system for navigating a mobile robot in an environment
which the robot has been made familiar with during an
initial training phase. The task of determining its posi-
tion and orientation is to be accomplished mainly based
on visual information, i.e. high dimensional input data,
Even though humans are used to relying on maps for “out-
door navigation”, they manage to find their way in envi-
ronments they have seen before without being mentally
aware of a map, e.g. for their own home.

Visual sensors are becoming more affordable and eas-
ier to use in robotic systems. Given the current state of
technology, it should be possible to accomplish the task
without a plethora of sensors that are not commonly found
in living organisms (such as laser scanners, infrared detec-

tors and large circular arrays of ultrasonic transducers).
The ultimate goal is to work without symbolic signs, arti-
ficial landmarks, beacons and the like.

The need for a robust and accurate localisation method
is obvious; therefore numerous approaches have been de-
veloped for navigating mobile robots in recent years. The
major objective of most localisation approaches is to up-
date and to re-calibrate the internal control with external
sensor inputs. Internal sensors like wheel encoders are
accurate over short distances but fail over longer paths
due to sliding wheels, e.g. during orientation changes. It
is therefore common to combine odometric sensors with
standard cameras. The vision system can then be applied
to recognise certain positions of the environment and de-
termine the robot position and orientation by using pre-
calibrated data. A simple technical solution are artificial
landmarks, e.g. “beacons”. Solutions based on this ap-
proach are robust but mostly limited to structured indus-
trial environments and expensive,

2 Related Work

In the following two subsections, robots are briefly re-
viewed which use optical systems for localisation. Other
approaches based on non-optical sensors, e.g. GPS, radio
navigation and localisation with ultrasonic sensors, which
are not directly relevant to the approach we propose, will
not be discussed.

2.1 Navigation

When a multi-sensor system is used for navigation,
the complexity of the control system grows exponentially
with the number of its inputs. These inputs may be gener-
ated by individual physical sensors, or they may be drawn
from logical sensors sharing the same physical sensing
device but evaluating its output according to different



principles. One way to reduce the complexity of the in-
put is to select the most expressive inputs with regard to
the desired system output (Input Selection) [5] or by sta-
tistical analysis of the input patterns using techniques like
the principal components analysis (PCA). Hancock and
Thorpe [4] implemented eigenvector-based navigation of
an autonomous vehicle. In their experiment, the image se-
quence of the vehicle motion and the corresponding steer-
ing motion of a human tutor are recorded. The collected
training images are compressed with PCA. A new image
without any steering information is first projected onto the
computed eigenvectors., While the original image is re-
constructed with the principal components, the steering
parameters can also be reconstructed.

In [6] the robot task is to navigate along a trained path
within a corridor. All the images along the path and the
associated steering vectors are stored. Based on a fast
algorithm for pattern matching, the position and orienta-
tion of the robot can be calculated from the information
pre-stored in the image sequence. To minimise the com-
putation complexity, images are stored with very coarse
resolution (32 x 32 image pixels). Since the image bank
can increase very rapidly, the approach is only applicable
in small working spaces.

2.2 Localisation

Based on a monocular camera system, the robot system
proposed by Dudek and Zhang [3] tried to calculate the
exact robot position in aroom. A camera image is taken at
each training position with constant orientation. The im-
age set is preprocessed with conventional approaches like
edge detection, extraction of parallel edges, and is fed into
a three-layered neural network. The interpolation error of
unknown positions is very small. However, the approach
is very sensitive to rotational changes of the robot.

A flexible approach to localisation is the use of an om-
nidirectional vision system. With such a vision system
a global view of the environment can be acquired with-
out rotating the camera. Furthermore, it is relatively sim-
ple for the localisation system to deal with new objects.
Approaches employing an omnidirectional vision system
can be grouped according to the method of extracting in-
formation and how the information is further processed.
Yagi et. al. [7] extracted edges of objects and then gener-
ated a mathematical model of the environment. The inter-
polation with unknown images is performed by solving a
linear equation system generated with the training image
set.

The POLLICINO system by Cassinis et. al. [1] can
be viewed as a extension of the system proposed by
Yagi. The detected edges are classified according to their
colours and combined into a colour vector. In a similar
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way to Dudek [3], the generated vector is used as the in-
put of a three-layered neuronal network.

Drocourt et. al. [2] propose a system with an omni-
directional stereo vision system. It consists of a camera
with a mirror that is moved relative to the robot and thus
can get images at two different places. The system uses
probabilistic methods to search the associated parts of the
two images. The used features are edges and the colour
of the areas between them.

In the work presented in [10], the feasibility of local-
isation of a Khepera robot in a small-scale environment
has been demonstrated by using a subspace projection
method.

3 Experiment Systems

The first version of our system (Setup 1) is a camera
combined with a conical mirror installed on a mini-robot
Khepera. The vision system consists of only two com-
ponents: a subminiature camera looking “upright” and
a conical mirror of polished aluminium. The complete
Setup 1 is shown in Fig. 1. The test environment consists
of a miniature “doll’s house” of 40cmx40cm in size. The
walls are coated with textured wall paper and the “room”
includes several pictures, windows and doors.
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Figure 1: Setup 1: the small mobile robot mounted with
an omnidirectional camera using a conical mirror.
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‘We have developed the second version of robot vision
system (Setup 2) for natural office environments. The om-
nidirectional vision system is mounted on the top of a pi-
oneer mobile robot (Fig. 2), which consists of a camera
facing upwards and a hyperbolic mirror above it (Fig. 3).
To avoid image disturbance and to achieve a complete 360
degree omnidirectional view of the environment, the mir-
ror is placed on a transparent plastic cylinder. The images
taken with this system are used to localise the robot in an



environment that was learmed beforehand. The robot is
intended for use in an unmodified real-world office envi-
ronment.

Figure 2: Setup 2: The pioneer 2 DX robot with an omni-
directional vision system using a hyperbolic mirror.
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Figure 3: The omnidirectional vision system based on a
hyperbolic mirror.

The camera records cyclically distorted images (Fig.
4) that are converted to cylindric coordinates to get a
panoramic view (Fig. 5) of the environment. These
panoramic images (or features extracted from them) are
used to determine the robot position in an environment
learned off-line.

-

Figure 5: The panoramic view.
4 Image Processing
4.1 PCA vs ORF

PCA can be used as an approach for dimension reduc-
tion to select features. With the first n dimensions of the
eigenspace, the original image can be reconstructed to a
pre-defined resolution. Since the magnitude of the eigen-
value corresponds to the variability of a random variable,
problems may occur with input variables whose variance
is low but that are nevertheless significant for controlling
the process. Think of a traffic scene in which a small light
that changes from green to red is much less salient than,
say, the large changes in the image caused by cars passing
by.

In such situations, with pure PCA applied to the input
data set, a large number of eigenvectors are needed to rep-
resent control input variables in an appropriate way. A so-
lution to this problem is to use a set of vectors that directly
correlate input and output space, instead of using the
eigenvectors of the input data. Features that should affect
the output are called Qutput Relevant Features (ORF),

Based on a single-layer feed-forward perceptron net-
work, the ORFs can be extracted through training with
the Hebbian learning rules. Assume that the training data
are denoted by z; (j = 1,...,k). If one ORF weight
vector is trained which is denoted by &, then the network
output P is:

Pe= % oppy= G T="a. ()



Unlike PCA, which maximises the variance of the input
data along the weight vector (eigenvector), the learning
rule for the ORF weight vectors is to minimise the di-
rect error, i.e. the difference between the desired and real
values of the output. Obviously, this requires both the in-
put « and the desired output Yg (in our case the absolute
position of the robot in a given coordinate system) to be
available. Then, one element a; of the weight vector @
can be modified as follows:

Aaj = T](YS &= P):?Zj (2)

where 7 is the learning rate. To calculate more than
one ORF weight vectors, denoted by @3, (i = 1,2,...),
we use an approach similar to that proposed by Yuille et
al. [8]. The computation begins with the first ORF weight
vector (i=1) using (2). For calculating further a;(7 > 1),
all the input data are projected onto the last ORF vectors,
i.e. @y,...,a;_1, through which the components of the
input vector, lying parallel to the ORF vector, are calcu-
lated. These components are subtracted from the input.
The element a;; of the vector d; can be then adapted by:

i—1
Aaij =1 (YS = H) (:t:j == ZPkakJ’) B (3)
k=1

Unlike the eigenvectors the ORF weight vectors are
not orthogonal. Therefore, they cannot be used for recon-
structing the original data unambiguously. However, for a
supervised learning system, ORFs are more efficient than
principal components because they take into account the
input-output relation. When modelling a complex non-
linear system, the benefit of finding the ORFs is to deter-
mine a small number of the most significant features and
to isolate them through a linear transformation.

4.2 Overlap Measure

To interpolate the actual position based on some train-
ing examples, the similarity of the features should in-
crease when the distance between the corresponding posi-
tions decreases. In other words: images taken at locations
close to each other must result in similar features and the
features computed based on an image from a more distant
position must not be more similar.

For the development of the visual localisation system,
we need to select some image pre-processing algorithms.
These algorithms were to emphasise the contents of the
images that are important for localisation, and to suppress
those contents that are caused by position-independent
changes. To select the best feature extraction algorithms,
we suggest a measure of overlap.

Assume we have a set of images I; to I, taken at po-
sitions p; to p,. These positions lie on a straight line,
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so that positions p;_1 and p;;; have the smallest dis-
tances to position p;. We then compute the feature vectors
Fy = f(L) to F, = f(I,) using different algorithms.
We define the distance between features as

d(i, 7) = |Fi — Fyl )
and the non-ambiguous radius in feature space;
r(i) = maz(d(i,i + 1),d(i,i — 1)) (5)

A useful feature should hold the following condition for
all i:

r(i) < d(i,§) Vj¢ {i—1,i,i+1} 6)

This means that the two nearest images ;.3 and I;_q re-
sult in the most similar features.

To check this condition we first define the absolute
overlap o

r(®) —d@,5) ¥V d(i5) <r()
and j ¢ {i-1,i,i+1}
0 else

Of(iﬂj) =

(7

which computes how far the feature vector of j reaches
into the smallest non-ambiguous radius of 7. If all o' (4, 7)
are summed up for one position p;, we can see whether
there is an ambiguity at this position.

a(i) = > (i, ])

=1

(8)

If a(z) = 0, the condition (6) is met at position p;, oth-
erwise there is an ambiguity. This test is suitable to au-
tomatically divide a long sequence of images into smaller
sequences (situations) at positions that cause an ambigu-
ity. Within these smaller sequences a numerical interpo-
lator should be able to determine the position out of one
single image.

To have a measure for the whole sequence of images,
all o'(%, j) are summed up over 7 and j and divided by the
appropriate 7(1):

®

In different environments, suitable features can be
selected from diverse modalities such as the complete
colour and intensity images, image regions, energy-
normalised edge images, HST histograms, PCA and ORF
projections, etc. For an optimal feature the relative over-
lap o should be zero and for all others it tells how unsuit-
able a feature is for navigation.



4.3 Sectoring

To tully utilise the global and sometimes redundant in-
formation, the viewing area of the camera can be divided
into multiple sections of the same size. Theoretically, the
sectoring can be achieved by arbitrarily fine resolution.
In our exemplary experiment, it was found that a viewing
area of 180° is sufficient in most practical cases. As an ex-
ample of the Setup 1, each of sectors A, B and C covers an
angle of 90°. All sectors are independently transformed
and normalised. This way, an object in arbitrary colour
will not influence the normalisation of other sectors. With
the help of the sectoring technique, an unexpected new
object or change of the environment at run-time can be
detected and the corresponding sector can be discarded
for interpolation.

For situation recognition using ORF, which will be de-
scribed in section 5.2, these sectors are combined into
pairs which are denoted as pseudo-segments. A pseudo-
segment covers a viewing area of 180°. In the experi-
ments, one ORF vector is computed for each combined
viewing area. The projections of all three ORF vectors
are associated with the robot positions.

‘ transformation
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Figure 6: Sectoring by constructing pseudo-segments.
Here 10 degree “blocking region” is used to avoid that
small unknown objects affects two segments simultane-
ously.

5 Vision Based Situation Assessment

In our earlier work on robot navigation [9], we devel-
oped a “situation-based” control for input from simple in-
frared proximity sensors, The aim was to differentiate be-
tween situations: if the robot encounters many new ob-
stacles it has to give more weight to local collision avoid-
ance and it must temporarily reduce the weight given to
goal tracking. For this purpose a “situation evaluator” was
constructed by heuristic fuzzy rules.

In a situation-based model the complete robot naviga-
tion areas are coarsely classified. The whole control task
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is broken down into subtasks which can be performed in
local “situations™ so that within each situation the input
patterns needed for control correlate to a certain degree,
The classification criterion can be the physical neighbour-
hood or a set of distinctive features. If a learned situation
is recognised to correspond to a known area, then, in a
second step, a fine localisation can be implemented by a
local controller which is specially trained for a situation,
Fig. 7.

global scene (gross)
Classification

situation A / situation 3 \‘

local local Jocal
<ontroller

controller controller

T local scene (fine)
siuation 5

local
controller

absolute position
Position

Figure 7: Dividing a global scene into local control prob-
lems.

5.1 Fundamentals of Situation Representation

In principle, if a global eigenspace is used to project
the situation-related images, the projections of the im-
ages that fall into one situation form a specific mani-
fold. If the dimension of the eigenspace is large enough,
these manifolds are easy to separate, i.e. situations can
be distinguished simply by identifying the point F' in the
eigenspace that the images are projected onto. Fig. 8 and
9 illustrate the process in a simplified manner. Repre-
sented this way, the match between a situation and a new
image can simply be defined as the Euclidean distance
between F' and the manifold of this particular situation.
To differentiate between the situations (“walls” in Fig. 8),
more dimensions than shown in the figures are needed (12
in our experiment with the Setup 1).

Siluation 2

Situation [

Figure 8: Views from the robot camera used in Fig. 1.
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Figure 9: Situation manifolds in eigenspace. These three
manitolds represent parts of the situations shown in Fig. 8.

5.2 Situation Recognition Using ORF

Although the global eigenspace provides a universal
approach for representing different situations compactly,
it is memory-intensive because all the eigenvectors as well
as the situation manifolds must be stored. On-line projec-
tion into the global eigenspace and search in the manifolds
to find the nearest neighbour are computationally expen-
sive and hence time-consuming.

To classify situations, the variance of the projections
of the pseudo-segments on their respective ORF vectors
are used as follows:

e If the robot is located in a situation which it has been
trained for, all the projections deliver the same vari-
ance.

e If the robot is located in other situations, all three
projections differ very much.

Therefore, the situation with the smallest variance is
identified as the correct one. Since ambiguity of certain
degree in the grey-level image-based perception always
exists, the correctness of such a situation classification is
evaluated in a probabilistic sense. Further information,
e.g. the energy-normalised edge images and the hue his-
togram, can easily be added to increase the reliability of
the classification.

6 Position Learning in an Office Corridor
Besides the experiment with the Setup | in a small-

scale environment, we also achieved some preliminary re-
sults with the Setup 2 in a real office environment. The
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robot’s position in this environment is estimated by us-
ing image features which have been learned from a small
number of training images. The learning is based on using
ORFs.

As mentioned above, it is difficult to find relevant fea-
tures in a couple of taken images and the search and eval-
uation of those features have to be directly implemented
to the robots image processing algorithms, e.g. edge or
corner detection. In our experiments, omnidirectional im-
ages of the environment are used as input vectors, which
result in estimated position coordinates with the help of
ORFs.

The images for the described tests have been taken
across the corridor of our working group (Fig. 10). Un-
fortunately, this environment is poor in colour (grey floor,
doors and white painted walls). The most information is
contained in the grey-level images.

i

Figure 10: Testing area is the unmodified office corridor.

The first experiment includes 52 images taken at the
center of the corridor with a constant distance of 10cm
between two neighbouring images. Thus we tested on a
line with a length of 5.10m, lying between two pairs of
opposing office doors (Fig. 11). For this problem, ORF
networks were trained to deliver the z-position on the line.
Note that the door crossing the corridor is a glass door.

Experiments were made by splitting each dataset into
training data and test data. As anticipated, the method
works with neglectable error using all images for train-
ing. The main interest is to reduce the used training data
without losing performance in results for not trained test
data.
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Figure 11: The training and test positions.

The database for the first experiment contained 52 im-
ages of size 612 x 384. We first took every fifth image
(let I = 5 indicate this), which is equal to one image ev-
ery 0.5m, to train the ORF vector. We started with image
6 and finished with 46 in order to additionally get some
information about the method’s extrapolation abilities.

Using the original iamges, the extrapolation results of
images 1-5 and 47-51 were expectedly poor, but on the
other hand the interpolation of unknown positions works
very well with small variances. We made another test us-
ing the orignial image from the mirror and also down-
scaled images of size 128 x 96 (Fig. 12). The training
images correspond to the filled dots, the test images to the
unfilled triangles. Note that in this case, the given image
numbers are set on the z—axis and the estimated ones on
the y—axis, which means that a perfect position estima-
tion would results in a straight diagonal line of symbols.
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Figure 12: Test results of the robot position with respect
to the image number, [ = 5,

In spite of this loss of image information, the method
still delivers good results. Thus we decreased the number
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of training images by setting [ = 10, which means a dis-
tance of 1m between two training images. The results are
still acceptable although the estimation errors increase.

Using the sectoring method, good estimations of robot
position along the z-direction can also be achieved.
Therefore, the proposed methods in section 4.3 can be ap-
plied to eliminate the problem of partial occlusions.

7 Discussions

We showed that a localisation approach based on the
whole and sectors of the omnidirectional images of an ar-
bitrary environment is feasible. The experimental envi-
ronment is part of a typical living room or office, where
mobile robots can find potential applications for service
jobs. The further development of this approach aims at
achieving the following features:

Scalability. The situation-based approach can be scaled
almost arbitrarily. If the movement area is ex-
tended, new situations can be learned to cover the
new area. Additionally, the computation time re-
quired and memory expenses are only linear in the
number of situations.

No geometric model. No additional information of the
environment is needed. Without usage of sophisti-
cated geometric models, the direct mapping leads to
a significant reduction of computational costs.

Universal method. The conventional robot vision algo-
rithms based on segmentation, geometric feature ex-
traction, etc. must always be adapted to specific en-
vironments. The proposed method is generally appli-
cable to environments where geometric or color fea-
tures are difficult to be found and followed robustly.

Low cost. The necessary hardware components are off-
the-shelf low-cost standard products. The perfor-
mance/price ratio is very good in comparison with
other systems that need special hardware,

Obviously, many problems need to be solved to make
the approach applicable in arbitrary environments (with
too few or ambiguous objects for differentiation, large
degree of unexpectness, fluctuations of the illumination,
etc). The probability of the correct situation recog-
nition and localisation can be increased by combining
knowledge-based methods and fusion of redundant mod-
ules evaluating hybrid sensor information. At the moment
the Situation Classifier is realised by physical grouping.
It is desirable that in the future the learning system be



capable of automatically dividing a large number of se-
quences into appropriate situations according to the rel-
ative overlapping measure. Another issue is the size of
the visual area to receive good interpolation results. Since
the amount of memory needed for the local controllers
is directly related to the size of the feature vectors, the
input images should be as small as possible. If, by con-
trast, the images are too small, major distinctive features
are lost. An automatic adaptation to the best size is an
important objective. Furthermore, it is feasible to replace
the crisp situation multiplexing with a soft-switching con-
troller. Moreover, it is necessary to automate the learning
process to make the approach simple to use.
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