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Abstract

We consider the inverse kinematic problem for mobile
manipulators that may assume singular configurations.
Referring to a formal analogy between the kinematics
of stationary and mobile manipulators we adopt the ad-
Joint manipulability matriz approach, and propose an
inverse kinematics algorithm for mobile manipulators
based on the adjoint dexterity matriz. The algorithm
can solve both the regqular as well as the singular inverse
kinematic problem provided that a certain transversa-
lity condition holds. The performance of the new algo-
rithm has been illustrated with computer simulations.
They demonstrate that the algorithm is particularly ef-
ficient in combination with the Jacobian pseudoinverse
{Newton) algorithm.

1 Introduction

A mobile manipulator is a robotic system composed
of a nonholonomic mobile platform and a holonomic
manipulator mounted atop of the platform. Due to
a synergy of mobility properties of the platform with
the manipulation capabilities of the manipulator mo-
bile manipulators distinguish themselves by remark-
ably improved performance characteristics in compar-
ison to their subsystems conceived distinctly [1, 2, 3, 4].
The mathematical modeling of mobile manipulators
relies on control theory of nonlinear as well as linear,
time-dependent systems. Employing the control the-
oretical perspective, we have developed in [5] a large
portion of theory of mobile manipulators mimicking
major concepts and results existing for stationary ma-
nipulators. In particular, we have presented inverse
kinematics algorithms based on the pseudoinverse, the
adjoint, and the singularity robust pseudoinverse of the
analytic Jacobian of the mobile manipulator. Recently,

this approach has been extended further towards defin-
ing a collection of extended Jacobian inverse kinemat-
ics algorithms [6].

The present paper continues an exploration of the
analogy between stationary and maobile manipulators
aimed at providing an inverse kinematics algorithm
able to work at singular configurations of the mo-
bile manipulator. As mentioned above, in [5] we have
proposed a singularity robust pseudoinverse algorithm
giving an approximate solution to the singular inverse
kinematic problem. In this paper we are attempting at
defining a singular inverse kinematics algorithm based
on the adjoint dexterity matrix of the mobile manipu-
lator. Such an algorithm resembles conceptually the
adjoint manipulability or the Newton-Smale inverse
kinematics algorithm for stationary manipulators in-
troduced in [7], adapted to the path tracking prob-
lem in [8], and made a universal tool in [9]. Both the
adjoint manipulability and the adjoint dexterity algo-
rithms remain well defined at singular configurations
provided that a transversality condition is satisfied. A
detailed analysis of the relevance of the transversality
condition in the context of singular path tracking for
stationary manipulators has been accomplished in [10].

The adjoint dexterity inverse kinematics algorithm
is subject to a thorough examination by computer sim-
ulations on an exemplary mobile manipulator com-
posed of the unicycle-type platform equipped with the
double pendulum manipulator. It turns out that the
most efficient use of this algorithm is made in combina-
tion with the Jacobian pseudoinverse algorithm. The
adjoint dexterity algorithm is then switched on around
singular configurations, while the Jacobian pseudoin-
verse algorithm is used sufficiently far away from sin-
gularities. The switching point can be defined with
regard to dexterity of the current configuration. We



have shown that such a hybrid algorithm is capable of
driving the mobile manipulator out of a singular con-
figuration, and directing it toward a desirable position
in the taskspace.

This paper is organized as follows. Basic concepts
referring to the kinematics of mobile manipulators are
introduced in section 2. In section 3 we resume main
elements of the adjoint manipulability inverse kinema-
tics algorithm for stationary manipulators. An analo-
gous construction for mobile manipulators is accom-
plished in section 4. Computer simulations are de-
scribed in section 5. Section 6 concludes the paper.

2 Basic concepts

We shall deal with mobile manipulators consisting of
a nonholonomic mobile platform and a holonomic ma-
nipulator fixed to the platform. Assumingthat ¢ € R,
T € RP, y € R" denote, respectively, generalized coor-
dinates of the platform, joint positions of the manipu-
lator, and task coordinates, we can represent the kine-
matics of the mobile manipulator as a driftless control
system with outputs of the following form, [3],

{ §=Glgu=3T, gi(a)ui )
y = k(g,z).
The system (1) is equipped with m(= n—1)+p inputs,
where [ is the number of independent nonholonomic
constraints. The admissible control functions u(-) of
(1) will be taken from the Hilbert space L2 [0,T] of
square integrable functions of time, defined on the in-
terval [0,7). The pairs (u(-),z) are called (endoge-
nous) configurations of the mobile manipulator.
Given a configuration (u(-),z), we let g(t)
Vg, (u(-)) denote the corresponding trajectory of the
platform initialized at a posture go. We associate with
the system (1) a variational system

{ £ = A(t)E+ B(t)
n=C(t,z)¢ + D(t, x)w,

(2)

being a linear approximation to (1) along the triple
(u(t), 2, q(t)), i.e.
A(t) = A(Glq(t))ult))

o
Clt,z) = 2Hgh2)

B(t) = Gq(t)),
D(t,z) = W

The control system representation and the varia-
tional system defined above allow us to introduce the
instantaneous kinematics of the mobile manipulator as
the output reachability map of (1),

Kyo,r(u(-),2) = y(T) = k(pge,r(u(-)),2),  (4)
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and the analytic Jacobian,
Jgo, (), 2) (v(:), w)

T
c(T, m)[ﬂ@(T, s)B(s)v(s)ds + D(T, z)w,

(5)

corresponding to the output reachability map of (2)
initialized at £ = 0. The symbol ®(¢,s) denotes a
fundamental matrix of (2) determined by the equations

2‘15(15, s) = A(t)®(¢, 5),
ot

More details concerned with the definition of the kine-
matics and the analytic Jacobian can be found in
[5, 11, 12].

Analogously as for stationary manipulators, we refer
to a configuration (u(-),z) of the mobile manipulator
as regular, if the Jacobian Jy, r(u(-),z) is surjective;
otherwise the configuration is singular [5, 11]. The
output reachability Gramian for the variational system

Dyo,r(u(-),x) =

P(s,5) = I,.

17 &(T, 5)B(s)BT (5)8T(T,s) ds 0
0 I,

[C(T,2) D(T,)]" (6)

€] DE, m)]

has been called the dexterity matrix of the mobile ma-
nipulator [3, 11].

3 Adjoint manipulability

Before presenting our inverse kinematics algorithm
for mobile manipulators we have found instructive to
reproduce the inverse kinematics algorithm for sta-
tionary manipulators [7], called the adjoint manipu-
lability or the Newton-Smale inverse kinematics algo-
rithm. The mathematics underlying this algorithm
comes from [13]. Let y = k(z), = € R*, y € R
denote a coordinate representation of kinematics of a
redundant stationary manipulator. Given a position
and orientation y4 of the end effector, we need to com-
pute a configuration z of the manipulator such that
k(z) = ya. To do so, first we choose any configuration
@ € R*. If k(z) = yq, the problem is solved. Other-
wise, we define a ray p = {a(ys— k(z)) |@ € R},
joining the origin of the taskspace with y; — k(z). Let
J(z) = %(a:) stand for the analytic Jacobian. Suppose
that the kinematics are transverse to the ray, which
means that

rank[J(z), ya — k(z)] = rank[M(z), ya — k(z)] =,

where M (z) = J(z)J7T (z) denotes the manipulability
matrix of the manipulator [14]. If the transversality



condition holds, the inverse image k71(p) of the ray is
an (n —r+ 1)-dimensional analytic submanifold of the
jointspace. Clearly, the analytic Jacobian J(z) maps
tangent vectors to this submanifold into (tangent vec-
tors to) the ray, i.e. for a certain « € R

J(2) = o (ya — k(). (7)
A least squares solution of the above equation,
i ==JT(2)A, (8)
involves a vector of Lagrange multipliers satisfying
M(z)A = a (k(z) — ya) - (9)
To compute X from (9) we shall use a matrix identity
A adjA = I, det A4, (10)

where A is an r x r square matrix, adj4 denotes the
adjoint matrix to A (the transpose matrix of algebraic
complements of 4). On assuming transversality, tak-
ing advantage of (10}, and defining the function a as
a(z) = det M(z) (squared manipulability of configu-
ration z), we obtain the following solution of (9)

A = adjM(z) (k(z) — ya) - (11)

Eventually, having substituted (11) into (8), we arrive
at the adjoint manipulability (Newton-Smale) inverse
kinematics algorithm (y > 0)

& = —J" (z) adjM (z) (k(z) — ya) . (12)

Suppose that z(z) is a solution of (12) initialized at
a certain configuration zp, and define the taskspace
error vector e(t) = k(z(t)) — yq. It is easily seen that

é=J(x)t = —ydet M(x)e,

therefore, every component e;, i = 1,2,...,r of the
error evolves in time in accordance with the formula

e;(t) = €;(0) exp (—’y/otdet M(z(s))ds) ; )

The formula (13) yields that whenever the integral
f; det M (z(s)) ds tends with time to +oc, the algo-
rithm (12) solves the inverse kinematic problem for
the stationary manipulator. The algorithm is able to
drive the manipulator through singular configurations
at which the transversality condition holds. Moreover,
the end effector of the manipulator travels along a
straight line in the taskspace.

1094 Adjoint dexterity

Using the concepts of the instantaneous kinematics
and the analytic Jacobian for mobile manipulators,
introduced in section 2, we can construct the ad-
joint dexterity inverse kinematics algorithm for mo-
bile manipulators, mimicking the ideas presented in
section 3. To begin with, let us consider the in-
verse kinematic problem for the kinematics (4), so
given a point yg € R" in taskspace we need to com-
pute a configuration {u(-),z) of the mobile manipula-
tor such that K, 7(u(-),z) = ys. In order to solve
this problem, we pick any configuration (u(-),z). If
Ky r(u(-),z) = yq, we are done. Otherwise, we de-
fine aray p = {a(yas — Ky, 7(u(-),z)) |« € R} in the
taskspace.

Assume the transversality condition of the kinemat-
ics to the ray in the form

d}m{Im Jqo,T(u(')ax): Ya — KQQ,T(U(')J:E)} =T
or, equivalently,

rank Dy, 7(u(-), ),y — Kgo,r(u(), z)] =1
(14)

Then, the inverse image Kq_nfT(u(-),z) (p) of the ray
forms a (Hilbert) submanifold, [15], of the configura-
tion space, of codimension r—1. The analytic Jacobian
transforms the tangent space to this submanifold into
(the tangent space to) the ray, that leads to the fol-
lowing Jacobian equation

Jgo.r(u();2)(v(), w)= alya =Ky r(u(-),2)).  (15)

As in the case of stationary manipulators, in order to
solve (15) for a pair (v(-),w) we apply the least squares
method, i.e. we minimize the norm

% ([ZT(S)'U(S) ds + 'wTw)

with the equality constraint (15). A standard La-
grange multiplier technique, [16], requires the intro-
duction of a Lagrangian

T
Llv(),w,A) = % (‘/; vT (s)v(s)ds -[-wTw) +

AWQE@/%@@B@M@®+D@JW—

0
a(ya — Koo, 1 (ul:), 2)))-
The necessary conditions for minimum yield

v(t) = =BT ()®T(T,t)CT(T, z) ),
{ w = —DT (T, )\,



where the vector A € R" of the Lagrange multipliers
should be computed from the equation

Dyo,r(u(), 2)A = a(Kgo,r(u(),2) —ya),  (17)

containing the dexterity matrix (6). It follows from
the transversality condition (14) that a solution

(2) € Ker[Dy 7(u(), 2), Ko 1 (u(-), 2) — ya]

to the above equation is well defined, module the mul-
tiplication by a function of the configuration. Such a
solution can be found by employing the identity (10)
to the dexterity matrix. Consequently, we obtain

A = adj Do 7 (u(-), &) (Kyo,7(u(-),2) — ya) ,
a(u(-),z) = det Dy rlu(-),z) = dﬁn!T(u{-),m), (18)

where dg, 7(u(-),z) is the dexterity of the configura-
tion (u(:),z) [5, 11]. As a matter of fact, the above
solution provides us with the adjoint dexterity inverse
kinematics algorithm for mobile manipulators, defined
by the following formula

40 {BE&)@E(T, HCT (T, 2(0))
do\z@) )= 7 DI(T,z(9))

adj Dyo, (g (), 2(6)) (Koo, 7 (uo (), x(0)) —ya) . (19)

In order to compute the left hand side of {19), we first
take a control function ug(t), a joint position z(#), and
find a trajectory gg(t) of the platform as well as of
the end effector k(gg(t),z(f)). The variational system
along the triple (ug(2),z(8),qp(t)) is defined by ma-
trices Aa(t), Bo(t), Co(t,2(0)), Dy(t,z(d)) in accor-
dance with expression (3). The curve (ug(:,z(#))) in
the configuration space converges with # — +co to a
configuration ((u(-,z)) such that Ky r(u(-),z) = yq4.
The parameter v > 0 is responsible for the speed of
convergence of this algorithm.

Let us denote by e(f) = Kg r(ug(-),z(#)) — ya the
error in the taskspace corresponding to the configura-
tion (ug(-),z(#)) of the mobile manipulator. Then, a
straightforward computation involving expressions (5},
(6), and the form (19) of the adjoint dexterity inverse
kinematics algorithm allows us to deduce that

d((;EgH) = —ydet Dy, r(ug(-), z(8))e(d),

and to establish the following equivalent of (13)

9
ei(6) = e;(0) exp (—’y/o det Dy, 7 (us(), z(s) ds) 5

i=1,2...,r. (20

Results of an examination of the algorithm (19) by
computer simulations will be presented in the next sec-
tion.

110 5 Simulations

For simulations we shall use the kinematics of a mo-
bile manipulator presented in Fig. 1, composed of the
unicycle-type mobile platform with a double pendulum
manipulator mounted atop of the platform.

st
), R
P Lei .q’:)\\

Figure 1. Double pendulum mounted on the unicycle.

The taskspace of this mobile manipulator is 3-
dimensional and consists of the end effector positions
in the Cartesian space. The control system represen-
tation (1) of the kinematics has the following form

G1 = Uy COS g3
g2 = ug sings
43 = us,
q1 + (I coszy + I3 cos 1) cos ga (21)
y=k(qz)=| g2+ (licosz1 + Iz coszyy)sings |,
l1sinx) + l3sin®;a

where we have substituted x5 = 21 + 2.

Singular configurations of this mobile manipulator
are: uy (), uz(-) arbitrary, z; = £7/2,22 = 0 or = [11].
Now, a short computation shows that the dexterity
matrix at these configurations assumes the form

£ u(-),z) 0
DQQ,T(U(')::'B} = GU,T( ( ) ) )
0 0
with &, r(u(-),z) non-singular whenever u,(-) # 0.
This being so, as long as the platform is moving, any
ray p = {a(py, p2,p3) | @ € R} satisfying ps3 # 0 guar-
antees transversality.
In the representation (21) the controls have been
taken in the form

2
uy(t) = Bio + Z ;g sin 2kt + By, cos 2kt
k=1

1 = 1,2, that yields a 10-dimensional control space.
Lengths of the manipulator arms amount to I; =
I = 1. The performance of the adjoint dexter-
ity inverse kinematics algorithm has been tested on
an exemplary inverse kinematic problem consisting in



reaching by the end effector the desirable position
ya = (3,4,0) from three singular initial configurations
u01(t) = Bio = 0.0001, ugz2(t) = H20 = 0.1, 0.01, 0.001,
z(0) = (w/2,0). It has been assumed that the initial
posture of the platform is go = (0,0,0), and the control
time horizon T = 1. Since the initial configurations are
singular, an application of the Jacobian pseudoinverse
(Newton) algorithm has failed. Therefore, in agree-
ment with suggestions included in [7], in order to solve
the inverse problems we have used a combination of
the adjoint dexterity algorithm (19) and the Jacobian
pseudoinverse algorithm

d (ua(t)) _ [BE () &7 (T,1)CF (T, =(9))
d\=(0)) " " DI(T,=(6))

Dl (u(-)o, 2(8)) (Koo (us (), (0)) — ya) -

The task of the adjoint dexterity algorithm is to
drive the mobile manipulator out of the singular con-
figuration, and to enable the Jacobian pseudoinverse
algorithm. The first algorithm is run with parameter
« = 10° until the squared dexterity d>, +(ug(-), z(6)) >
1075, Then the second algorithm is switched on and
run with v = 1. The quality of solutions obtained in
this way is illustrated in Figs 2-4. Additionally, Fig. 5
shows the speed of convergence of the algorithm. The
initial flat parts of the plots in this figure correspond to
the run of the adjoint dexterity algorithm. It may be
checked that, respectively, 4, 8, and 18 iterations of the
adjoint dexterity inverse kinematics algorithm suffice
to enable the Jacobian pseudoinverse algorithm. The
error plot in Fig 5 corresponding to the case us = 0.1
shows a local increase of the error accompanying a
switch to the Jacobian pseudoinverse algorithm.

6 Conclusion

Within the control theoretic paradigm we have de-
veloped a new inverse kinematics algorithm for mo-
bile manipulators, called the adjoint dexterity inverse
kinematics algorithm. Formally, the derivation of this
algorithm is based on the results of Smale [13], and
resembles a construction proposed for stationary ma-
nipulators in [7]. The adjoint dexterity algorithm is
capable of solving the singular inverse kinematic prob-
lem for mobile manipulators at corank 1 singular con-
figurations provided that the transversality condition
(14) is satisflied. We have learnt form computer simu-
lations that the algorithm works at the regular con-
figurations as well as at singularities, but typically
its convergence is much slower than of the Jacobian
pseudoinverse algorithm (to some extent the speed of
convergence might be controlled by tuning appropri-
ately the parameter v in (19)). For this reason, we
recommend combining the adjoint dexterity algorithm
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Figure 2. A solution to the inverse kinematic problem
for uy(t) = (0.0001,0.1), z(0) = (=/2,0).
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Figure 3. A solution to the inverse kinematic problem
for up(t) = (0.0001,0.01), (0) = (7 /2,0).
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Figure 5. Plots of the error in the taskspace.

with the Jacobian pseudoinverse algorithm. The for-
mer should be used at and close to singularities, i.e.
at configurations of poor dexterity, whereas the lat-
ter - when the mobile manipulator is enough far away
from singularities. An efficient combination of these
two algorithms have been observed in our computer
experiments,
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