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Abstract

When we are to give simultaneously multiple tasks
to a robot manipulator, the task priority manipulation
scheme plays an important role, especially for the case
that they can not be executed simultaneously. Until
now, several algorithms for task priority have been used
in solving the inverse kinematics for redundant manipu-
lators. In this paper, through the comparative study of
existing algorithms, we propose a new method for task
priority manipulation which is developed in terms of
two important criteria, algorithinic singularity and task
error. This manipulation scheme is applied to planar
three link manipulator to demonstrate its effectiveness.

1 Introduction

The concept of task-priority algorithm for manipula-
tors with redundancy was introduced by Maciejewski
et al[5] and Nakamura et al[7]. According to the order
of priority, the task with higher priority is firstly per-
formed and the task with lower priority should be per-
formed utilizing the redundancy. However, the conven-
tional schemes suffer from kinematic and algorithmic
singularities. The kinematic singularity has been the
intrinsic characteristics for robot manipulators, on the
contrary, the algorithmic singularity is the artificial one
which can be compensated by amending the algorithm.
To overcome the difficulties encountered near singular-
ities, the damped least squares inverse and singularity
robust inverse algorithms were developed in [6, 10]. Al-
though the continuity and good conditioning of the so-
TIution is ensured, these are obtained at the expense of
the increased primary and secondary task error due to
the effect of non-null damping factor.

Chiaverini[2] suggested the task—priority redundancy
resolution technique which has no algorithmic singu-
larity. In the task-priority algorithm of Nakamura et
al, the algorithmic singularity occurs when the matrix
product H {I — J*J} loses the rank with full rank
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J and H, where J is Jacobian matrix of the task with
higher priority and H is that of task with lower priority.
To avoid the algorithmic singularity, Chiaverini pointed
out that the secondary task should be performed in
terms of orthogonal projection into the null space of
the primary task. Chiaverini’s scheme is simple and
clear because it does not require the pseudoinverse of
H {I - J"J}, but it causes a large error for the sec-
ondary task.

We will investigate advantages/disadvantages of ex-
isting algorithms in detail, and make clear the char-
acteristics of two algorithms. Ultimately, we derive the
new task priority algorithm from the comparative study
and it does not include an algorithmic singularity with-
out affecting the primary task. Also, it reduces the
error of secondary task.

Section 2 investigates the characteristics of Naka-
mura’s algorithm and Chiaverini’s algorithm and sec-
tion 3 proposes and explains the new algorithm based
on the contents in section 2. Experimental results are
given in section 4. Section 5 draws conclusion. For
future notations, R(*) and N (%) represent the range
space and null space of matrix *, respectively.

2 Comparative Study

To begin with, consider Nakamura’s algorithm for
task priority redundancy resolution proposed in [5, 7).
The task can be specified by forward diffenrential kine-
matics between the m-dimensional task velocity p €
R™ and the n-dimensional joint velocity § € R™ as fol-
lows:

(1)

where the Jacobian matrix J(g) € R™*™ is obtained by
the kinematic structure of the manipulator. If n > m,
then the manipulator has the kinematic redundancy in
the sense that there still remains r = n—m dimensional
set of self motion velocities which do not interfere with
the task velocity. In general, the primary task defined
by (1) can be implemented as following form

p=J(q)q,

q=Jp+{I-J"J}z, (2)



where the matrix J 7 is the pseudoinverse! and z is the
arbitrary vector. In Nakamura’s algorithm, the vector z
should be chosen to fulfill some secondary requirements.
The [-dimensional secondary task is also specified by
the differential form of
h=H(q)g € %, (3)

where H(g) € R"*" is Jacobian matrix for the sec-
ondary task with lower priority. If we are to achieve
the minimum in the sense of the least square error of
[lh — H {||2, then the least square solution z is obtained
by

z=[H{I-JtI\* {h—HJ+p}. (4)
FH{I-J"J } has full row rank less than r{the di-
mension of redundancy), the least square solution is not
unique and contains an additional homogeneous term.
If we allow the duplicate use of notation, then it results
in

¢ = Jrp+H {h-HI)

+{I-ry{1-"H'H}z 5

where

H=H{I-J*J} e (6)

Nakamura'’s algorithm of (5) can be illustrated by Fig-
ure 1. The algorithm is constituted by adding the em-

bedded J*p to the embedded H (b — HJ*p). Tt is
necessary for J*p to be projected onto the range space
of H and it is important to subtract H.J%p from h for
the exact secondary task execution. Also, we can easily

—+
know that the J* and H ' is geometrically orthogonal
because

(JITY I — Tt HT(HE )t
0.

(JHTH'

The residual error becomes zero if p € R(J)
and H retains full row rank, that is I < r and
RHT)NR(JIY) = 02 As shown in Figure 1, if
R(H™) does not overlap with R(J ), then the scheme
of (5) is well performed and the algorithmic singularity
does not occur. However, since it is always possible for
the range spaces of R(J*1) and R(H™") to overlap for
an instant, the algorithmic singularity can be always
occurred in this algorithm.

Basically, there are three kinds of singularities in solv-
ing inverse kinematics, the one is the kinematic singu-
larity, another is the algorithmic singularity and the

!Note the definition of pseudoinverse that A+
AT{AAT)Y = (AT A)* AT especially AT = (AT A)~1AT if
A has full column rank and AT = AT(AAT)~! if A has full
row rank[4].

2Note that R(JT) = R(J*) and R(HT) = R(H™) in Figure
1.
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other is the representation singularity. The kinematic
singularity takes place in the case of either

rank(H) <,

especially the latter case is also called “the secondary
task singularity”. The algorithmic singularity occurs in
either

rank(J) <m or

R(HY)\R(JIT) # 0

when [ < r
or (7)
NHYON(T) £ 0.

where | < r means that the secondary task is under-
specified and /| > 7 over-specified for the degrees of
redundancy. Also, we should find the transformation
between the angular velocity and the rotational veloc-
ity, an orientation for which the determinant of this
transformation matrix becomes zero is termed the rep-
resentation singularity[9]. The kinematic singularity is
the fundamental problem in solving the inverse kine-
matics, but the algorithmic singularity is an artificial
part different from the kinematic singularity. Algorith-
mic singularity can be eliminated or changed according
to the characteristics of algorithm. Irrespective of the
class of singularities, it should be noted that the nom-
inal algorithm of (5) does not produce an acceptable
solution near singularities.

To eliminate the algorithmic singularity problem,
Chiaverini[2] modified the task priority scheme of (5)
as following form

q = J'p+{I-JYI}H'A
+{I-J*J}{I-H"H} 2. (8)

Chiaverini’s scheme of (8) can be illustrated by Figure
2. It consists of adding the embedded J¥p to the or-
thogonal projection of the H A onto the null space of
J. If we overlaps Figure 1 with Figure 2, then Figure 3
is obtained. Now, it is possible to compare the results
of both algorithms. Although the scheme of (8) does
not include algorithmic singularities, it brings the large
error for the secondary task as shown in Figure 3. The
amount of residual error in Figure 3 can be calculated
as following form:

h—Hq=(I-HHYh-HJ"(p— JHh), (9)

and the residual error (9) has a strong relation with the
algebraic condition between J* and H*. For example,
the secondary task has always the error except that
HJ* =0, ie. R(H") L R(J*). Also, the smaller
the angle between R(H™) and R(J 1), the larger the
secondary task error.

Remark 1 (Nakamura etal. (5) vs. Chiaverini (8) )
Although Nakamura’s algorithm of (5) has algorithmic
singularities, the primary and secondary tasks have no
error in the normal case where singularities do not oc-
cur. On the contrary, Chiaverini’s algorithm of (8) has
no algorithmic singularities, however, it hus always an
error for the secondary task except HJ T = 0.

when { > r,
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Figure 1: Nakamura’s Scheme (5)
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Figure 2: Chiaverini's Scheme (8)
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Figure 3: Comparison of Nakamura’s Scheme and Chi-
averini’s Scheme
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3 Task Priority Manipulation Scheme
using Weighted Pseudoinverse

Since it is a good advantage that Chiaverini’s algo-
rithm has no algorithmic singularity, we will use the
structure of Chiaverini’s algorithm in developing the
new algorithm. Now we are to reduce the residual error
of (9) by taking a suitable weighted pseudoinverse in-
stead of pseudoinverse in Chiaverini’s algorithm. Then
the method of (8) can be modified to

Jhp+{I-J§J)Hh
+{I-JHI}{I-H H} 2

q
(10)

and the residual error of new algorithm (10) is given by

h—Hg=(I-HH")h—-HJ}(p—-JH*'R), (11)

where Jif, = WIT(IW=1JT)=1. The algebraic
condition to make the residual error of (11) zero can

be obtained as follows:

HJY, =0 HW g = 0. (12)
As a matter of fact, the condition (12) means the in-
verse weighted orthogonality using the positive definite
weight. If we can find the positive definite weight ma-
trix satisfying above condition (12), then we can ex-
pect to remedy the limitation of Chiaverini’s algorithm
which causes a large secondary task error. The fol-
lowing lemma can help the choice of the weight matrix
satisfying (12), but it does not always bring the positive
definite weight.

Lemma 1 (Magnus & Neudecker : 1988 [4])
Let W = J'J + H'H > 0, then the following state-
ments are equivalent:

1L RIAHNRIN) =0

2. JWHJT = JJ+

3. HWYH" = HH*

4. JWHHT = 0.

Lemma 1 says that HWTHT and JWJT are
idempotent if R(HYYR(JT) = 0, and the charac-

teristics of the idempotent brings the inverse weighted
orthogonality as follows:

HW*HT = HWrHTHWtHT
= HW*TJT7+ HTH)YWYHT
—HW* JTgw+HT
HwWrHY - HW+JTJw+HT,
HwtgT HJT' T+ HTH I T =0. (13)

Additionally, we can obtain the following Corollary
from above Lemma:
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Figure 4: Task Priority Scheme of (10) Using Weighted
Pseudoinverse

Corollary 1 (Geometric/Weighted Orthogonality)
IFR(HMYNR(IT) =0, then the following statements
are always satisfied:

1. R(H?) is inverse weighted orthogonal to R(J*)
2. R(H™) is geometric orthogonal to R(J ).

Proof. 1. Since the condition RIHYY\R(JT) =
B means HWJT = 0 by Lemma 1, we can prove the
inverse weighted orthogonality as follows:
(HYY'WHgt = (HHEDYTEHWTJT(JJ)* = 0.
2. Using the same procedure, the geometric orthogonal-
ity is proved as follows:
(H™*)

1t = HHEOHTHWHITOWwrIh)t = 0.

O

The positive semi-definite weight matrix in Lemma 1
rotates the range space of J¥ as shown in Figure 4. In
that Figure, one should observe that the range space
of the resulting weighted pseudoinverse of J is geomet-
rically orthogonal to R(H™), so that the direction of
projection by (I —J{,J) is aligned with the direction of
projection by H*. However, since the inverse weighted
orthogonality of (13) is equivalent to the first item of
Lemma 1, the inverse weighted orthogonality of (13)
brings another constraint such that R{(HT)R(JT)
should be the empty set(l)). However, this is one of two
conditions (7) which causes the algorithmic singularity.

To exclude the algorithmic singularity like Chi-
averini’s algorithm, we need the positive definite weight
W > 0 satisfying (12), not positive semi-definite weight
of Lemma 1. Hence, we define the new weight matrix by
adding the positive small constant to the positive semi-
definite weight. Although it more or less contaminates
the characteristics of the inverse weighted orthogonality
with small positive number €

HJYT+HTH +el)"'J" ~ 0, (14)
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it definitely eliminates an algorithmic singularity in new
algorithm of (10). And it does not affect the execution
performance of primary task, though it somewhat de-
grades the performance of secondary task. Also, since
we use the differential kinematics to solve the inverse
kinematics, it is possible to remain the error in the posi-
tion level. To remedy this problem, the desired velocity
should be modified to the reference velocity as follows

(15)
(16)

Pa+ Kp(py — p)

PREF
, hd+Kh(hd~h),

hrrr

where py, p; are the desired velocity and position of
primary task, hq, by are the desired velocity and po-
sition of secondary task, p, h are the real positions of
manipulator for the primary and secondary task respec-
tively, and K, K, are suitable gain matrices. Now, we
modify the algorithm of (10) as following form

JYyPrer + {1 —JH T} HYhgpp
+{I-JLJ}{I-H"H)} 2,

q
(17)
where W = J'J + H'H + eI > 0 and Jf;, =
W LgT(Iw=tJT)=1. Making the weight matrix to
be strictly positive definite implies that new algorithm
of (17) does not include the algorithmic singularity.

Also, it does not affect the execution performance of
primary task as shown in the following error equation

Prer —Jq
(I = JT)brer — J(I — J-'v{/J)H+hREF =0.

Also, it is superior to Chiaverini’s algorithm in that it
brings the smaller error for secondary task as follows.
hrer — Hq

(I -~ HH )hpep - HJY, (Prer — TH  hrpr)
HWJT(AW ' IT)  (prpr —~ TH hrpr)
0,

—~
~

because HW™1J7 ~ 0. Therefore, the new task pri-
ority algorithm (17) does not include any algorithmic
singularity and does not cause any task error in primary
task and brings the smallest error for the secondary task
among existing algorithms.

To generalize the new algorithm (17), now we de-
velop the recursive formulation for n-tasks. Since the
weight is dependent on the Jacobian matrices accord-
ing to tasks, the forward recursive method can not be
applied to new algorithm (17). However, the backward
recursive method can be applied as follows:

Fromi=n—-1toi=1
@ = Ty + (I = THyJ)a;y

where the initial g, = J::ﬁ:n +(I- J:Jn)z, the weight
W =37 JTJ, + eI and &, is the reference velocity
of i-th task. Finally, g, is the resultant of the recursive
formulation of new algorithm.
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Figure 5: Desired Tasks and Algorithmic Singularity

Remark 2 (Recursive Formulations of Nakamura’s and
Chigverini’s algorithm : [1])

Nakamura’s algorithm is obtained by the forward recur-
sive method

Fromi=1toi=n
G; = G;_1 + (J Py ¥ (@ — Tidyq),
Pi = Piy — (JiPi1) (I Pya),

qo =0
Py=1

(19)
Also, Chigverini’s algorithm is obtained by the backward
recursive method

Fromi=ntoi=1

; ; : : 20
Qi=J2-mi+(I_JfJi)‘i’i+1: Q1 = 2. (20)

4 Experimental Results

The experiment was implemented for tasks of position
prior to orientation for 3 revolute joint planar manip-
ulators as shown in Figure 5. The primary task tracks
the desired circular trajectory in Figure 5 and the sec-
ondary task keeps the orientation of a manipulator con-
stantly as follows:

L. Circular Trajectory Tracking : the center point is
(0.0m, 0.65m) and a radius is 0.15m

2. Orientation : q; + g2 + q3 = 180°.

In this case, the Jacobian matrix of primary task is
given by

P —l151 —lys12 — I35103  —l2812 — [35123  —l38193
licy +lacia + 13123 lacio+l3ci3 l3ci03
(21)

The vector spanning the null space of Jacobian matrix
can be found by the cross product of the first and second
rows of (21) as follows:

Z = [lylzss, —I3(lysas+12s3), Li(lasa+izsa3) [T (22)

where JZ = 0. Since the Jacobian matrix of secondary
task keeping the orientation of 180° is expressed by
H =[ 1, 1, 1], the algorithmic singularity in Naka-
mura’s algorithm (5) occurs when

R(H*)\R(TH) # 0
4 (23)
HZ =0« lllQSQ =0« ga = 0° or 180°.

Here, we utilize two algorithms which do not include
an algorithmic singularity:

q :J+pREF+{I—J+J} H+hREJF (24)
q =T pper+ {1 - I I} H hrer  (25)

where (24) is Chiaverini’s algorithm and (25) is our al-
gorithm. To begin with, the gain matrices K, and
K}, in prpr, hrpr are set to 10.01 and 10.01 respec-
tively. And the ¢ value in weight matrix is set to 0.2.
Total execution time is 10 seconds. The link lengths
are 0.35m, 0.35m and 0.26m as shown in Figure 5.
Above two algorithms do not include the algorithmic
singularity and they are excellent in execution perfor-
mance for the primary task as shown in Figure 6.(a)
and (b). Also, Figure 6.(c) shows that our algorithm
brings the smaller error than Chiaverini’s scheme for
the same gains K, and Kj. On the contrary, Chi-
averini’s scheme causes the secondary task error suc-
cessively during the experiment. However, according as
the gain values are increased in Chiaverini’s algorithm,
the secondary task error can be reduced as shown in
Figure 6.(c) and 7.(c). Also, the configuration veloc-
ity of our algorithm is larger to reduce the secondary
task error than that of Chiaverini’s algorithm as shown
in Figure 6.(d). Finally, we can know that the applied
torque profiles are similar for two algorithms as shown
in Figure 6.(e).

5 Concluding Remarks

Through the comparative study for the existing task
priority manipulation schemes, we suggested new task
priority manipulation method. The core of new al-
gorithm was that we utilized the weighted pseudoin-
verse in place of pseudoinverse. Then the weight ma-
trix satisfying the inverse weighted orthogonality was
composed of Jacobian matrices for primary/secondary
tasks. However, since it could be positive semi-definite,

+it was necessary to make the weight strictly positive

definite matrix without affecting the performance of the
primary task. Also, the new method brings the smaller
error for the secondary task comparing to conventional
methods. In view of the task error and algorithmic sin-
gularity, the validity of new algorithm have been shown
through the experiment.
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Figure 6: Comparison of Chiaverini’s and Our Al-
gorithm (a)Arm Configuration, (b)Primary Task Er-
ror, (c¢)Secondary Task Error, (d)Configuration Veloc-
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