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Abstract

Reinforcement learning methods, surviving the control
difficulties of the unknown environment, are gaining more
and more popularity recently in the autonomous robotics
community. One of the possible difficulties of the
reinforcement learning applications in complex situations,
is the huge size of the state-value- or action-value-
Sfunction representation [2]. The case of continuous
environment (continuous valued) reinforcement learning
could be even complicated, as the state-value- or action-
value-functions are turning into continuous functions. In
this paper we suggest a way for tackling these difficulties
by the application of SVD (Singular Value Decomposition)
methods.

1. Introduction

Reinforcement learning methods are trial-and-error stile
learning methods adapting dynamic environment through
incremental iteration. The principal ideas of reinforcement
learning methods, the dynamical system state and the idea
of “optimal return” or “value” function are inherited from
optimal control and dynamic programming [1]. One
common goal of the reinforcement learning strategies is to
find an optimal policy by building the state-value- or
action-value-function [2]. The state-value-function

V™ (s), is a function of the expected return (a function of
the cumulative reinforcements), related to a given state
s € Sas a starting point, following a given policy 7.
Where the states of the learning agent are observable and
the reinforcements (or rewards) are given by the
environment. These rewards are the expression of the goal
of the learning agent as a kind of evaluation follows the
recent action (in spite of the instructive manner of error
feedback based approximation techniques, like the
gradient descent training). The policy is the description of
the agent behavior, in the form of mapping between the
agent states and the corresponding suitable actions. The

action-value function Q" (s,a), is a function of the
expected return, in case of taking action a€ A4 in a

given state s, and then following a given policy 7.
Having the action-value-function, the optimal (greedy)
policy, which always take the optimal (the greatest
estimated value) action in every states, can be constructed
as [2]:

n(s)=argmax 0" (s,a).
ac A,
Namely for estimating the optimal policy, the action-

value function Q" (s,a) is needed to be approximated.
In discrete environment (discrete states and discrete

(D

actions) it means, that at least 2”‘45” element must be

seS
handled. (Where ||4,| is the cardinality of the set of

possible actions in state s.) Having a complex task to
adapt, both the number of possible states and the number
of the possible actions could be an extremely high value.

1.1. RL in Continuous Environment

To implement reinforcement leaming (RL) in
continuous environment (continuous valued states and
actions), function approximation methods are widely
used. Many of these methods are applying tailing or
partitioning strategies to handle the continuous state and
action spaces in the similar manner as it was done in the
discrete case [2]. One of the difficulties of building an
appropriate partition structure is the anonymity of the
action-value-function structure. Applying fine resolution
in the partition leads to high number of states, while
coarse partitions could yield imprecise or unadaptable
system. Handling high number of states also leads to high
computational costs, which could be also unacceptable in
many real time applications.
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1.2, Fuzzy Techniques in Continuos RL

There are many methods in the literature for applying
fuzzy techniques in reinforcement learning (e.g. for
‘Fuzzy Q-Learning” [10, 11, 12, 13, 6]). One of the main
reason of their application beyond the simplicity of
expressing priory knowledge in the form of fuzzy rules, is
the universal approximator property [8,9] of the fuzzy
inference. It means that any kind of function can be
approximated in an acceptable level, even if the analytic
structure of the function is unknown. Despite of this
useful property, the use of fuzzy inference could be
strictly limited in time-consuming reinforcement learning
by its complexity problems [l7], because of the
exponential complexity problem of fuzzy rule bases
[14,3,4]. Fuzzy logic inference systems are suffering from
exponentially growing computational complexity in
respect to their approximation property. This difficulty
comes from two inevitable facts. The first is that the most
adopted fuzzy inference techniques do not hold the
universal approximation property, if the numbers of
antecedent sets are limited [18]. Furthermore, their
explicit functions are sparse in the approximation function
space. This fact inspires to increase the density, the
number of antecedents in pursuit of gaining a good
approximation, which, however, may soon lead to a
conflict with the computational capacity available for the
implementation, since the increasing number of
antecedents explodes the computational requirement. The
latter is the second fact and stated in [17]. The effect of
this contradiction is gained by the lack of a mathematical
framework capable of estimating the necessary minimal
number of antecedent sets. Therefore a heuristic sefting of
the number of antecedent sets is applied, which usually
overestimates, in order to be on the safe side, the
necessary number of antecedents resulting in an
unnecessarily high computational cost. E.g. the
structurally  different Fuzzy (Q-Learning method
implementations introduced [10], [11], [12] and [13] are
sharing the same concept of fixed, predefined fuzzy
antecedent partitions, for state representation. One
possible solution for this problem is suggested in [6]. By
introducing “Adaptive State Partitions”, an incremental
fuzzy clustering of the observed state transitions. This
method can lead to a better partition than the simple
heuristic, by finding the best fitting one in respect to the
minimal squared error, but still has the problem of limited
approximation property inherited from the limited number
of antecedent fuzzy sets. Another promising solution, as a
new topic in fuzzy theory, is the application of fuzzy rule
base complexity reduction techniques.

1.3. Fuzzy rule base complexity reduction
The main idea of application fuzzy rule base
complexity reduction techniques for reinforcement
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learning is enhancing the universal approximator property
of the fuzzy inference by extending the number of
antecedent sets while the computational complexity is
kept relatively low,

Some reduction techniques are classified regarding
their concept in [15] and [4]. A fuzzy rule importance
based technique is proposed by Song et al. in [21].
Another recent method proposed by Sudkamp et al. [23]
combines rule learning with a region merging strategy.

Recently, several publications have applied orthogonal
transformation methods for selecting important rules from
a given rule base, for instance, in 1999 Yen and Wang
investigated various techniques in [15] for possible fuzzy
rule base simplification techniques such as orthogonal
least-squares, eigenvalue decomposition, SVD-QR with
column pivoting method, total least square method and
direct SVD method. [22] also proposes an SVD based
technique with examples.

SVD based fuzzy approximation technique was
initialized in 1997 [16], which directly finds a minimal
rule-base from sampled values. Shortly after, this concept
was introduced as SVD fuzzy rule base reduction and
structure decomposition in [3,25,26]. Its key idea is
conducting SVD of the consequents and generating proper
linear combinations of the original membership functions
to form new ones for the reduced set. [3,16] characterizes
fuzzy functions by the conditions of sum-normalization
(SN), nonnegativenes (NN) and normality (NO), and
extends SVD reduction with further tools to preserve SN
and NN conditions of the new membership functions. It
may have significant role if the purpose is not only saving
computational cost, but maintaining the fuzzy concept and
having a theoretical study of the reduced rule’ features.

An extension of [15] to multi-dimensional cases may
also be conducted in a similar fashion as the higher order
SVD reduction technique proposed in [14,3,16]. Further
developments of SVD based fuzzy reduction [3,16] are
proposed in [14,19,20,24].

2. Fuzzy Q-Learning

For introducing a possible way of application of SVD
complexity reduction techniques in Fuzzy Reinforcement
Learning, a simple direct (model free) reinforcement
learning method, the Q-Learning [5], was chosen.

The goal of the Q-learning is to find the fixed-point
solution Q of the Bellman Equation [1] through iteration.
In discrete environment Q-Learning [5], the action-value-
function is approximated by the following iteration:

Ak Ak Nk

Qf,u = Qr',u = Qi.u +AQI‘,& -

A Nk k Ak Ak
Qi,u +a1‘,u : (g!‘u,j +Y I?E%X iy i,n)
Vie ,VuelU (2)



where éf;’l is the k£ +1 iteration of the action-value
taking action A, in state S,, S, is the new observed
state, g, , is the observed reward completing the
S, — S, state-transition, ¥ is the discount factor and

Olf L, E [0,1] is the step size parameter (which can change
during the iteration steps).

For applying this iteration to continuous environment
by adopting fuzzy inference (Fuzzy Q-Leaming), there are
many solutions exist in the literature [10, 11, 12, 13, 5].

Having only demonstrational purposes, in this paper
one of the simplest one, the order-0 Takagi-Sugeno Fuzzy
Inference based Fuzzy Q-Learning is studied (a slightly
modified, simplified version of the Fuzzy Q-Learning

introduced in [10] and [6]). This case, for characterising
the value function Q(S,a) in continuous state-action
space, the order-0 Takagi-Sugeno Fuzzy Inference System

~

approximation Q(s,a) is adapted in the following
manner:

Ifsis S, And ais A, Then O(s,a)

Qs
iel,ueU,@3)
where S, is the label of the i"™ membership function of
the n dimensional state space, A, is the label of the u™
membership function of the one dimensional action space,
Q,, is the singleton conclusion and é(s,a) is the

approximated continuous state-action-value function.
Having the approximated state-action-value function
é(s,a), the optimal policy can be constructed by
function (1):
7(i)=argmax O, ), @
Setting up the antecedent fuzzy partitions to be Ruspini

partitions, the order-0 Takagi-Sugeno Fuzzy Inference
forms the following approximation function:

Ddydy N
=2 TIw by

disfasean n=l

&)

where 1, ,(x,) is the membership value of the j, 2
antecedent fuzzy set at the n™ dimension of the N
dimensional antecedent universe at the state-action

observation x, and b, ; .

is the value of the singleton
conclusion of the j, f,... j,, ™ fuzzy rule.

Applying the notation introduced in (3), equation (5)
turns to the following:
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Hlu’i,,,n (Sn) ' Juu (a) ' qztil...iNu (6)

iy dy e =1

~

O(s,a)

where Q(S,a) is the approximated state-action-value
function [t ,(s,) is the membership value of the i,™

state antecedent fuzzy set at the # ™ dimension of the N
dimensional state antecedent universe at the state

observation s,, [, (a) is the membership value of the

u™ action antecedent fuzzy set of the one dimensional

action antecedent universe at the action selection @ and

Doty i is the value of the singleton conclusion of the

ify...d\u " fuzzy rule.
Applying the approximation formula of the Q-learning

(2) for adjusting the singleton conclusions in (5), leads to
the following function:

N ~
k+1 _ .k k4l
Dty = Lyt T H}ui“ a(8,) -1, (@) A,
=1
L 7
K+l _ k k ( )
qiliz.,jNu - qw‘; iyt e l__[lui,,,n(sn) g l’tu (a) ai,u )
n=l
Ak Ak
(gi‘u.j +’},n}G%,X g 7Qf.u)

k41
where g, ; .

is the k+1 iteration of the singleton
conclusion of the iZ,...iyu ™ fuzzy rule taking action 4,
in state .S, S, is the new observed state, g, , is the
observed reward completing the S, —S; state-
transition, ¥ is the discount factor and @, € [0,1] is the
é.m

v

values can be approximated by equation (6).

step size parameter. The max and Q,.k“ action-
vel ’

3. SVD reduction in RL

One of the natural problems of any complexity
reduction technique is that the adaptivity property of the
reduced approximation algorithm becomes highly
restricted. Since the crucial concept of the Fuzzy Q-
learning is based on the adaptivity of the action-value
function this paper is aimed propose an algorithm capable
of embedding new approximation points into the reduced
approximation while the calculation cost is kept.

To facilitate the distinction between the types of given
quantities, the notation will be reflected by their
representation: scalar values are denoted by lower-case

letters {a,b,...;a, B,...}; column vectors and matrices are
given by bold-face letters as {a,b,..}and {A,B,.}
respectively, matrix 0 contains zero values only; tensors



correspond to capital letters as {4, B,...} . The transpose of

matrix A is denoted as AL . Subscript is consistently
used for a lower order of a given structure. E.g. and
element of matrix A is defined by row-column number
i,j symbolized as (A); ; = a; ;. Systematically, the i -

th column vector of A is denoted as a;, ie.

A=[a; ap --]. To enhance the overall readability
characters i, j,... in the meaning of indices (counters),
1,J,... are reserved to denote the index upper bounds,

unless stated otherwise. R71*/2%-XIN is the vector

space of real valued (/y x [, x...x[y)-tensors. Letter N

serves to denote the number of variables. Letter & has
specialrole and itis: k=1..N, k#n.

See detailed discussion and notation of matrix SVD and
Higher Order SVD (HOSVD) in [14].

3.1. SVD Based Reduction

Since the state action value function is approximated by
PSG method this section is intended to provide a brief
survey of the fundamentals in SVD based PSG fuzzy rule
base reduction techniques, which are proposed in
[16,17,4,14]. The calculation complexity of (5) explodes
with values J|,J5,...Jp, in this regards, for
comprehensive analysis and exact theorems, see [17].
Decreasing the upper bound of the indices in the sum
operator of (5), namely the number of antecedent sets,
leads to the initial idea of calculation reduction. Formula
(5) can be equivalently written in tensor product form as:

N
f(xl,xz,...,xN)=Bgmn, where tensor

Be R+ % and vector m, rtespectively contain
elements b ;.. ;. and (L, ,(x,).This reduction can

be conceptually obtained by reducing the size of tensor B
via Higher Order SVD (HOSVD). According to the
special terms in this topic the following naming has
emerged [14,3.4]:

DeErmITION 1. (Exact / non-exact reduction) Assume

an N-th order temsor Ae R/V2%-XIN  Exact

N
reduced form A=A" ®U, , where " denotes

n=l
“Yeduced”, is defined by tensor A" € R and
basis mattices U, € R Vn: I < which are
the result of HOSVD, where only zero singular values and

the corresponding singular vectors are discarded. Non-

. N
exact reduced form 4= A" ®U_, is obtained if not
n=1
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only zero singular values and the corresponding singular
vectors are discarded.

The above properties directly lead to the following
fundamental concept of.

METHOD 1. (exact SVD based fuzzy rule base
reduction) The SVD based fuzzy rule base reduction
introduced in transforms equ. (5) to the form of:

NS SN
YEESNENEID I | IAEAL PN
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where Vn:J] <J_ is obtained as the main essence

of the reduction.
The reduced form is obtained via Method 1 capable of

N
decomposing B into B=B"®U,. Having
n=l
r SIS ] xd ; .
B e®R and its singular vectors the reduced
N
form is determined as: f(x,%,,...,%,)=8"®m],
n=l1

where m; = UIm"‘ Equation (5) is an equivalent of (8)
that is the starting point for theoretical developments of
this topic.

REMARK-1: Note that, the obtained functions may not
be interpretable as antecedent fuzzy sets. In order to
obtain functions which can be represented as antecedent
fuzzy stets, further to have Ruspini partition, sum-
normalization (SN), nonnegativenes (NN) and normality
(NO) transformation techniques are developed to HOSVD
algorithm in [14,3 4].

REMARK-2: The error bound advantage of the reduction
technique is conceptually obtained by the truncation of
non-zero singular values. The emor bound of

f" (xy,x9,...,x)) can be estimated during the execution
of the SVD reduction algorithm, As a matter of fact the

final error of f(xl ,X2,...,xp ) depends on the type of the

antecedent functions applied. Typical practical cases are
analyzed in [4].

3.2. SVD Adaption

The essence of this section is to improve the rule
density of B" with A, which is the result of reinforcement
at a certain state, when the increase of the density of the
approximation points is required. Only those sub-tensors

of 4 will be embedded into B, which are linearly

dependent from B” . Since the number of singular vectors
is fixed, no SVD is needed during embedding, which
offers a chance to develop a fast algorithm to adapt
HOSVD. A subsequent aim is here to develop an error
controllable property as well, while the low calculation
cost and simplicity are maintained. A localized error



threshold is in focus here for projecting the new points
mto the compressed form. Here an elementary step of the
idea is discussed when the rule base is being increased n
an arbitrary dimension n.

METHOD 2 (# mode fast adaption) Assume a reduced

mJ{XI{X...XJ‘{J

rule base defined by tensor B € and its

corresponding matrices Z, € R resulted from B
by Method 1. Furthermore, let
Ae RIeSxbdpedy g given, that should be

embedded in the original rule base and, hence, has the
same size as B except in the »-th dimension where /

may differ from J, . The localized error threshold of the

adaption is defined by V .
The goal is to determine the reduced form E' of
extended rule base E defined by tensor E‘=[B A‘IH :

where E’contains the selected » mode sub-tensors of E
according to the given error threshold V as

- N
E'= (B"Ex)_lzk an U. (9)

Ae RPN contains the selected n mode
sub-tensors of 4 and lets the corresponding sub-tensors
T min/max selected from the corresponding Tiyin/max -

Forbrevity let V'=[1" .~ T'
U= [Zn V]E R ST, where Vs

determined to fulfill (9) subject to E-E'e L VA

The detailed description of the fast adaption algorithm
is given in [27]

lTlH-X]'

3.3. Example Application

For demonstrating the efficiency of the proposed
reinforcement learning method in overcoming complex
tasks, as one of the most popular application example,
robot navigation was chosen. Our simulated robot has
idealistic dynamic and omnidirectional kinematics. The
structure of its simulated sensor system is built up based
on a real robot equipped with three PAL omnidirectional
lenses [28]. In the original sensor configuration, the three
omnidirectional image of the three lenses, is served for
shaping an omnidirectional 3D image (see Fig.1 for the
original sensor configuration). In our simulated example
as an observation of the robot, a set of direction-distance
information is applied only (these direction distance
vectors can be based on the original omnidirectional 3D
image) see on Fig.2.
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PAL lenses &

Calculated distance
to an obstacle

-

.

Calculated distance-
direction vectors

Fig.2. Virtual sensor configuration (the distance-direction
vectors are fetched from the omnidirectional 3D image)

The tasks we are planning to implement for the robot, is
to navigate among obstacles, and reach the goal point. The
goal point is defined in the same simulated direction-
distance manner as it was introduced in the case of the
virtual sensors. During the training we plan to reinforce
the collision to an obstacle by a negative, while reaching
the goal point by a positive signal. The state value utilised
for the reinforcement learning can be formed from the
normalised vector of the distances sensed by the virtual
distance sensors.

4. Conclusions

One of the possible difficulties of the reinforcement
learning applications in complex situations, is the huge
size of the state-value- or action-value-function
representation [2]. The case of continuous environment
reinforcement learning could be even complicated, in case
of applying dense partitions to describe the continuous
universes, to achieve precise approximation of the
basically unknown state-value- or action-value-function.
The fine resolution of the partitions leads to high number
of states, and handling high number of states usually leads
to high computational costs, which could be unacceptable
not only in many real time applications, but in case of any
real (limited) computational resource. As a solution of
these problems, in this paper in a short introductory way,
we suggest the application of HOSVD based complexity
reduction techniques to tackle both high storage and
computational costs. The way of fast adaption of the
compressed form is also drafted.

Acknowledgment
This research was partly supported by the Hungarian
National Scientific Research Fund grant no: F 029904.



References

[1]R. E. Bellman: “Dynamic Programming”, Princeton
University Press, Princeton, NJ, 1957.

[2]R. S. Sutton, A. G. Barto: “Reinforcement Learning:
An Introduction”, MIT Press, Cambridge, 1998.

[31Y. Yam, P. Baranyi, C. T. Yang: “Reduction of Fuzzy
Rule Base Via Singular Value Decomposition”, IEEE
Transaction on Fuzzy Systems. Vol.: 7, No. 2, 1999,
pp- 120-131.

[4]P. Baranyi, Y. Yam: ‘Fuzzy rule base reduction”,
Chapter 7 of Fuzzy IF-THEN Rules in Computational
Intelligence: Theory and Applications Eds, D. Ruan
and E.E. Kerre, Kluwer, 2000, pp 135-160.

[5]C. J. C. H. Watkins; ‘Learning from Delayed
Rewards”, PhD. thesis, Cambridge University,
Cambridge, England, 1989.

[6]M. Appl: “Model-based Reinforcement Learning in
Continuous Environments” Ph.D. thesis, Technical
University of Miinchen, Miinchen, Germany,
dissertation.de, Verlag im Internet, 2000.

[7IR. Bellman: “Dynamic Programming”, Princeton
University Press, 1957.

[8]L.X. Wang: ‘Fuzzy Systems are Universal
Approximators”, Proceedings of the First IEEE
Conference on Fuzzy Systems, San Diego, pp.1163-
1169, 1992.

[9]1.L. Castro: ‘Fuzzy Logic Controllers are Universal
Approximators”, IEEE Transaction on SMC, Vol.25, 4,
1995.

[10] T. Horiuchi, A. Fujino, O.Katai, T. Sawaragi:
‘Fuzzy  Interpolation-Based — Q-leamning  with
Continuous States and Actions”, Proc. of the 5th IEEE
International Conference on Fuzzy Systems, Vol.l,
pp-594-600, 1996.

[11] PY. Glorennec, L. Jouffe: ‘Fuzzy Q-Learning”,
Proc. of the 6th IEEE International Conference on
Fuzzy Systems, pp.659-662, 1997.

[12] HR. Berenji: ‘Fuzzy Q-Leaming for
Generalization of Reinforcement Leaming”, Proc. of
the 5th IEEE International Conference on Fuzzy
Systems, pp.2208-2214, 1996.

[13] A. Bonarini: “Delayed Reinforcement, Fuzzy
QQ-Leaming and Fuzzy Logic Controllers.” In Herrera,
F., Verdegay, J. L. (Eds.) Genetic Algorithms and Soft
Computing, (Studies in Fuzziness, 8), Physica-Verlag,
Berlin, D, 447-466., 1996.

[14] P.Baranyi, A Varkonyi-Koéczy, Y.Yam,
R.JPatton, P.Michelberger and M.Sugiyama "SVD
Based Reduction of TS Models" IEEE Trans.
Industrial Electronics (accepted with minor revision)

[15] J.Yen, and L.Wang, "Simplifying Fuzzy Rule-
based Models Using Orthogonal Transformation
Methods", IEEE Trans. SMC, 1999, Vol 29: Part B,

122

No. 1, pp. 13-24.

[16] Y.Yam "Fuzzy approximation via grid point
sampling and singular value decomposition" IEEE
Trans. SMC, 1997, Vol. 27, pp. 933-951.

[17] L.T.Kéczy and K.Hirota, "Size Reduction by
Interpolation in Fuzzy Rule Bases," IEEE Trans, SMC,
1997, vol. 27, pp. 14-25.

[18] D.Tikk, "On nowhere denseness of certain
fuzzy controllers containing prerestricted number of
rules”, Tatra Mountains Mathematical Publications vol.
16. pp. 369-377, 1999

[19] K.Lei, PBaranyi, and Y.Yam, "Complexity
Minimalisation of Non-singleton Based Fuzzy-Neural
Network" International Jouwrnal of Advanced
Computational Intelligence, vol.4, no.4, 2000. pp.1-8

[20] P.Baranyi, Y.Yam, P.Varlaki and
PMichelberger "Singular Value Decomposition of
Linguistically Defined Relations", Int. Jour. Fuzzy
Systems, Vol. 2, No. 2, June 2000. pp. 108-116.

[21] F.Song and S.M.Smith "A Simple Based Fuzzy
Logic Controller Rule Base Reduction Mathod" IEEE
Int. Conf. System Man and Cybernetics (IEEE SMC'
2000), 2000, Nashville, Tennessee, USA, pp. 3794-
3798

[22] Magne Setnes and Hans Hellendoom
"Orthogonal Transforms for Ordering and Reduction
of Fuzzy Rules" 9th IEEE Int, Conf. on Fuzzy Systems
(FUZZ-IEEE 2000), San Antonio, Texas, 2000, pp.
700-705.

[23] T.Sudkamp, A.Knapp and J.Knapp "A Greedy
Approach to Rule Reduction in Fuzzy Models" IEEE
Int. Conf. System Man and Cybernetics (IEEE
SMC'2000), 2000, Nashville, Tennessee, USA, pp.
3716-3721

[24] PBaranyi, Y.Yam, C.T. Yang, P.Varlaki and
PMichelberger "Generalised SVD Fuzzy Rule Base
Complexity Reduction" International Joumal of
Advanced Computational Intelligence (accepted, to be
printed in 2001)

[25] PBaranyi and Yeung Yam "Singular Value-
Based Approximation with Non-Singleton Fuzzy Rule
Base" 7th Int. Fuzzy Systems Association World
Congress (IFSA'97) 1997 Prague pp. 127-132,

[26] PBaranyi and Yeung Yam "Singular Value-
Based Approximation with Takagi-Sugeno Type Fuzzy
Rule Base" 6th IEEE Int. Conf. on Fuzzy Systems
(FUZZ-IEEE'97) 1997 Barcelona, Spain, pp 265-270.

271 P. Baranyi, A.R. Varkonyi-Koczy, Y. Yam, P.
Virlaki, P. Michelberger, “An Adaption Technique to
SVD Reduced Rule Bases”, IFSA 2001, Vancouver
(accepted for presentation).

[28] P. Greguss, A.H. Vaughan: “Development and
Optimization of Machine Vision Systems Using
Panoramic Annular Lens PAL”, Proc. of ICAR, 1999.



