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Abstract

In this paper a new adaptive control algorithm for mo-
bile manipulator (a rigid manipulator mounted on a
wheeled mobile nonholonomic platform) has been pre-
sented. For proper cooperation between manipulator
and mobile platform it is necessary to control the ori-
entation of the platform. To control the behaviour of
the whole composed system the backstepping procedure
has been applied. First, we use some control algorithm
for the kinematics of the mobile manipulator to pre-
serve the so-called posture tracking (it means the posi-
tion and orientation tracking) for wheeled mobile plat-
form. Neat, we take under consideration the dynamics
and the kinematics of whole mobile manipulator. The
presented control algorithm maybe considered as a dy-
namic version of the classical adaptive Slotine & Li [8]
controller. Theoretical considerations have been com-
pleted with simulation study.

Keywords— nonholonomic constraint, wheeled mobile
platform, universal control.

1 Introduction.

There exist numerous desired trajectory tracking algo-
rithms for rigid manipulators based on different levels
of knowledge of the robot dynamics. In other words,
a solution of the trajectory tracking problem for rigid
manipulators is well known and can be found in the
literature. On the other hand, the trajectory tracking
problem for wheeled mobile robots in presence of non-
holonomic constraint has been solved. In this paper
we consider a rigid holonomic manipulator mounted
on a top of a wheeled mobile platform. Such a com-
bined system is able to perform manipulation tasks in
a much larger workspace than a fixed-base manipulator
but this approach introduces a few of new issues that
are not present in the each subsystem considered sepa-
rately. First, the dynamics of the combined system are

much more complicated because they include dynamic
interactions between mobile platform and manipulator
(11], [5]. Such dynamics can be partially or completely
unknown. Second, a particular point in the workspace
can be reached either by moving the manipulator or
moving the mobile platform or by a composed motion
of both [10] (a cooperation). Third, some problems
with control of such composed system occur [1].

In further considerations we will discuss a dynamic
model of the mobile manipulator and we will propose
some solution of the trajectory tracking problem de-
signed to full dynamic equations of the mobile ma-
nipulator. Our goal in this paper is to find an adap-
tive control algorithm which preserves the proper co-
operation between two subsystems: the nonholonomic
subsystem (the mobile platform) and the holonomic
one (the rigid manipulator) in a case when the dy-
namics have parametric uncertainty in a model, The
wheeled mobile platform has been chosen to enlarge
the workspace of the manipulator. The manipulator
has to follow the own desired trajectory which defines
a task of this subsystem. The task of the platform is to
follow the desired trajectory without slip of wheels. It
means that the desired trajectory for the mobile plat-
form must satisfy the nonholonomic constraint (1) and
the desired trajectory must be planned for the whole
system simultaneously [4].

For such a system we will introduce a new adaptive
control algorithm which is in fact the dynamie version
of the Slotine & Li trajectory tracking algorithm. In
many papers we can find a solution to the trajectory
tracking problem but only for the kinematics of the
nonholonomic system (for instance mobile platform)
without any information how to control the whole sys-
tem. Many authors assume that the dynamics can be
fully linearized but in a case of any uncertainty in the
model it is not obvious and should be considered sep-



arately. The control algorithm proposed in this paper
preserves an asymptotically stable trajectory tracking
for the whole mobile manipulator with parametric un-
certainty in the model.

2 Mathematical model of a mobile ma-
nipulator.

We will analyse mechanical system which consists of
two subsystems: a wheeled mobile platform (often
called in the literature 'mobile robot’) and a rigid ma-
nipulator. As a vector of generalized coordinates we
take ¢ = (¢F,¢7)7, where a symbol g, denotes the
vector of generalized coordinates describing the be-

haviour of the mobile platform

Im = (mayngafplaﬁl:“' 7¢k1ﬁk)Ta dm € Rn,

where z, y denote Cartesian position of the mass centre
of the platform, # denotes orientation of the platform,
¢; is an angular position of ith wheel and §; denotes
an angle of the steering wheel. A symbol ¢, denotes
the vector of joint coordinates of the manipulator
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The wheeled mobile platform should move without slip
of wheels. It is equivalent to the assumption that the
velocity at the contact point between each wheel and
a surface is equal to zero (in other words, the mobile
manipulator motion is frictionless). It establishes the
following relationship between generalized coordinates
¢m and generalized velocities §p,:

Algm)gm =0, (1)

qT-:(g]_,... QTERP.

where:

A(gm) - is full rank (m x n) matrix.
The expression (1) defining nonholonomic constraint
implies the existence of the vector of auxiliary veloci-
ties, which satisfy

Gm = G(Qm)nr (2)
where:
G(gy) - full tank n x m matrix for which holds
A(gm)G(gm) =0, (3)

1 - m-dimensional vector of auxiliary velocities.

In further considerations we will assume that the mo-
bile platform will be moved on the horizontal plane.
It means that the potential energy of the platform is
constant and does not influence the behaviour of the
whole system. A Lagrange function for the whole sys-
tem, which consists of nonholonomic mobile platform
and the manipulator mounted on it, is as follows

L(g,q) = Km(m; Gm) + Kr(g,9) — Vi(q) (4)

where
K (@m,m) = %q,’ﬂ@m(qm)qm - kinetic energy of the
platform,
K.(g,4) = 347 Q(g)d - kinetic energy of the manipu-
lator,
Vr(q) - potential energy of the manipulator,
¢ = ( Tm )

Gr

mobile manipulator.
After substituting the Lagrange function into the
d’Alembert Principle, we will get the following equa-
tions of the mobile manipulator dynamics

Q(@)d + Qm(gm)dm + Clg, @0 +
Cm(Qma Gm)dm + D(Qr} =

or more detailed

[ Qu +Qm Q12 ][ Gm ]+[ Cn+Cn Cha }[ Gm }
Qa1 Q22 || Gr Ca Coz || dr

[ 0 ] [ AT [ By, }

+ = - :
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An input vector u,, denotes forces and torques applied
to some wheels of the mobile platform and a vector u,
denotes torques applied to joints of the rigid manipu-
lator. From the fact that for the mobile platform with
nonholonomic constraint always exists the vector of
the auxiliary variables expressed as (2), it is profitable
to rewrite the dynamics separately for each subsystem
and eliminate the vector of the Lagrange multipliers A
from the first matrix equations as follows

[GT(Q11+Qm)G GTQu } [ 7 P

€ RN, N = n + p, - coordinates of the

ATX + Bu (5)

@G Q22 Gr
GT(C11 + Cw)G+GT(Qu + Q)G GTCha ][ Ui ]
CglG 0‘32 ‘i’r

[o]-157 2]

To simplify the notation, we will describe the above
equations in the following way

Q*(9)2 + C*(g,2)z + D*(q) = B*(q)u, (6)

-(2)

The above matrix equation (6) we will call the dy-
namics of the mobile manipulator in coordinates 27 =
(n,4-)T and the equation

dm = G(q)n (7)

will be called the kinematics of the mobile manipula-
tor.



2.1 Properties of the model of a mobile ma-
nipulator.

In this section we must consider basic properties of
the model given by (6). As for the mentioned equation,
we have

Property 1: Real inertia matrix Q* is always sym-

metric and positive definite.
Above property is simply to show. The second prop-
erty has been shown in [2]. It states that if we get a
matrix of Coriolis and centrifugal forces as a Christof-
fel’s symbol namely

m+p )
Crle) =) c,(Q)ds,

k=1
where coefficients are equal to

0Q7;(a) 4 90k _ 3Q}%(‘1)>
g dqj og; )’

@ =3 (

then a skew-symmetry between the inertia matrix and
Coriolis matrix does not hold anymore. In other words,

Property 2: For many mobile manipulators exists
some matrix C}. # 0, such that

%Q* = (C* + Cx) + (C* + Cy)".
It is obvious that Property 2 must be checked before
starting the control process.
Property 3: Input matrix B*(g) has always full
rank.

2.2 Linear parametrization of the model of the
mobile manipulator.

From theory of adaptive systems for rigid manipula-
tors (e.g.[7]) we know that the dynamics of such robot
can be expressed as a linear function of some param-
eters, which depend on mass and inertia moments of
robot joints as follows

Q(g,a)i+ C(g.4,a)d + D(g,a) =Y(4,4,4,9)a,

where a is a vector of real (constant) parameters. Now
we want to generalize such approach for a model of
mobile manipulator with correction matrix Cy, as

Q*(q,0)z + C"(q,2z,a)z + D"(g,a) — Ci(g, 2,a)e; =

= Yi(2,2,ez,2,q)a,

with variables defined as follows

Zd:[-nr ] ez=z~za=[.nﬁ.nr ],
Qref qr — Qref

where the first argument of ¥, matrix is related to
acceleration, which the inertia matrix is multiplied by,

the second one describes velocity, which the Coriolis
matrix is multiplied by, the third is a vector multiplied
by the correction matrix C; and next arguments are
arguments of all elements of the above model. It is
easy to show, that the correction matrix Cy, which
is a linear combination of matrices @* and C* (see
Property 2), can be expressed as a linear function of
the same parameters as the two mentioned matrices.

3 Control problem statement.

In the introduction we have written that in the paper
we will find a control law preserving the proper co-
operation between the mobile platform and the rigid
manipulator mounted on top of it. The manipulator
has to follow the desired trajectory grq(t) which defines
a task of this subsystem. The task of the platform is to
follow the desired trajectory (z4(t),ya(t),84(t)) (it is
so-called 'posture tracking’) without skip of wheels-it
means that the desired trajectory for the mobile plat-
form must satisty the nonholonomic constraint (1) [4].

Our purpose in this paper will be to address the
following control problem for mobile manipulators:

Find a control law ¥ = (uI,uT) such that
a mobile manipulator with parametric uncer-
tainty in the dynamic model follows a desired
trajectory (zq(t),ya(t),0a(t), ¢ (t)) without
skip and surge of platform wheels and track-
ing errors converge against zero.

We treat the solution to the control problem proposed
in this paper as a backstepping procedure [4]:

1. Find the vector of velocities 7, for equation (7)
which guaranties the convergence the real tra-
jectory of the platform to the desired trajectory
(®a(t),ya(t),Ba(t)) in a presence of nonholonomic
constraint. This problem is nontrivial because a
dimension of the vector 7 is essentially smaller
than a dimension of the vector of states for each
class of mobile platforms but for every mobile
platform exists a control algorithm (due to Brock-
ett’s condition [9] - depending on time or not
smooth) preserving asymptotic tracking of desired
trajectory for whole vector of states. In simula-
tions we have taken into consideration a new dy-
namic control algorithm introduced by Lee, Lee
and Teng for mobile platform of (2,0) class.

2. If we know the velocities 7,(¢) which satisfy the
above condition, define the control algorithm pre-
serving the convergence of the trajectory of the
whole system (the mobile manipulator) to the de-
sired trajectory (zg4,y4,84,97) in a case of para-
metric uncertainty in the dynamic model.



4 Control algorithm for mobile manip-
ulator.

In this section we present main result, namely the
mathematical solution to the problem considered in
this paper.
Theorem 1: [6]

Consider a model of a mobile manipulator given by
(6) and (7). Let desired trajectories satisfy the non-
holonomic constraint and %.(¢) be a solution to the
posture tracking problem for wheeled mobile platform.
We propose following control law u for the mobile ma-
nipulators

u(t) = (B*(q)) " {Q"(g:8)2a + C*(q, 2,8)za + D*(g, @)
_C-'G(Q1Z>&)ez - K(t)ez} =

= (B*(Q))il {Yk(zd:zdaezaza Q)a" K(t)eb} (8)

where

SRl o B 4 L P
K(t) = [K'B(t) Kf(t)]’

€=4dqr — Q4rd, AZAT)D)
and @(t) is a vector of the parameter estimates. K () is

amatrix of the dynamic gains of the universal adaptive
controllers expressed as

K(t) = diag{K;(t)} i=1,..,m+p, (10)

where K;(0) should be greater than 0 and where K;(¢)
is the gain of the local universal adaptive controller
connected to the i-th coordinate. Each of the local
universal adaptive controllers has a form

Kmi(t) =| ey \2, i=1,..,m, (11)

de(t) :‘ Sj |2! 7=1.,p (12)
Let the adaptation law for parameters be as follows
a(t) = a(t) = - (44, 24, €2, 2,0)ez,  (13)

where a(t) — a = a(t) is an estimation error for un-
known parameters. Then for every ¢(0) a solution
(e.(t), K(t)) of the closed-loop system has the follow-
ing properties:

lim e.(¢) — 0,

t—ro0

tl—lfgo K;(t) exists and is finite, ¢=1,..,m+p.
It is easy to observe that the presented control al-
gorithm is a modification and generalization of well
known Slotine & Li adaptive control algorithm. Vari-
able s is defined similar to classical Slotine & Li algo-
rithm and it is called a sliding mode.

5 Proof of the main theorem.

To prove the Theorem 1 we have to get the equation
of the closed-loop system. After some calculation we
get
Q%é, +Cre, + Cre. =
Yi(24, 24, €5, 2,0)a — K(t)es. (14)
5.1 Proof of the asymptotic convergence of
tracking errors to zero.
As a Lyapunov like function we take
Fe= B* &0
2

The time derivative of V along the trajectories of the
closed-loop system (14) with the adaptation law (13)
is equal to

Viey, s,a,t) = 163 ‘e, + é&TF&,

; 1 g .
Vo o=efQre, + EeZ"c;)*ez +a'Ta
eT{—(C* + Ci)ex + Yi(4d, 2, €2, 2, 0)a— K (t)e. }

1 . .
+ EefQ*ez + & T { T (24, 24, €2, 2, )e: } -

il

From Property 2 we have

; 1 1

5eZ"Q*ez = 56’{(0* + Ces + 5ef(c* +Cp) e,
= eI(C* + Cyles,

therefore

V =—eTK(t)e, = —el Kp(t)e, — sT Ky(t)s <O0.

From (11) and (12) we conclude that the gains in ma-
trices Ky (t) and K4(t) can only increase with time
and this fact we use to evaluate V' in the following way

V < —eTKn(0)e, — sTK4(0)s < 0. (15)

According to Yoshizawa-La Salle Theorem [3] (it is a
version of La Salle Invariance Principle for autonomous
systems) we conclude that e, and s converge against
zero asymptotically fast.

5.2 Proof of the convergence of the matrix
gains K (t) to the limited number.

From (15) and from properties of square forms we have
the following evaluation of V()

V < —eTKu(0)e, — sTK4(0)s
< = e I MEm(0)= [l s [I* A(Ka(0)) <0
where AM(K,(0)) is the smallest eigenvalue of the ma-
trix K, for t = 0 and A(K4(0)) is the smallest eigen-

value of the matrix Ky for ¢ = 0. We can rewrite the
above inequality as follows

V(t) < —alles ’€0, a=AKn(0)>0.



After integration we get

t
V(t) <V(0) - a f leor) P dr.  (16)

On the other hand, from definition of the Lyapunov
like function we know that
Y t>0 V(t) > 0. (17)

Using (16) and (17) we have

4
[)gV(O)—a] leo() [Pdr, ¥ t>0.  (18)
0

From (18) and after some manipulation we obtain the
following expression

i 7
[0 leo(r) I dr < YO < oo,

a4

also

Kulos) = [ ") ewi(r) I dr + Komi(0)

< /ﬂ [ eo(r) [2 dr + Kmi(0)
< O k<. (19)

Similarly, we can estimate the boundary of Ky (t) as
follows

V(o)

Kai(oo) < 5 T Kgi(0) <o, B =AK4(0)) > 0.

This completes the proof.

6 Simulation study.

We consider in this paper a wheeled mobile manipu-
lator which consists of a two wheel mobile platform
belonging to the class (2,0) and a rigid RTR manip-
ulator. The object of our simulation is presented in
Fig.1. The motion of the mobile manipulator is fully
described by the following vector of original general-
ized coordinates:

g = [z y 6 ¢ ¢ 61 6 93]T,
where:
z, y — Cartesian position of the platform,
¢ — orientation of the mobile platform,
¢; — angular position of the fixed wheels,
6; — joint variables of the manipulator.

Figure 1. Mobile manipulator which consists of RTR
manipulator mounted on a top of wheeled mobile
platform of the (2,0) class.

6.1 Control algorithm for the kinematics -
Lee, Lee & Teng control algorithm .

We consider the kinematics for a wheeled mobile plat-
form of the (2,0) class

T cosf - v
5 et ginig | (’U)=(¢1+¢2).
i w w h — o

A task of the mobile platform is to track some trajec-
tory. The desired trajectory has to meet the kinemat-
ics which are consequence of existence of the nonholo-
nomic constraint

T4 cosfy - vy
?;’d = sin 94 s Ug . (20)
Qd wy

Velocities vy and wg are these velocities which a sys-
tem has to have to execute a motion exactly along the
desired trajectory (z4,yq,64). To present control al-
gorithm it is necessary to express tracking errors in
so-called reference frame

Te €y
Ye | =Rot(Z,-0)| e, | =
. €t

cosf@ sin@ 0 Tg— &
—sinf cosf 0 Ya— Y
0 0 1 s —0

Lee, Lee & Teng control algorithm [4] ensures asymp-
totic convergence of the reference tracking errors
(TeyYeyBe) to zero. For the sake of non-singularity
of the Rot(Z,—#) matrix we see that asymptotic con-
vergence of reference tracking errors implies asymp-
totic convergence of simple tracking errors (e, ey, e;)



to zero. Control law v, w, preserving the convergence
of the reference tracking errors to zero is as follows

v, = kox,+vzcosb,,

e &= 1+§+k1(96+1efeA),

B = { hye — hwdlxj_—xhvd sin 98_]_
uj}%('yevd sinfle — kgxﬁ)} )

ehz, 3 eh8ey.
T+A  (I+A2A’

A = 1242, (21)

where ko, ky > 0, h(t) = L+ vcos(t —1p), 0 < v < 1
and 0 < & < g7isy. The most important thing is to

o 1+

define the appropriate A(t) function and v and £ pa-
rameters. A form of h(t) function and a choice of the
parameters depends on a choice of the desired trajec-
tory. In further considerations we will test a behaviour
of our object during tracking of the following desired
trajectory

($d, Yds gd,gldx 92d393d)=(105in t, —10cos t,t, T_r'i 11 E) .

272

For such desired trajectory the function h should be
chosen as h(t) = 1. As the object of simulations we
will choose a model of the wheeled mobile manipula-
tor presented in Fig.1. The dynamics of the considered
mobile manipulator have a very complicated form and
therefore will be omitted in this paper (but they are
presented in [5]). The goal of simulations is to examine
the behaviour of the mobile manipulator in few situ-
ations: with only kinematic control (Lee, Lee & Teng
control algorithm without the dynamics), with kine-
matic control and exact linearization of the dynamics,
with the control algorithm introduced in this paper.
We want also to show the asymptotic trajectory track-
ing for joint coordinates of the rigid manipulator. The
simulations have been made with the MATLAB pack-
age and the SIMULINK toolbox 1.

7 Concluding remarks.

In the paper the new adaptive control algorithm for
mobile manipulator has been introduced. This control
law is in fact a backstepping procedure. First, for the
control of the kinematics every control algorithm pre-
serving so-called ’posture tracking’ (trajectory track-
ing for position and orientation coordinates) can be

IMATLAB package and the SIMULINK toolbox were
available thanks to Wroclaw Centre of Networking and
Supercomputing.

¢) T

Figure 2. Tracking error e, for mobile platform (2,0)
for different control algorithms: a) new adaptive
control, b) exact linearization, ¢) Lee, Lee & Teng
without the dynamics.

used. We prefer the dynamic algorithms which are
smooth because the function describing the control for
the kinematics (that is 7,.(¢)) and its first derivative
(n-(t)) have to exist. The new adaptive control algo-
rithm we treat as a second step in the backstepping
procedure. This control law makes possible to control
motion of the whole system, e.g. the dynamics and the
kinematics with parameter uncertainty. Theoretical
considerations have been completed with simulations
which have shown that the influence of the dynamics
with known parameters as well as the dynamics with
unknown parameters on the behaviour of the mobile
manipulator is noticeable.
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without the dynamics.

Figure 5. Hypothetical tracking errors for joints of the
rigid RTR manipulator: a) e;, b) es, ¢) es.






