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Abstract

In this paper it is presented a terminal sliding-mode
adaptive control scheme for robotic manipulators de-
signed following an energy-based approach. The con-
trol comprises two basic terms: a composite adaptive
term which implements a feedback law for compensat-
ing the modelled dynamics and a non-linear sliding-
mode term for overcoming the unmodelled dynamics
and perturbations. The resulting closed-loop system
is proved to be stable and it is also shown that the
trajectory-tracking error converges to zero in finite
time. Moreover, an upper bound of this error conver-
gence time is calculated. Finally, the design is evalu-
ated by means of simulations.

1 Introduction

For more than a decade, the design of adaptive con-
trol schemes for robot manipulators has been an ac-
tive field of research (Craig 1988, Barambones and
Etxebarria 1999). Because of the inherent nonlin-
ear and time-varying nature of robotic manipulators,
adaptive controllers have been found appropriate to
achieve consistent performance in the presence of pay-
load and configuration variations (Ortega and Spong
1989). From a theoretical viewpoint the existence of
convergent adaptive control laws has been established,
although in most cases the convergence is asymp-
totic, which implies in principle an infinite conver-
gence time,

On the other hand, variable structure control has
been proved to be a solid framework to achieve ro-
bust performance against uncertainties and external
disturbances, and as a result, sliding control has been
successfully used in robotic applications (Slotine and
Li 1991). A well reported drawback of conventional
sliding control is the rather high gains usually in-
volved in the controllers, which seriously limits their
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practical implementation. Moreover, as it happens
in most nonlinear control schemes, often analyzed us-
ing Lyapunov-like methods, conventional sliding tech-
niques only guarantee the asymptotic error conver-
gence, which means that the tracking error does not
converge to zero in a finite time.

In this paper adaptive and sliding control methods
are combined to be applied to the control of robotic
manipulators ( Slotine and Li 1991, Barambones and
Etxebarria 2000) but with a new energy-based design
that guarantees that the tracking error is eliminated
in finite time. As a first ingredient of the design a
composite adaptive scheme which drives the parame-
ter adaptation using both the tracking error and the
prediction error, is used to get faster parameter con-
vergence and smaller tracking errors. This results in a
decrease of the model dynamical uncertainties which
allows to use lower sliding gains, thus resolving one of
the implementation problems addressed above. More-
over, a nonlinear filtered error is introduced in the
switching control law, similar to the so-called termi-
nal sliding mode control (Zhihong and O’Day 1999),
which leads to a tracking error converging to zero in
finite time, This property contrasts with the theoreti-
cal infinite convergence time associated to the asymp-
totic behavior of conventional adaptive and sliding
control schemes.

2 Problem formulation and

control design

The vector equations of motion of a n-link robot ma-
nipulator can be written as:

T = M(©)0+C(0,8)0+G(0)+F(8,0)+D(t) (1)

where 7 is a n x 1 vector of joint torques; ©, 0 and
© are the n x 1 vectors of joints positions, speed and
accelerations, respectively; M (@) is the n x n mass
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matrix of the manipulator; C(©, ®) is an n x n vector
of centrifugal and Coriolis terms which is chosen so
that the matrix M — 2C is skew-symmetric; G(©) is
an n x 1 vector of gravitational terms, F(O, 9) is an
n x 1 vector of friction terms, and D(¢) is an n x 1
vector whose elements represent the dynamic uncer-
tainties caused by unmodelled dynamics and noise. It
is assumed that this uncertainty vector is bounded {i.e
D@ <p V).

The equation of motion (1) form a set of coupled
nonlinear ordinary differential equations which are
quite complex, even for simple manipulators. How-
ever, as it is well known this equations have some
useful properties:

(i) mI<M@O)=MT@)<mI, 0<m<m.

(ii) Given a proper definition of the unknown param-
eter vector, it is possible to obtain the following
linear dependence:

M(©)6 + C(8,0)0 + G(8) + F(0,0) =
Y(©,6,8)4

where A is an g-dimensional wvector contain-
ing the system dynamical parameters and
Y(©,6,0) is an n x ¢ matrix often refereed to as
regressor matrix, whose elements are nonlinear
known functions.

(iii) There are a parameter vector B of dimension
v < r, whose elements are a subset of the pa-
rameter vector A introduced in (ii), and a vector
H(©,8) of dimension v, whose elements are a
nonlinear funetions, so that the manipulator en-
ergy can be written in the next form:

E(t) = H(6,0)TB + d(t)

where d(t) is the term which take into account
the uncertainties.

(iv) From the energy conservation principle it is de-
duced that the change of this is equal to the
power supplied by the motors minus the power
consumed due to the frictions.

[T- F(@,é)]Té = %

From the properties (iii) and (iv) and taken into
account that the friction term can be written as a
product of a unknown parameter vector x (of dimen-
sion r — v) for a regressor &, this is:

F(©,0)Te = a(0,0)Tx

it is concluded that:

y : dE dH(©,0)
T T _ 2~ oA =)
TT6-2(0,6)'x = — =

Filtering the two members of equation (2 by a first
order low pass filter it is obtained:

B+d(t) (2)

1 N PSOSNPY :
SHf[:r’f@]_ H(©,0) Py H(@,@)JB’Jr
1 ;
s+ Af [(I’(@’@)TX]

where s is the Laplace transform variable and Ay is
the cut frequency of the filter, which is adequately
chosen to eliminate the uncertainties term.

The previous equation can be written in the next lin-
ear in the parameters form:

y=Ww(,8)74 (3)
where y is the filtered power:
1 i
= 776
4 s+ As [ ]

W is a vector formed by non-linear known functions:

' H(6,0) - —Afi(?’@)
W(®,0) = d (4)
L 50,6
S +)\f ( ' )

and A is the full parameter vector defined in the prop-
erty (ii), which is composed by the dynamic coeffi-
cients of the robot plus the friction term coefficients.

(2]

The control problem may be formulated as fol-
lows: Let ©4(t) be a given twice differentiable desired
trajectory, and define the tracking error as E(t) =
O(t) — B4(t). The control objective is to ensure the
tracking error to converge to zero, while maintaining
bounded all signals in the system.

Assuming the knowledge of a bound on the uncer-
tainty vector, p, let us define the vector control input
to be of the form:

T =T -KS" —Psgn(9) (5)

where K = diag(ki,...,kn) > 0, P = diag(p),
ST =[s7,...,s7]7, sgn(S) = [sgn(s1),- . .,sgn(sn)]T,
and S is the sliding variable defined as S5 = E +

AE?  with A = diag(A1,...,As) > 0 and EP =
[e},...,eR]T, and the numbers p and r are defined so

as to satisfy also the following condition:

Z1
PT=—, 2% €2y, 21 <z,
2

Z1, %9 Odd,

(6)

and p > %
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Also T is the predicted torque, defined as:

A

T

f

M (©)8, +C(0,8)6, + C(0) + F(6,0)
= Y(6,0,6,,6,)4 (7)

where M ; C', é, F , and A depote the estimates of M,
C, G, F and A respectively, ©, = 04 — AEP =0 -8
and ©, = Oy — pAdiag(el™!,..., e 1)E.

The dynamical parameters of the system are up-

dated according to the following composite adaptive
law:

A= i [YT(e, 8,6,,0,)5 ++wT(o, é)e}] (8)

where ' is a positive definite matrix, v is a positive
number, and

ep=7-y=W(O,0)A-W(,0)4A=W(O,0)4

is the filtered prediction error.

Figure 1 illustrates the block diagram of this sliding
adaptive control scheme.

94,04,64

Figure 1: Proposed robust composite adaptive control
scheme

Remark 1. It should be noted that in the terms ()"
and (-)?, the power and root operations are odd, and
that only the real roots are considered. Therefore this
operations maintain the sign of their arguments.

3 Stability analysis

The following results on differential inequalities (Hale
1969) will be used for the subsequent stability analy-
sis.

Definition . If f(V,t) is a scalar function of scalars
V(t),t in some open connected set D, then a
function V(t), to <t < t1, t1 > to is a solu-
tion of the differential inequality

V(t) < F(V(E), 1) (9)

on [tg, t1) if V(t) is continuous on [to,t1) and its
derivative on [ty, t1) satisfies (9).

Lemma 1 . Let f(y(t),t) be continuous on an open
connected set D € R? and assume that the initial
value problem for the scalar equation,

9(t) = fy(t),1), (10)

has a unique solution. If (t) is a solution of (10)
on tg < ¢ <ty and V(t) is a solution of (9) on
to <t <ty with V(to) < y(to), then V(¢) < y(f)
for tg <t < #;.

y(to) = wo

Lemma 2 . Assume that a continuous positive-
definite function V' (¢) satisfies the following dif-
ferential inequality:

V(t) < ~aV", Vi>ty, V() 20, (11)

where o > 0, 0 < 17 < 1 are constants. Then, for
any given tp, V(¢) satisfies the following inequal-

ity:
VI=(2) < VI(tg) — a1l — n) (¢ — to)
to <t <ty (12)
and V(t)=0, Vt>t
where {; is given by:
Vl_n(t[))
:t —_—
3] 0+ a(i=mn) (13)

Before presenting the main stability results, the fol-
lowing assumption is stated:

AL . The regressor matrix satisfies the following con-
dition:

t+T
/ YTvdt>al o,T>0 (14)
t

This condition is verified if the regressor matrix ¥
satisfies the so called “persistent excitation” con-
dition which always can be achieved by choosing
a sufficiently rich-in-frequency reference signal.

Now the following result can be stated:

Theorem 1 Consider the robotic maniputator given
by (1). Then, if assurmption (A1) is verified, the con-
trol law (5) with the adaptation law (8) lead the closed
loop outputs © and their derivatives © to track asymp-
totically the desired trajectories ©4 and their deriva-
tives ©. Moreover, the tracking error E =0 —Q, =
0 for t > tr with tv < co.

Proof:
candidate:

Define the following Lyapunov function

V=W+W= %STMS+ %ATF-R& (15)
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whose time-derivative is:
Vo= STMS+ %STMS L ATr-14
— §TMO - STMO, + %STMS + ATr-14
= ST[T-c(5+6,) —G—F—D} -
_ STMO, + %STMS ATr-1A
= g7 [T—MG')T—C'C;),‘—GfFfD] &
= %ST [M s zc} S+ ATr-1A
= &7 [T ~Y(0,8,6,,6,)4 - D} + ATT14
= ST[vA-KS"-Psgn($)-YA- D] +

+ ATr-14
= STYA-STKS™ - pT|S|- DTS~
— ATYTS —yATWTe}

< —STKS™ —qe; e} (16)

The first term on the right-hand of V satisfies:

n n 1 n
STKST = Zki[sir"'l e |iz "Q-me = alVf’
i=1 i=1
(17)
2 n
<1, a1 = kmin - (:) with

m

1+r
2
kmin = mm{k@}

where n =

It should be noted that from the conditions over
the number r (see eqn.6) the term 575" is a positive
value.

The second term of V', V5 satisfies:

p - - - 1
Vo = —;-ATI"_lA < i,z‘lTI/VF‘PT'VA =—erey (18)

[a7%) ¥
2Amin oL
with as = T_Lg_/Tv)V) where Amacz(-) and

Amaz(-) denotes the maximum and minimum eigen-
values of (-), respectively.

Finally, the second-right term of V satisfies:
T 1 1 ,]"
¥Fes = e 20 [ e8] 2 a3y ()

Then, from the previous results, one can obtain that
the V' derivative verifies:

V < —oq V] — 1 V3! € —am (Vi + V2)7 = —an V7
(20)
where @, = min{ai,vaj}.

Since V is clearly a positive definite function and 14
is negative definite, the closed loop system is asymp-
totically stable. Moreover, from Lemma 2, it fol-
lows that the time £, for reaching the sliding mode

(Vi=7(t,) = 0) is:

Vi=n(0
t, = ——(—)— (21)
am(l—mn)
On the sliding mode, for t > ¢, it is verified:
S=F+AEP =0 (22)
Now, it is defined:
1.3
Ve = §E E (23)
The time derivative of V; on the sliding mode is:
V. = ETE
= —ETAE?P
n
= =Y M
i=1
1 s
S */\mian |:§' Z e$:|
i=1
= 2T x Ve Vi>t, (24)
where 7, = % < 1, and Apun = min(A;), 1 =

1,.--n. Therefore, from Lemma 2, it follows that
E(t) =0 for t >ty with:

Vi (&)
27 Apnim (1 == Tis)

It should be noted that from the conditions over the
number p (see eqn.6) the term ETAEP is a positive
value.

Remark 2. On the terminal sliding mode (S = 0),
it follows from (22) that @, can be expressed as:

tr =1t + (25)

6, = 6y-pAdiage® !, ..., es NE
= O +pAdiag(e?™',. .., el ) AEP
= O4+pATEP (26)
Therefore, p, as it was required in equation (6), must
be chosen such that p > % to ensure the boundedness

of ©, as the tracking error E goes to zero.

4 Simulation results

In this section we will consider the control of the sim-
ple planar manipulator with two revolute joints. Let
us fix the notation as follows: For each link i (i=1,2)
#; denotes the joint angle; m; denotes the mass; [,
denotes the length; [, denotes the distance from the
previous joint (¢ — 1) to the center of mass of link 4
and I, denotes the moment of inertia of link 7 about
an axis perpendicular to the plane, passing through
the center mass of link <.
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Using the well-known Lagrangian equations in clas-
sical dynamics, one can show that the dynamic equa-
tions of the robot are:

T diy  dia by [} f1
MR RN
Cég Cél +Cég 9]_
+|: -—Cél 0 :| [ 92 ] (27)

where the coefficients d,;, g;, f; and ¢ are:

dit = mald + I +mallf +12 + 20, cosby] + I
day = mgli + I

dio = da; = malil., cosfz + mzfi + Iy

e = —malyl.,sinbs

g1 = mile,geost + mag(le, cos(fy + 62) + 11 cos 0]

g2 = malggcos(f; + 6a)

o= Ulél

fo = 'szjz

where g is the gravity acceleration, and v, are the
viscous friction coefficients.

Using a proper parametrization, the dynamic equa-
tion of the robot can be put in linear dependence.
It is defined the following (2 x 7) regressor matrix
Y(9,0,06,, é)r) whose elements are:

yar =0 )
Y22 = Oy + Org
Yoz = cos ol +

Y1 = én
Y12 = Oy )
Y3 = (2671 + 8;2) cos fa—

*{9297'1 + (91 + ég)érg] sinfls  +sin 929197-1

Y14 = gcosb Yaqa =0

Y15 = gcos(&l + 63) Y25 = gcos(f; + 62)
16 = 81 Y26 =0

y17 =0 Yo7 = B3

and the unknown dynamical parameters:

a1 =1 + mllgl + ’m,g[% + Iy + mzlgz

as = mglé + I as = malil,

(28)
U:5 = m2l62
ar = Uy

aq = mllcl + maly
g = U1

As it was indicated in the section 1, the robot en-
ergy can be put in the form E = H(©,0)B. For the
robot of this example, the H elements are:

hy = 0}

hy = 29'1 (191 + 92) cos(fla)

hy = gsin(8;)

hy = (éz + 291) 05

hs = gsin{6; + 6)
and the terms of B are:

B =la; as a3 a4 as]T

Finally, the parametrization of the friction terms is
made using the function matrix:

(6 o
CI'_[U ég}

and the parameter vector:

=)

As can be observed, the parameter vector A is formed
by the elements of the vector B plus the elements of
the vector y

(29)

(30)

In all the example the following values for the
robot’s parameters are assumed (SI units):

my = 2 mo = 1.2 Il =0.25 Ig =0.15 v =0.1
l]_ =1 lcl =04 ZQ =0.7 [,32 = 0.3 Ug = 0.1

Using this values, the real (unknown) dynamical pa-
rameters a; are:

A=[2.00 025 0.38 2.1 0.33 0.1 0.1]7  (31)

The following values have been chosen for the con-
troller parameters:

A =diag([1010]) T = diag([0.5 0.5 0.5 0.5 0.5))
K =[1515] P =diag([0.10.1])
o0 13
T Pt 7
and it is assumed that there is an uncertainty around
50% in the dynamical parameters of the robot, and
therefore these are incorrectly initialized with:

=01 A;=10

A(0) =115 0.15 0.25 1.5 0.25 0 0]  (32)

In the example, the robot start at position © =
[0 0]7 and the control objective is to follow the de-
sired trajectory:

0.3sin (0.7t — %) + 0.3sin (0.1t — Z) +0.61

%=1 0ssin (0.9t — Z) +0.55in (0.1¢ — ) + 1.1

Figure 2 shows the tracking errors for the joints. As
it can be observed, after a small time, both tracking
errors tend to zero. Figure 3 shows the control signals
for the joints.

The control signals are smooth because the dynam-
ical composite parameter estimation allows to use a
small sliding gain, since the sliding control only needs
to compensate for the unmodelled dynamics and not
for the parameter uncertainties. As a result, in the
figures it can be observed that the chattering phe-
nomenon is greatly reduced with respect to conven-
tional sliding mode control schemes. Finally in Figure
4 it is presented the time evolution of the estimated
parameters which, as it is observed, tend to the real
parameters.
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Figure 3: Control signal for the joints

5 Conclusions

In this paper an energy-based approach to the design
of a robust adaptive control scheme for robotic ma-
nipulators has been presented. A combined adaptive-
sliding control strategy has been employed. The adap-
tive part has been used to compensate the assumed
dynamics of the model, and the sliding-mode part has
been included in the design to overcome the unmod-
elled dynamics and perturbations. It has been shown
that the use of a composite adaptive control law allows
to use lower sliding gains, which leads to a more easily
implementable design. Also it has been proved that
the closed loop system remains stable and that the
tracking errors are eliminated in finite time, and an
upper bound of this time has been calculated. Finally,
a set of simulations has been presented to illustrate
the performance of the proposed design.
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