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Abstract — In this paper PD control using a method given
in [4] is presented. It is shown that by proper choosing of
the Lyapunov function candidate a dynamic system with
appropriate feedback is asymptotically globally stable in joint
space, Presented control is new in the sense that it is derived in
terms of generalized velocity components dynamics described
by Loduha and Ravani. New control was tested on a model of
manipulator with two degrees of freedom.
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I. INTRODUCTION

Dynamic equations of motion for serial manipulators are
second order, nonlinear differential equations. In order to
simplify the mass matrix which appear in these equations
one can introduce quasi-velocities. The advantages of us-
ing quasi-velocities are as follows: 1) one can obtain natu-
ral splitting between momentum differential equations and
kinematic differential equations, 2) decomposition of mass
matrix which provides deeper insight into manipulator dy-
namics is possible, 3) mass matrix is diagonal which sim-
plify its inversion. A set of new quasi-velocities was pro-
posed Loduha and Ravani [4]. Similarly, as Jain and Ro-
driguez [1], they have introduced, instead of transformation
in configuration space, a diagonalizing transformation in a
quasi-velocity space. They have presented a diagonalized
equation of motion for holonomic and nonholonomic sys-
tems using variables called the generalized velocity compo-
nents. In this paper we consider two new controls in terms of
these variables. This paper is organized as follows. In sec-
ond Section diagonalized equation of motion are described.
New control in quasi-velocity space is given in the third Sec-
tion, Simulation results are presented in the fourth Section.
The last section contains concluding remarks.

. DYNAMIC EQUATIONS OF MOTION

Consider classical equations of motion for robot manipu-
lators described as [5]:

M(©)8+C6,8)+G@E) =T (1)

where M (0) stands for the system mass matrix,

a, 5’, @ are vectors of joint variables, velocities, and accel-
erations, respectively,

C(#, 8) denotes Coriolis forces term,

G(0) is a vector of gravitational forces,

T is a vector of joint moments.

In reference [4] authors consider systems described by
Kane’s equations. They introduce a transformation between
Joint velocities and generalized velocity components defined
as follows:

6 = Tu (2)
T4 (3)
where T is a rate transformation matrix which depends on

kinematical and dynamical parameters. Calculating a time
derivative of (2) we obtain:

6 ="Tu+ Yau. (4)

U =

Inserting above equation into (1) and multiplying both sides
by Y7 one can write:

M@O)(Tu+Ti)+C0O,0)+GO) =T (5)
TTM@O)Te + T [M(8)Tu +

+C(8,8)] + TTG(H) = TTT. (6)
Finally, Eq.(6) can be written as follows:
Ni+C0,6,u)=n (7
where
N="TM@#)T (8)
C(8,0,w) = YT[M(@)Tu+C(6,6)] (9
7 =YT(T - G(&). (10)

In equations (8)-(10) N is a diagonal matrix congruent to
mass matrix of manipulator M (8) (this matrix can be ob-
tained using method described in [4]), u, % are vectors of
generalized velocity components and its time derivative, re-
spectively, C'(8, 0, u) is a new Coriolis force vector and 7 is
a vector of quasi-forces. In this paper we consider dynamic
equations described by (7). Generalized velocity compo-
nents are, in fact, a kind of quasi-velocities known from
analitycal mechanics.

Recall Kane’s equation of motion in terms of the general-
ized velocity components [4] for A rigid bodies:

i d
TTM(@)Ya + Z[miTTJiTa(JiT)u 5

i=1
d
YT L o (T u+ YT Wiliws — Y7L
—TTQ?TI'] =0 (1D
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where
N

M(8) = [miJ T + O L) (12)
i=1

and Y is the rate transformation matrix transforming joint
velocities into generalized velocity components space,

m; 1s the mass of i-th body,

Ji is the partial derivative of i-th body’s mass center po-
sition with respect to the inertial reference frame,

€2; is the partial derivative of body i’s angular velocity
with respect to the time derivative of the generalized coordi-
nates vector,

I; is the central inertia matrix,

Wi is the angular velocity matrix associated with the -th
body, and written in terms of body #’s natural frame,

w; is the angular velocity of i-th body,

fi is the resultant active force acting at the mass center of
the i-th body,

7; is the resultant moment.

For serial manipulators we can write (11) and (12) using
(3) in the form of (6) where:

N
Z[(mtjfﬂjt - Q;ngﬂl)g +
i=1

+  QIW;Lw] (13)

N
-y I (14)
i=1

C(8,8)

N
> afn. (15)
i=1

Physical interpretation of generalized velocity compo-
nents (GVC). By standard numbering every component
ur = O + 8 is a sum of k-th relative joint velocity 6y,
and additional terms §;, = Zf:jf wkiéi. These terms reflect
the influence of all links of the manipulator. Every term is
equal the relative joint velocity multiplying by a weight co-
efficient. These coefficients depend on link masses and also
on geometrical and kinematical parameters in actual time in-
stant and have no physical units (for manipulator with rota-
tional joints). They change with the time during the motion,
The generalized velocity component 1 is near the relative
joint velocity then elements of mass matrix on the diagonal
have big values and behind it - much smaller. Bigger value
of the mass matrix element indicates that the appropriate rel-
ative joint velocity has a bigger contribution in component
ug. One can say that the generalized velocity component
uy, Tepresents the resultant velocity in a local instantaneous
frame of reference.

III. PD CONTROL IN INTERNAL SPACE

Let a constant equilibrium point be assigned for the sys-
tem as the vector of desired joint variables 6 similarly as in
[5]. Next we propose PD control in joint space.

Recall that [5] for standard equation of motion (1) PD-
control in joint space is as follows:

T = —cpb + cpl + G(0) (16)

where 6 = 8 — 6 is the joint error between the desired and
actual posture.
PROPOSITION. The feedback control described as

7 =—cpu+ Tl cpl (17)

in which ¢p is a positive definite control gain matrix renders
the system stable in the sense of Lyapunov.

Proof. As a Lyapunov function candidate consider the
following expression

1 - -
L(8,1) = EuTNu + 0% cpf. (18)

The time derivative of NV equals (by M = M (8)):

. d . . .

N = E(TTM‘I‘) =TTMY +YTMYT +YTMT. (19)
Next we calculate the time derivative of the function (18) us-
ing equations (7)-(10) and the fact that M (6)6—C(8,6) =
0 [5]. After transposition of (2) and subtracting T =
YT~Tx + G(8) (which arises from (10)) one can obtain:

@l . Lo aT 5
e =u Nu+2u Nu—0'epl =
=ul[r = YTMTu—-Y7C(9,8) + %(TTMT +

FYTMY + YT T)u — YT cpf] =

—uTir + TT(%Mé ~C(8,6)) +

+%(TTMT —YTMY)u - YTcpl] =

=uT(r — TTepb) = —uTepu < 0. (20)

The function candidate decreases as long as u # 0 for all
system trajectories. Notice that % = O only if u = 0. The
closed loop system is described as:

Nu+C(8,8,u) = —cpu+ TTcpb. 20

In classical description [5] the system reaches "equilibrium
posture” with # = 0 and 8 = 0. Time derivative of Eq. (3)
istu="T"19+7T"'0. Hence if § = 0and § = O thenu =0
and 7 = 0. Next, from (7) and (13) we get C(#, Q,u) = 0.
At the "equilibrium" we have:

TTepd =0 (22)
and also 8 = f3 — 8 = 0 because Y7 is invertible.

Jain and Rodriguez [1] have proposed equations of
motion in terms of normalized and unnormalized quasi-
velocities, respectively. These equations updated with grav-
itational forces can be written as follows:

v+ C,v)+Gu(6) =€ (23)
DE+C(8,8) +Ge(8) =k (24)

where v is a vector of normalized quasi-velocities, £ - vector
of unnormalized quasi-velocities, C (8, v) - vector of Corio-
lis and centrifugal forces in diagonalized normalized equa-
tions of motion, C(8, &) - vector of Coriolis and centrifugal
forces in diagonalized unnormalized equations of motion,



D - articulated inertia about joint axes matrix, e - vector
of normalized quasi-moments, & - vector of unnormalized
quasi-moments, G, () and G¢(f) - gravitational forces in
normalized and unnormalized equations of motion, respec-
tively,

In case of normalized and unnormalized quasi-velocities
PD controls [2, 3] have the following form:

Il

—cpv +mH(0)cpf + G, (6) (25)
~cpé+Dim~ (B)cpl + Ge(8)  (26)

€

Il

K

where ¢p and cp are positive diagonal control gain matri-
ces, § = 4 — @ and m(8) is a spatial operator - "square
root” of mass matrix M (), namely M (8) = m(8)m7 (8).

Interpretation of quasi-velocity PD control. Here we
explain the difference between PD quasi-velocity control
and standard PD control. Substitute k for standard case
instead of c¢p in (16). Notice that control (17) is globally
asymptotically stable and the gain matrices cp, cp are pos-
itive definite. Control (17) provides a linear velocity feed-
back in the « formulation and also a nonlinear term consist-
ing of matrix Y7, which depends on configuration of the
manipulator. This term is a momentum like quantity. Ob-
serve, however that § as a difference between desired and
actual position tends to zero and then as the main term re-
mains quasi-velocity control.

Generalized force vector using (10), (3) and (17) can be
written as follows:

T =—(Y")Tep T 0+cpb+G(8) = —kpbtcp+G(6)

(27)
where kp = (T71)TcpY L. Let us explain the signifi-
cance of Eq.(27). Instead of using control of § vector as
would be done usually in velocity feedback (proportional
damping) a momentum like quantity is realized in this case
because matrix T is configuration dependent, Assuming ¢ p
as a constant scalar in Eq.(27), the term (T ~1)TT-1 acts
as a state dependent feedback gain matrix. We can realize
a linear position control but not velocity control because of
nonlinear configuration dependent matrix % p. This momen-
tum like quantity do not vanish because this term acts as
a state dependent feedback gain matrix. This is shown in
Fig.15.

IV. SIMULATION RESULTS

In this section we present simulation results for model of
manipulator KARI-2 consisting of two degrees of freedom
(double pendulum) using controls (16,17,25,26) described
in previous section. The KARI-2 robot is characterized by
the following set of parameters:

o links masses: m; = 0.75kg, mo = 7.92kg,
e link inertias: J; = 0.359kgm?, Jo = 2.597kgm?,

e distance between the axis of rotation to the mass center:
p1 = 0.28m, py = 0.5235m,

e length of links: [} = 0.525m, {3 = 0.595m.
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The aim is to achieve the set point control for desired
trajectory in joint space described with spline parabolic-
-linear trajectory (SPLT) where 6 (t) = 6(t) change in
(0; %) [rad] using

|61] = |6a| = 2x[rad/s?], (28)

and with time duration ¢y = 3[s]. Simulations were per-
formed using the fourth-order Runge-Kutta formula and
fixed step size 0.005[s] and control coefficients as follows:

CD(]_) = CD(Q) = 25, Cp(].) = Cp(?) = 500. (29)

Next we assume that joints are numbered from the tip to
the base of the manipulator. The simulation results are pre-
sented in Figures 1 to 14. In Figure 1 the desired trajectories
61 = B in joints space are shown. Figure 2 shows desired
velocity profile. Figure 3 illustrates a comparison between
joint velocities and generalized velocity components (GVC)
for KARI-2 manipulator. Joint errors for standard PD con-
troller are shown in Figure 4 and for Loduha-Ravani PD con-
troller in Figure 5. We can see that for standard case oscilla-
tions are present even after several seconds and have bigger
amplitude as for LR case. For LR PD controller oscillations
vanish after about 5.5 seconds and errors are rather smooth
but these errors during work of manipulator have bigger val-
ues than for standard PD controller. For Jain-Rodriguez nor-
malized case (JRN) (Figure 6) oscillations do not vanish so
fast for the first joint but error value for this joint is compara-
ble with standard one. Maximal values of errors during the
work of manipulator are about 0.025,0.06,0.025[rad] for
the first joint and ST, LR and JRN controls, respectively, and
about 0.05,0.11,0.11[rad/s] for the second joint (we can
decrease errors assuming larger values ¢ p or smaller values
cp). These errors tends to zero faster for LR PD control than
for JRN or ST controls. In Figures 7, 8 and 9 we compared
Joint moments for standard, LR and JRN cases, respectively.
Oscillations of moments vanish after about 5 second for LR
PD control. But for standard case and for JRN PD control
they are present even after 6 second. Maximal values of mo-
ments are bigger for standard case than for JRN or LR cases
(for the second joint 20, 13 and 12[N'm)], respectively; for
the first values are almost comparable). During simulations
it was determined that PD joint space controllers give the
same results in LR case and in JRU (unnormalized) case.
In Figure 10 comparison between joint velocities and quasi-
-velocities for LR control and gravity is shown. The time
history is similar as earlier because in controller we do not
use gravitational term. In Figures 11 we can see joint errors
el,e2 for ST and LR cases with gravity. They are similar
time history as earlier. From Figure 12, which compares
joint errors after 5.5[s|, arises that errors for LR PD case
tends faster to zero than for ST PD controller. In Figures 13
and 14 we compared joint moments for standard (ST) and
LR cases with gravity. Maximal values of moments are big-
ger for standard case than for LR case (for the second joint
about 70[N'm] and 60[N'm], respectively; for the first values
are almost comparable). Finally LR control oscillations van-
ish earlier. We can explain this fact that dissipation of energy
is faster than in standard controller and that both controllers
involve system variables in different configuration.



V. CONCLUSIONS

In this work we have introduced a new PD control scheme
described in terms of Loduha-Ravani generalized velocity
components. Simulations results indicate that one can re-
alise effective PD control using quasi-velocities (called for
LR case generalized velocity components). It was deter-
mined that PD joint space controllers give the same results
in LR case and in JRU (unnormalized). Using PD controller
(LR or JRU) we have oscillations with smaller amplitude
then using standard PD controller and these oscillations van-
ish earlier for quasi-velocity case LR. But values of errors
are at the beginning usually bigger for quasi-velocity con-
trollers than for standard one. During regulation after some
time errors for LR PD controller can faster tends to zero
than for ST one. JRN control gives a little different results as
other controls. For such controller coefficients have to be as-
sumed with different values as for LR or JRU because these
quasi-velocities involve direct dynamical parameters. PD
control in terms of generalized velocity components takes
place in an abstract space. Because of that we transform
physical variables into quasi-velocity space and at the end
we transform quasi-moments into physical moments which
are input signals to controller.

Loduha-Ravani dynamic equations for serial manipulator
are decoupled in the sense that we have diagonal mass ma-
trix. Therefore we have to inverse only diagonal elements of
this matrix, Using equations (11) and (2) we obtain natural
splitting between dynamics and kinematics of a manipulator.
We have given also an interpretation of GVC.

The relationships between standard equations of motion
and new ones and also performances of controllers require
further investigations.
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Fig. 1. Desired joint trajectory.
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Fig. 2. Desired velocity profile.
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Fig. 3. Comparison between joint velocities dthl,dth2 and quasi-
velocities w1, 42 for LR method.
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Fig. 4. Joint errors €1, €2 for standard case.
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Fig. 5. Joint errors el, e2 for LR case.
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Fig. 6. Joint errors el, 2 for JRN (normalized) case.
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Fig. 7. Joint moments taul, au2 for standard case.
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Fig. 8. Joint moments taul, tau?2 for LR case.
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Fig. 9. Joint moments tau1, tau2 for JRN (normalized) case.
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Fig. 10, Comparison between joint velocities dthl,dth2 and quasi-

o . : Fig. 13. Joint moments {aul, tau2 for standard, case with gravity.
velocities 41, 42 for LR method with gravity.
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Fig. 1 1. Joint errors el, e2 for standard case (ST) and LR, case with grav-
ity. Fig. 14. Joint moments taul, fau2 for LR, case with gravity,
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Fig. 12. Joint errors el after 5.5sec. for standard (ST) and LR, case with Fig. 15. Joint errors el, 2 for standard PD (ST) control with matrices ¢p
gravity. andkp = T~ Tep Tt



