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Abstract

We propose in this paper a neural network adaptive
controller for redundant robot manipulators. The con-
troller has been designed in cartesian space to avoid
motion planning problem which is closely related to
the inverse kinematics problem. The neural networks
approximate separately the elements of the dynami-
cal model of the robot manipulator written in catesian
space. Adaptation laws are derived for each network
from stebility study of the closed loop system using
Lyapunov approach with intrinsic properties of robot
manipulators. Two strategies of control have been con-
sidered. In the first one the aim of the controller is to
acheive good tracking of the end-effector regardless the
robot configurations. In the second way, the controller
has been improved using augmented space strategy to
ensure minimum joint positions of the robot. Simula-
tions results demonstrate that the proposed controller
is effective.

1 Introduction

The assigned tasks to robot manipulators are al-
ways specified in Cartesian space coordinates called
operational space, however, control signals are deliv-
ered at the robot joints. It is then natural to design
the controller in joint space, but in this case the con-
trol synthesis problem is usually transformed into a
problem of motion planning in joint space from tra-
jectories described in Cartesian space. The transition
form one space to another is achieved through geo-
metric and kinematics transformations. These trans-
formations are based on direct and inverse models de-
scribing geometry and kinematics of the robot. For
parallel robots, the complexity is to compute direct
models. By opposition, the problem in serial robot

is to find inverse models particularly for redundant
robots.

The use of kinematically redundant robots is par-
ticularly interesting because of their flexibility to cir-
cumvent the internal singular configurations and their
ability to avoid obstacles. The controller is usually
designed in joint space and the problem to be solved
is to determine a solution to the velocity inverse kine-
matics. Much effort has been devoted in this area.
Some solutions proposed in the literature are based
on non-linear optimization methods which are com-
plex to implement, may cause instability and have
long time of convergence (2][3] [4][6](9]. Recently, new
interest in the neural network research has been gen-
erated to reduce the computational complexity of mo-
tion planning and control for manipulators. Several
neural networks methods have mainly been studied
by researchers to model the forward and inverse kine-
matics mapping for manipulators [1] [7]. However, al-
though of their faculty of inversion in the previous
situations, these methods don’t permit to give in real
time the solution that it is necessary to execute a given
task. In addition, they can cause instability of the sys-
tem if they are used in the control loop.

In this paper our attention is focused on design-
ing a stable adaptive neural controller with no in-
version problem and without knowledge on the dy-
namic model of the robot. The proposed controller
would be valid for all manipulator situations. Two
strategies have been considered. Firstly the aim of
the controller is to achieve good trajectory tracking of
the end-effector regardless robot configurations. The
drawback in this case is that the robot can be some-
times in a random configurations. To overcome this
problem, we used optimization techniques to generate
a new variable which ensures minimum joint positions.
The control of this variable around zero permits the
minimization of joint positions under the geometric
constraint. Therefore the trajectory tracking in the
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Cartesian space is assured with minimal and smooth
movements of the robot.

The article is organized as follows: Section 2 de-
scribes the robot arm dynamics and its structural prop-
erties. In section 3 the neural network representation
of the approximated model is given. Section 4 gives
the first version of the proposed controller with stabil-
ity analysis of the system in closed loop and simula-
tion results on 3 DOF-planar-robot. Section 5 concern
a modified controller which takes into account mini-
mal joint positions and simulation results on the same
robot. Section 6 is a conclusion.

2 Dynamic model and properties

We consider a n-degree-of-freedom robot manipu-
lator with revolute joints. The dynamic model is ex-
pressed in the form:

M(q)§+Cle: Q)¢+ H(g.4) =7 (1)

with ¢, ¢ and § (vectors of n dimension) are respec-
tively, joint positions, joint velocities and joint acceler-
ations, M (g) the inertia matrix, C (g, ¢) ¢ the Coriolis
centripetal forces, H (q,q) the vector of gravitational
forces, frictions and the rest of dynamics, and 7 the
vector of the torques acting on the joints.

The end-effector velocity vector & € R™ and the
joint velocity vector ¢ € R™ are related through the
Jacobian matrix J(g) € R™*" of the direct kinematic
function as:

i=s@i (J0=252)

where o = ¢(q) is the end-effector Cartesian position.
The end-effector acceleration vector Z is related to
the joint acceleration vector § as follows:

i=Ji+Jg (3)

In case of non-redundant robots m = n, and for no
singular situations of the manipulator, the matrix J is
always invertible. We can therefore use equations (2)
and (3), to compute the joint velocities and accelera-
tions respectively as:

Gg=J ' and §=Jli-JVJJ %

While replacing ¢ and § in the model (1), the model
expressed in Cartesian space can be written as follows:

M*(q)E +C"(q,9)2 + H™(¢,9) =" (4)

with:

M* = JTMJ1

GF = =TT M T
H*=JTH

* = J——TT =7 = JTr*

The robot dynamics (4) have physical properties
that can be used for the control law synthesis:

Property 1: The matrix M™ is Symmetric Positive
Definite (SPD).

Property 2: The matrix C* can be chosen so that
M* — 2C* is skew symmetric.

In case of redundant robots m < n, the inverse kine-
matics poses a challenging problem as for any given
end-effector velocity, there exists an infinite number of
solutions. Hence, the problem is to compute the ma-
trices M™*, C* and the vector H* that include matrix
inversion. To overcome this problem and in the same
time to avoid any knowledge on the dynamic model of
the system, we propose to design an adaptive control
law in Cartesian space. Thus, the problem of inversion
is transformed to a problem of estimation of matrices
M*(q), C*(q,q) and the vector H*(g,q). The neural
networks are the interesting tools to perform the op-
timal estimations of the unknown cited matrices and
vector.

3 Neural network approximations

The considered function approximator is an Multi-
Layer Perceptron (MLP) neural network with one hid-
den layer and the output is linear. The approxima-
tions have the structure 67 @(63v) where 6y is the
input-hidden layer weights of the neural network, 6, -
is the hidden-output weights of the neural network, ¢
provides an activation function of the hidden neurons
and v is the input vector signal of the neural network.

The functions to be approximated are all the ele-
ments of the matrix M*(g), the elements of the matrix
C*(g,q) and the elements of the vector H*(gq,q) and
are denoted by

mg; (z) = anW(agiz)+€mij (2)

i (8) = Blye(Bhid) + e, (4)

hE(Z) = Yhe(vhid) + en,(3)
2 = q i=(g9)

where ||¢(2)|| < &%), with a known and sufficiently
small €(%) € C!, of; € RPM*" ol . € RV, A7 €



287

Rrexm) gl e Rpe 4T & RPHX07) and 47, € R+,
The activation function is of sigmoidal form.

In matrix form, these approximations can be writ-
ten:

M*(2) = af p(al 2) + eu(2)

C*(2) = BT(B3 £) + ec(2)
H* (2) = v (73 2) + €u (%)
where:
Ct’{ = [a%ﬂl! T :a’{ml
ﬁ?=[£,"',5fm
and:
[ ¢(od;2) 0 0 ]
1,0(0452) - Q ‘P(agZz) “
0
L0 0 ¢lag,2)
CeBhd) 0 0]
: & 0
| 0 0 (B39 |

with a]; € Rvxem, g1 € Rxpe | 4T ¢ RvXPa,
The estimations of matrix M*(z), matrix C*(£) and
vector H*(£) are given by:

M* (2) = & p(é3 2)
" (£) = By (B 2) (5)
B (2) =4T0(72 %)

with &a, &4, ,@2, ,@1, %, and 4; are neural networks
parameters which will be provided by an adaptation
algorithm based on stability analysis.

With regard to linear parametrized networks [5][8],
the advantage of the MLP networks is certainly the
relatively reduced number of parameters. It is clear
that this number depends on the dimension of the
input, nevertheless this dependence is not exponen-
tial. The drawback of this type of networks is their
non-linear parametrization. However, an alternative
to treat these non-linearities is to use development in
Taylor series of functions cp(GTz) around the estimated

AT
parameter (# z). It can be written as follows:

o(072) = (8" 2) — (0 2)0 2~ 00" 2)  (6)

with ¢'(2) = dp(z)/dz|.~3, and O(z) represents terms
of superior order, their values are

0" 2) = (0(8" 2) — p(672)) ~ #3208 2 (7)

It is well known that sigmoidal functions ¢ and their
derivatives ' are bounded, then for (7) we can de-
termine the approximation error bounds with Taylor
series, that are such as:

10(2)]] < e1 + el 6] 7|2 (8)

where ¢; (i = 1,2) are positive constants calculated
from the expressions of ¢ and ’.

4 Neural adaptive controller

The main objective of the controller is to achieve
trajectory tracking of the robot en-effector. The de-
sired trajectory is then defined in operational space by
the variable x4 of dimension m. The tracking errors
and reference signals are defined hy:

e=x—a4; s=¢+ Ae¢;
Ty =3g — Aé

e=2x— xg4;
T, = dq — Ae;

(9)

A is a diagonal positive matrix.
The proposed control law is given by:

u=M"(2) &+ C*(8)2, + H(Z) — Kys+w  (10)

K, > 01is a gain matrix. The signal w is used to com-
pensate the approximation errors, it will be defined
later.

The neural network parameter adaptation laws are

defined as follows:
&1 = —rLr|ls||én = Tar(p(83 2) + @' (83 2)a3 2)irs”

o = —&T pr||s| 2 — TMZ@ST@T(PT&gz)

o3 ” 5T, ~T , =T,

By = —rTcllsl|B1 — Tc(p(B2 ) + (82 £)8, z)wrsT
. 2 . L,

By = —kTc||s||B; — Toirs™ By ¢ (B, 2)

1 = —kTallsll§1 — Talp(¥s 2) + @' (33 £33 2)s
Yo = —kTx||sl|¥2 — Trr£sT41 (43 2) (11)

T

with & positive gain and '/ o g} positive matrices.
The error dynamics of the system in closed loop is
obtained using the control law (10) with signals de-
fined by (9):
M*(2)§ = -Kys—C'(&)s+uw
+M*(2)F, + C*(8)d, + H(3)
+e(Z, Ty, &r) (12)
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with e(z, &y, &) = en(2)Z, + ec(2)d, + emg(Z) and

—~— e

O=0-0)

Using the matrix approximations given by (5) and
the development in the first order Taylor series of the
activation function, the equation (12) can be rewrit-
ten:

M*(z)s=-C"(2)s - K,s+w
- (al¢'(af2)af 2 + aTp(a32) ) &
~ (B19 (B2 9Bs £+ B, 037 )i
~ (4T (3 0352 +4T9(332)) + (. r, )
(13)
with
€, i, &r) = €(2, ry Br) + £ (5, o, i)

and €,(%, &, &) are disturbances due to the first or-
der Taylor series approximations. They can be repre-
sented as follows:
o =719 (%3 )73 £ — 711 033 2)
T 2T, T, AT,
+ (B @' (By B3 2 = 51 O(By 2))is
+ (8] ¢'(85 2)85 2 - o] O(&5 2))ir

While using the Frobenius norm of matrix, we can
write:

llell < learllllZ-| + lleclll2-]] +|lex]| (14)
and:

lleoll < (eall@l[eallllz]] + llell]|Oarl DI
+e2| 12 llllZl] + 7l Ol
+(Callﬁlliﬁzll!éll+|lﬁl1lllOcI)Ilir{l( )

15

Let 6, # and 6 matrices that contain respectively, all
parameters, a1 2,81 9,712, all estimated parameters

&2, 01 2, ¥1,2, and all parameter errors & 2, 81 2, ¥1,2-
Considering that:

o [|6/lr < [0]lmax
o H[ zq &4 %4 ||| <Yy (Yyis abounded signal)

o ||Z]] < piYa+p2||s|| (pr and ps are positive real
numbers function of A)

o ||| < psYa+ pals]|

Recalling the Taylor approximation and manipulat-
ing the previous equations, we get:

llew +ell = llell < A1+ A2(18)1 + As[lBllllsl] (16

where Ay, As, and Ajg are positive real constants func-
tion of fnmax, Y4, A, 0 as well as approximation prop-
erties of the used network { ey, €c and eg).

For the system defined by the error equation (13),
we propose the following term of compensation:

w = —Kg(||6]] + [|0}[max)s (17)
with:
Ko > A3 (18)

Note that in conception of compensation term (17),
the estimation of ||f||max iS necessary. However, the
parameters of the network don’t have any physical sig-
nificance, this value can only be chosen in a heuristic
way.

Let us consider the following Lyapunov function:

V=Wi+WV+Wh+1 (19)
with:

1 T *
Vl = 58 M (Z)S

| R Tl
V2= 5(“(@?11\41 &) + tr(dg Ty d2))

1 P ~T_ 4
V3 = ~2-(tr(ﬁ1 L5 8,) + (B2 TalBa))

1 s s R
Vi= E(tr('y?l"Hl'yl) i tr("/grgl')fg))

its derivative with respect to the time is given by:

V=Vi+Va+Vz+ 1 (20)
with:
Vi =sTM*(2)5+ %ST.A;I*(Z}S

Va = tr (&1 T3} 6u) + tr (&2 Ty} o)
Ve =tr (BTG58, ) +tr (B2 T5' o)
Vi=tr ({Tg'%) +tr (5T %)
Using equations (13), (17) and (11), the expression
of (20) is transformed as:
V = —sTK,s—&l|s]] tr(f?T(@ +)
—Es([18]] + 18llmax)|Is]|* + s7e
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Using the following inequality:
(8" (5 +6)) > 181> - 18111101
we can write:
vV < —x\min(ffu)HSIIZ — &l|s[I(11811% — l16]]]161])
~Ko{16]] + 110]|mas)lI[* + [Is[] ]l

From inequalities (16) and (18), we can write V < 0
if one of these conditions is verified:

A1 + (Emax + AQ/""')2/4

Il & S )

(21)

or:

(emax + AQ/K')
2

+ s+ QLA
(22

16]| >

V is negative outside of a compact set defined by (21)
or (22), therefore s and @ are bounded. |

Remark 1 In (21), the radius of convergence of s de-
pends of Amin(Ky), 50 i is much smaller if K, is large.

Remark 2 The proposed algorithm modifies parame-
ters in the same way as the back-propagation. Indeed,
the adaptation of parameters is achieved from the out-
put toward the input of the neural network.

The performance of the proposed controller have
been tested in simulation on a three revolute joints
planar robot manipulator (n =3, m = 2).

Trajectory tracking in x direction

Trajectory tracking in y direction
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Figure 1: Trajectory tracking when the controller

without optimisation is used.

We used one hidden layer neural networks with 5
neurons and tangent hyperbolic as activation function.
The end-effector desired trajectory is a circle.

The control law parameters are chosen as:

K,=20 A=10 k=0.01
K‘w =01 n{l,?}{m,c,h} =3 ||9||max =10

The obtained results show a good trajectory track-
ing achieved by the robot end-effector (figures 1) but
the joint positions are very large {figure 2).

Posiion ¥ jm.]

Figure 2: Configurations of the robot when the pro-
posed controller without minimization is used. The
desired trajectory is the circle.

‘We propose in what follows to minimize the energy
of displacement via a supplementary variable h that
depends on joint variables. It is deduced from con-
vex quadratic criterion according to joint positions.
The minimization of the cited criterion is equivalent
to control the new variable h around zero.

5 Modified neural adaptive controller

We underlined through the previous results that
the proposed controller was very efficient for trajec-
tory tracking but unfortunately it does not minimize
joint displacements. To improve the controller with
regard to optimal robot configurations, a convex cri-
terion function of joint displacements is introduced.
The main objective is then to optimize this criteria via
a new variable h which ensures convergence to global
minimum. It is introduced in the previous controller
to form an extended geometric model as follows:

S HNED

The chosen expression of h(g) results from minimiza-
tion of an index £(g) function of joint displacements:

(23)

1« 1
=35> a=54"9 (24)
i=1
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This index is well convex with regard to the variable
g. In this case, the problem is to find joint positions
that minimizes (g) under the geometric constraint
z = ¢(q). Thus, let’s consider the following extended
objective function:

O(g, ) = Q(g) + AT (z — #(q)) (25)

A is a vector of dimension m representing multipliers
of Lagrange. The necessary condition of optimality
can be written under the following form:
P
99 _ aa _ [ de _ g7

(26)
O =0 =z=4¢(g)

This condition can be rewritten using the non-zero
matrix N translating the nul space of the Jacobean
matrix J (JN = 0). Indeed, while multiplying the
first equation of the system (26) by N7, the necessary
condition of optimality becomes:
99(q)
NT—2 =0 27
5 (27)
As the criterion 2 is convex with regard to g, we can
conclude that the condition (27) is necessary and suf-
ficient [7]. The choice of the variable A is then given
by:

) = N7 Z58 = g (29)

and its desired trajectory value hy is defined as:
ha=ha=ha=0 (29)

Let’s consider the following reference signals for the
new variable h:

'El'r = f}d +Xen; en=hg—h (30)
hy=hg+ Xépn; eén=hg—h
where:

ot g
The augmented space desired trajectories are de-
fined by the following vectors:

_fma]. g o F ] g, | Ea
S U I B b

The extended model kinematics can be written as fol-
lows:

¥ =il Je—[ J }

The proposed controller with these new formula-
tions, as well as the algorithm of adaptation, have the
same structure that those defined previously, and it is
sufficient to replace by X; x4 by X4 and J by J..

To show the efficiency of the modified proposed con-
troller we have used the same gains as in the previous
case and those relative to the new variable h are de-
fined as:

K,(3,3)=10; A=5

i ! 0.15

: -l f‘\"iﬁﬂ{'{ﬁ"%('\ﬁ!‘ﬂ)ﬁﬂﬁ-’%)ﬁ
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Figure 3: Trajectory tracking when the modified con-
troller is used (with optimisation).

Pobicion X [mf"

Figure 4: The configurations of the robot manipula-
tor when neural controller with minimization of joint
positions is used.

Simulation results with the modified controller are
given by figures (3, 4 and 5). In addition to good
trajectory tracking of the end-effector (figure 3) we can
see that the robot uses minimal energy displacements
(figure 4), especially in comparison with results given
by the first neural controller (figure 2). The figure
(5) shows the trajectory of the new variable h during
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ntq)

Figure 5: Trajectory of the variable h.

EE

Figure 6: The index Q(g) for the two situations (with
minimization of energy in solid line and without min-
imization of energy in discontinuous line).

the first 20 seconds of simulation. We notice that this
parameter converges to zero.

A comparison is well demonstrated on figure (6)
representing the quadratic criterion given by equation
(24) in the two cases: first neural controller (without
constraint) and the modified one (with constraint).
We notice that the behavior of the robot is better in
the second situation. These results justify of lucid way
the utility of the proposed method.

6 Conclusion

We proposed in this paper a stable adaptive neu-
ral controller designed in Cartesian space for redun-
dant robot manipulator. The a priori knowledge on
the dynamic model was reduced to its structure and
its fundamental properties. Simulations achieved on
the model of a 3-dof robot manipulator evolving in
the vertical plan, show the efficiency of the proposed
approach. It is necessary to notice that there is no on-
line inversion what avoids numeric problems relative
to matrix singularity. After a lapse of adaptation time,
the desired trajectory tracking achieved by the end-
effector is improved distinctly and the consumption of
energy is minimized when the relative constraint to

the minimization of the displacement energy is intro-
duced. This principle of control with constraint can
also be applied in the case of stubborn joint and ob-
stacle avoidance.

The proposed method can be applied in the same
way for parallel robot manipulators of which direct
geometric and kinematics models are not easy to get.
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