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Abstract

Machine tools are designed to reach a given perfor-
mance level in term of precision and static and dy-
namic stiffness. In this article, we present the model-
ing and control of a high speed machining and working
machine tool prototype, with parallel kinematic archi-
tecture. Required speeds and accelerations make that
flezibility and adopted control strategy have to be con-
sidered in dimensioning. Rigid and lumped flexibili-
ties dynamic models are derived. A non-linear con-
trol strategy is adopted, based on rigid dynamic model,
The control validity and the importance of taking into
account flexibility are illustrated by simulation results.

1 Introduction

The increasing evolution of machine tools speed and
acceleration leads to a dynamic behavior in which Aex-
ibility cannot be ignored. Deriving dynamic model
taking into account flexibility is very useful for me-
chanical parts dimensioning as well as for control de-
sign.

The use of parallel kinematics and the development
of new control systems are among research areas to
which high speed machining (HSM) is oriented these
last years [2] [10]. Parallel kinematics allows to re-
duce moving masses and to increase manipulator stiff-
ness. Thereafter, higher speed and acceleration are
reachable. P.I.D. feedback strategy is commonly used
for machine tool axes control. Advanced control sys-
tems use feedforward action to improve tracking per-
formances [1].

In the second section of this article, we present rigid
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and flexible dynamic modeling of the machine. Elastic
behavior is approached by introducing lumped flexi-
bility at guideway components locations. Section 3 is
devoted to control design. It relies mainly on rigid
dynamic model. The flexible one is used to cancel
the static gravity effects introduced by the flexibili-
ties. Proposed control strategy is finally validated by
simulation results and compared to P.I.D. controller.

2 Dynamic model

In this article, we consider a 3 degrees of mobility
HSM machine tool prototype with parallel kinematic
architecture, Fig. (1). It is destined for milling oper-
ations. Motion in the XY plane is performed by a 2
degrees of mobility parallel mechanism on which the Z
axis is embarked. Ouly prismatic joints are actuated
with linear synchronous motors. Such actuation sys-
tem provides higher stiffness and accuracy than ball
screw drive. The considered machine links are related
by prismatic and revolute joints which axes are parallel
or perpendicular, Fig (1). Therefore, TCS method [8],
is applicable for geometric modeling. Two frames are
used for each link ’i, Ai(fi,g;', 2_’;) and Air (fil, 171-:, .é‘;:)
The relative configuration of these frames is given by
a constant 4 x 4 shape matrix F;. Machine configu-
ration is described by 6 joint variables given by q =
[ 21 $65 S32 Ssa ¢10 o ]T by ... bg are con-
stant geometrical parameters. The configuration of
the tool is given by the position and the orientation
coordinate system E(Z3,%s, 23).
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Figure 1: 3 degrees of mobility parallel manipulator:
TCS parameters

2.1 Rigid model

Considered machine has closed kinematic chain. The
formulation of the equations of motion can be per-
formed according to a set of independent coordinates,

s =8 e 53 ]T, and a set of dependent co-

ordinates ¢ = [ 854 @10 Ps0 ]T. In that case, La-
grange equations with multipliers are used. We denote
by L =T — V the Lagrangian of the mechanical sys-
tem, 7" and V are respectively kinetic and potential en-
ergy. Kinematic constraints are defined by ®(q) = 0.
Equations governing the motion are given by:

d £ DL .
$(8)-Lootr - ars
®(q) = 0

where ®,=(0®/0q) is a 3 x 6 matrix, A is the 3 x 1
vector of Lagrange multipliers and Q is the 6 x 1 vector
of generalized forces. S =[ u” 0 ]T, uis the 3 x 1
vector of control forces applied by the linear motors.
Rigid dynamic model can be expressed as follows

3 23] &)
MI, My 5] ch;bs Coo 0]
gs u-+Q,
F-} A —
i [ Eo ] U 24 Qs

M, Cij, ®;, g and Qi, (7,5 € {s,¢}) are respec-
tively sub-matrices of mass, centrifugal and Coriolis
terms, constraints, gravity forces and external and
non-conservatives internal generalized forces. The size
of these sub-matrices and vectors corresponds to the
partition defined for generalized coordinates.

2.2 Lumped flexibility model

Structural flexibility is a performance limitation fac-
tor in HSM. Several works have treated the modeling
of flexible manipulators [3] [9]. Derived models are
reduced to a set of degrees of freedom obtained by
modal truncation [12], or approached by lumped flex-
ibility [11]. This last approach is useful to obtain sim-
ple but accurate enough model at the design stage.
We consider lumped flexibility at the location of lin-
ear guideway components connecting links 1 and 2 and
links 5 and 6, Fig. (1). This choice is motivated by
finite element analysis performed in previous works
[5]. When flexible link is considered, the relative con-
figuration of frames A;(Z;, 7, Z;) and Ay (T3, o, Zir)
is given by F;A;. Where A; is a 4 x 4 infinitesi-
mal displacement matrix that describes deflections [8].
A; is associated to infinitesimal displacement vector
8; = [ dyi dyi doi O 6yi b ]T. Thereafter,
in our case, manipulator generalized coordinates are
augmented by a set of flexible coordinates given by
the vector § =[ d2 &5 ]T. Potential elastic energy
is calculated by 12 x 12 stiffness matrix Ks which
depends on lumped stiffness values and manipulator
configuration. The dynamic model of the flexible ma-
nipulator has the following form [4]

Mss quﬁ Ms& i §
MI, My Mys | | & | +
ML, ML, Mss | | 6
Css Csd) Csé 17 S |
Cys Cyp Cos ¢ | +
Css Csp Css | | 0 |
00 0 1[s]
00 0 6| +
0 0 K; )
gs ol 17 u+Q,
[ g |+ @g } A= Qs
g6 @5 Qs
(3)
3 Control

Control design is mainly based on rigid dynamic
model. The flexible model is used to cancel the static
gravity eflects introduced by the flexibilities. It also
allows control validation and performance limitations
checking.
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3.1 P.I.D. controller

P.LD. controller is based on two cascade position
and speed loops, Fig. (2). It is commonly used for
machine tool axes control. Current loop is considered
to be fast enough and was not studied in this article.

s ps k
4 + kr kP E L u e
R 5 |>- Tool
S S
current loop
speed loop
position loop

Figure 2: P.1D. Controller

ky is the proportional gain matrix of the P. position
loop, kp and k; are respectively the proportional and
integral gain matrices of the P.I. speed loop. s4 and
Sq are time variant joint space desired positions and
velocities.

3.2 Computed torque control

P.I.D. controller does not allow to have uniform per-
formance, in term of dynamic response and precision,
on all the working space since machine dynamic be-
havior is highly non linear. The use of a computed
torque control (or inverse dynamics control) is well
known in robotics and consists in linearizing and de-
coupling equations of motion [7]. We propose the
adaptation of this control strategy to manipulators
with parallel kinematics. At first stage, we eliminate
Lagrange multipliers using Eq. (2). Singularity anal-
ysis shows that the 3 x 3 matrix @4 is invertible on
all the prescribed work space [6].We can write

-1
A= (25) Q-
M8 + Mg + Cyd + Copd + g¢))

(4)

To eliminate dependent coordinates, time differenti-
ation of constraint equation ®(q) = 0 is performed.
We cbtain following expressions

¢ = —®;'®s (5)

b = - (2.8+ 5+ 840)

By using Eq. (2), (4) and (5), we obtain joint space
dynamic model

Mss + Cs$ + Gg=u + Q, (6)
with
Ms = M.-M®;'®, - o7 (a]) T
+37 (ég)—lMW@;l@a
Co= -M®;' (8.-842;'2,) +C.,
—C.o®,'®, + 7 (2])
(M (és-éd,@;l@s) ~ Gzt C¢¢§>;1<I)s)
Gs= g— 87 (1) (g~ Q)

Now we can apply classical inverse dynamics control
law given by

u=uU+Cgé+Gs—Qs (7)

by adopting

t
uy = Mg (§4+KD (éd—é) +Kp (Sd—S) + K]/é ((sd—s) d‘:"))
(8)

We obtain the closed loop dynamics of the rigid ma-
nipulator

i
é+KDé+KPE+K[/ed‘T=O (9)
0

where 54, §4 and 84 are joint space desired trajectory
and its successive time derivatives. e = sg—s is the
Jjoint space tracking error. Kp, Kp and K; are re-
spectively derivative, proportional and integral defi-
nite positive gain matrices. One can adopt Kp =
kdIg, Kp = kp]::g and KI = kiIg where I3 is 3 x 3
identity matrix.

5 d
§ .
“d4 | Inverse Dynamics u )
Controller Machine Tool
S84
) y

Figure 3: Inverse Dynamics Controller
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3.3 Gravity compensation

We denote by x; the desired static equilibrium po-
sition. s, is the desired joint configuration satisfy-
ing x4 = Gr(sr), where G, is the forward geometric
model of the rigid manipulator. We denote by J,. the
Jacobian matrix satisfying x = J.-§, for rigid manip-
ulator. Structure deformation under gravity causes
end-effector (tool) position error. End-effector posi-
tion, x is given by the relation

x = Gg(s,¢,9) (10)
0 = ®(s,4,9)

where Gy(s, ¢, d) is the forward geometric model of
the flexible manipulator. The objective is to find de-

4 Simulations

Simulations are performed for rigid and flexible cases.
A rigid dynamic model, different (perturbed) from the
one adopted for control, is also used for robustness
testing: we assume that center of mass locations er-
rors are up to 20%. For In the flexible case, retained
lumped stiffness values correspond to 49H =z as first
natural frequency and 30N/um as minimal static stiff-
ness. The tool reference trajectory is defined by the
initial, (0,1200,0), and the final, (-315,1830,550),
positions of the point F, units are mm, Fig. (4). Si-
nusoidal accelerations are imposed on each direction
X, Y and Z, with respective amplitudes of 10ms~2,
20ms~? and 20ms~2, such values are required for HSM
applications. P.I.D. and inverse dynamics controllers
are compared. We analyze joint space and Cartesian

sired joint variables s; for which we have x4 = G (s, ¢4, § ;hpace tracking errors for low and high gain factors.

For that purpose, we propose an iterative algorithm
using manipulator static model, Eq. (11), derived
from dynamic model, Eq. (3), for zero accelerations
and velocities.

00 0 s &7
00 0 o | + & | A
0 0 K; 5 @?
gs ueq
+ 2 = 0
B 0

(11)

U,q is the vector of control forces at equilibrium con-
figuration. Let @ be a set of coordinates for which
@, formed from @, rows corresponding to these co-
ordinates is square and invertible. We denote by g,
and K, the vector of gravity forces-and stiffness ma-
trix corresponding to the set of coordinates c. To
determine coordinates sq, ¢, et 64 such that x4 =
Gy(s,, g, 04) the following algorithm is used:

Initialization s =s,., d = 0.

Repeat

Evaluate ¢ such that ®(s,¢,d) =0

-1

A= (L) (—gals, ¢,6) - Kaar)

5 — K5! (—ga—@}")\)

e = J:1(s) (xa—Gy(s, ¢, 9))

S+—s+¢

until |e| < e,

54 =5, ¢d:¢, ad:(s

Evaluation of ¢ is analytically possible in our case.
End effector gravity compensation consists in adopt-

ing s4 as desired joint configuration at the end of con-
trol

Figure 4: Cartesian reference trajectory

Simulations are performed in Matlab\Simulink
for rigid case. Because of the complexity and the
size of the analytic equations, Matlab\Simulink and

ADAMS\Controls™ co-simulations are used for the
flexible case. Pole assignment technique is used to ob-
tain gain matrices. We adopt the same poles to com-
pare the two control strategies. For inverse dynam-
ics controller, pole assignement is exact. However, a
mean mass value is considered for the P.I.D. controller
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design.

Foi.ky =3107 Nos kg™t omt L by, = 200510 kg m ™!
and k; = 3.7510°N.s~1kg~1.m~!, we have the evolu-
tion of joint space and cartesian space tracking errors,
Fig. (5) and (6). As expected, with inversion dynam-
ics control, tracking errors for rigid analytic model are
strictly zeros since initial errors are zeros too. Com-
puted torque control robustness is proved since track-
ing errors for perturbed rigid model are negligible com-
pared to those obtained using P.I.D controller. For
flexible model, maximal joint space tracking error ob-
tained by computed torque control is less than 0.1mm
while the one obtained by P.ID controller is higher
than 0.8mm. Observed oscillations are less important
in joint space and in cartesian space when inverse dy-
namic control is used.
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Figure 5: Joint space tracking error (so1): low gains
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Figure 6: Cartesian space tracking error (y): low gains

By increasing gain values, kg = 6.10?°N.s.kg—!.m™1

?

kp =9.10°N.kg7'm 'and k; = 3.106N.s~1kg~L.m™1,
performances in joint space are improved Fig. (7).
However, oscillations in Cartesian space become more
significant and affect machine stability. For the P.LD.
controller, maximal joint space tracking error is about
0.1mm while the one obtained by computed torque
control is 0.05mum. Observed oscillations are also higher
for the P.LD. controller, Fig. (7) and (8). In all cases,
gravity forces lead to end-eflector static errors due to
elastic deformations. As expected, these errors are
identical for both control strategies (0.35mm in the ¥
direction). Required control forces remain acceptable
and less than the maximal values for which motors are
dimensioned.
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Figure 7: Joint space tracking error (sq;): high gains
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Figure 8: Cartesian space tracking error {y): high
gains

By using gravity compensation algorithm described
in section 3, end-effector static error are cancelled.
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Compensation terms are added when tool is close to
desired final position, Fig (9).
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Figure 9: Gravity compensation

5 Conclusion

We have presented in this article the modeling and
the control of a HSM machine tool prototype with
parallel kinematics. A computed torque control was
proposed and allows dynamic performances improve-
ment compared to what one can have with a P.I.D.
controller. Machine flexible behavior was considered
for control validation in real applications. Simulations
results show limitations due to flexibility when high
gain values are adopted. An iterative algorithm was
proposed to cancel steady errors raised at the tool po-
sition, due to flexibility. Algorithm convergence will
be studied in further development as well as inversion
control using flexible model.
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