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Abstract

In this paper we formulate a novel unifying geometry of catadioptric imaging. We prove
that all single viewpoint mirror-lens devices are equivalent to a composite mapping from space
to sphere and then from sphere to plane. The second mapping is equivalent to stereographic
projection in case of parabolic mirrors. Using this equivalence we observe that images of lines
in space are mapped to great circles on the sphere and to conic sections on the catadioptric

image plane. The composite mappings are paired with a duality principle which relates points

to line projectionsl.

1 Introduction

Recent technology advances in omnidirectional sensors have inspired many researchers to rethink
the way images are acquired and analyzed. It is a recurring theme that access to new devices
opens new avenues in addressing basic questions. Novel solutions are proposed for the long-
standing problems of visual navigation and 3D-reconstruction. Sensors designed to imitate the
omnidirectional systems of flies and bees, for example, are replacing the conventional TV-cameras
improving substantially the visual competences of robots.

[n this paper, we present a unifying theory for all catadioptric systems with a unique effective
viewpoint. We prove that all cases of a mirror surface—parabolic, hyperbolic, elliptic, planar—
with the appropriate lens—orthographic or perspective—can be modeled with a projection from
the sphere to the plane where the projection center is on a sphere diameter and the plane perpen-
dicular to it. Singular cases of this model are stereographic projection, i.e. projection from the
north pole, and perspective projection, i.e. projection from the sphere center.

Given this unifying projection model we establish two kinds of duality: A duality among point
projections and line projections and a duality among two sphere projections from two different
centers. We show that 3D-lines are projected onto conics whose foci build also a conic. If the 3D-
lines are concurrent then the focus of the foci-conic is the projection of the line pencil and therefore
dual to the foci-conic. In case of perspective projection all conics are degenerated to lines and we
have the well known projective duality between lines and points in P2.

2 History and Related Work

The geometry of the reflective properties of surfaces has been known since the 3rd century BC.
Though Menaechmus (380-320 BC) was the one who coined the term conic section, it was Dio-
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cles (240-180 BC) [28] in his monograph On Burning Mirrors who first discovered the reflective
properties of the parabola. Diocles’ contemporary Apollonius (262-190 BC) [1] wrote an excellent
comprehensive treatise on conic sections. Archimedes (287-212 BC) studied conic sections in spe-
cific applications like the quadrature of the parabola. In the meantime between Menaechmus and
Apollonius, conic sections were mentioned by Euclid (325-265 BC) and Aristaeus (370-300 BC).

In optics, wide-angle lenses were used to capture a large field of view. Such fish-eye lenses,
introduced radial distortions which were hard to model explicitly since the lenses were complex
combinations of individual lens elements. In computer vision, we find such fish-eye lenses in the
work of Aggarwal [24] where the issues of calibration and resolution are addressed.

From a different perspective, results in projective geometry showed that the mapping between
images of a purely rotating camera is an easy to compute collineation. Several groups built mo-
saicking systems [27, 23] based on purely rotating cameras. The results of such approaches were
panoramic mosaics with high quality but more suitable for photographic purposes. Mosaicking
approaches have two main weaknesses: a) simultaneous, multi-directional image acquisition is
impossible and b) they can only be successful with stationary scenes. Moreover, versatile mechan-
ical designs with two rotational degrees of freedom are necessary in order to simulate a hemi-
spherical field of view. Thus, while such techniques were useful for entertainment applications
they proved inadequate for dynamic reactive behaviors needed in navigation or for continuous
alertness in surveillance and telepresence.

Reflective properties of surfaces have been extensively documented in books about telescopes
and antennas [6]. The term “catadioptric” meaning the combination of refractive and reflective
elements has long been used for telescopes. A panoramic field of view camera was first proposed
by Rees [22]. Later on, Greguss [10] introduced a combination of multiple refractive and reflective
elements preserving a single viewpoint. Nalwa [15] introduced a pyramidal mirror-lens system
with planar mirror faces. Basu [25] used a conical design for pipe-line inspection. The immersive
aspect of omnidirectional vision is innovative with its ultimate purpose being visualization. Fuchs
et al. [21] constructed a dodecahedral mirror system facing on twelve cameras so that the entire
system will have one effective viewpoint. Immersive applications necessitate a unique effective
viewpoint which will be the viewpoint of the human observer. Moreover, only a unique effec-
tive viewpoint allows an image mapping to a virtual image plane of any orientation. Boult [4]
introduced a remote reality system where the tracker gives the orientation of the observer’s head
which then determines the section of the panoramic image and the normal of the virtual plane the
image will be warped to. Onoe et al. [19], also, used a hyperbolic mirror for tele-presence and they
study the accuracy of visualization vs. warping time. Bogner et al. [3] used a spherical mirror for
remote immersive sensing in space. Recently, Peleg et al [20] designed a camera for stereoscopic
panoramic visualization based on the concept of a cauctic curve.

Nayar [16, 2, 17] and Drucker [7] gave an exhaustive classification of all catadioptric surfaces
satisfying the unique viewpoint constraint.

Note that most of the above work addresses visualization and not necessarily navigation or
vision-based control. Camera configurations covering a sphere have been used by Fermidiller [8]
to prove the superiority over planar imaging surfaces in structure from motion. Tasks like loco-
motion as well as mab building and localization can greatly benefit from omnidirectional sens-
ing [32, 30, 31]. Srinivasan [5] and Hicks [12] realized that other constraints than the viewpoint
uniqueness might be imposed on the construction of a mirror. Srinivasan [5] derived a mirror
shape which yields an image where the radius is linearly varying with the elevation of the pro-
jected object. In this sense, the mirror acts as a computational sensor which directly produces an
elevation map without any software calculation. Hicks [12] derived another mirror shape which
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preserves a similitude transformation of the plane perpendicular to the mirror’s axis. This is

equivalent to a software rectification of this plane when other mirrors are used. The reader is also

referred to the recent review by Yagi [29] as well as to the proceedings of the IEEE Workshop on

Omnidirectional Vision 2000. Further information on omnidirectional systems can be found in
http://www.cis.upenn.edu/ kostas/omni.html.

3 Central Catadioptric Projections

Catadioptric projections are a subset of a general type of projection. In a central catadioptric
projection, a point is first projected to a conic from one of the foci and then this point is projected
to an image plane from the second focus (see Figure 1). We could instead choose different points
from which to project and different surfaces to intersect but these configurations may not induce
optical projections which coincide with the abstract projections.

Figure 1: In general a conic reflects any ray of light incident with one of its foci (here F) to a ray
of light incident with its other focus (F3). Central catadioptric devices utilize this property and
achieve a single effective viewpoint at one of the foci of a conic (F1).

We use the notation AV B to mean the line joining points A and B, and [ Am to mean the point
lying on both lines [ and m. For notational convenience we have overloaded these operators to
include quadratics, so that [ V g, where [ is a line and say g is a conic, to mean the two points of
intersection of the line with the conic. Finally, when the intersection is a pair, we distribute over
other applications of vV and A, i.e. AV (I A q) is the pair (A V P, AV P), where P, , are points
obtained from the intersection of / and gq.

Definition of a quadratic projection. Let ¢ be a conic, let A and B be two arbitrary points, and
let £ be any line not containing B. Assume that c is non-degenerate and that B does not lie on £.
Choose a point P. The intersection of a line and a quadric is two, possibly imaginary, points, so let
Ry and R, be the intersection of ¢ with AP, imaginary or not. Then R; is one of the projections of
the point P to the conic ¢, R, is the second. Now project the R;’s to the line £ from point B. Let Q;
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be the intersection of BR; with £. The Q;’s are the quadratic projections of the point P to the line
¢. We call this map q(c, A, B, £) : P2(R) — m, where 7, is the projective line induced on the line ¢
in which points such as @; and @3 are identified. We may write the map as

pUABY Py AyA) VB AL,

In the three dimensional case, the conic becomes a quadric surface and £ is replaced by a plane,
inducing a projective plane. Note that any map ¢(c, A, B, £) has a single effective viewpoint at 4,
at least in the abstract sense; this may not correspond to any optical projection, involving ¢ or
otherwise.

We are interested in the quadratic mappings q(c, F1, F», £) where c is a conic whose foci are F}
and F} and £ is a line through F, and perpendicular to F' F5 (Fig. 1). These are general catadioptric
projections, for in the cross-section, first a point in space is projected to the mirror, a conic section,
from the focus F,. Then this point is projected to the image line from the point F, the second
focus. We wish to find ¢’ and B, where ¢’ is a circle centered at F, such that

Q(c: F1,Fg,£) = Q(CfrFer:E)a

up to scale.

Theorem 1. Projective Equivalence. Let g(c, F1, F,£) be a catadioptric projection, F; are the foci
of ¢ and ¢ is the image line. There exists a circle ¢’ centered at F; and a point B such that

Q(CaFI:FQ:E) = Q(CI:FI:BrE) 2

Proof: ~We will prove the theorem by deriving the general catadioptric formula g{c, F\, F5, £),
then deriving the spherical projection formula ¢(¢’, Fy, B, ), equating them and solving for the
radius of the circle and the point B. We will see that the parameters ¢’ and B are independent of
the choice of the point to project.

Step 1: Derivation of q(c, F1, F3, £). Assume that F is (0,0, 1) and that the quadratic form of ¢, in
terms of its eccentricity, is as follows:

4 0 0
Q= |0 4-4 —4e
0 —4de —4

Then F» = (0, —2¢, €% — 1), so that when ¢ = 1, F; = (0,1,0) is the point at infinity on the axis of
the parabola. This conic has a latus rectum of 2. The latus rectum is the length of the line segment
created by the two points of intersection of the conic ¢ and line £.

We now find the projection g(c, F1, Fb, £) of P. First, the points R; and Ry in (P V F}) A ¢, being
the intersection of a line and a conic, may be expressed as

RL:F1+91P3

for some 61,0, € C, where these 6; are roots of a quadratic equation. We obtain the quadratic
equation from the condition that R; lies on the conic,

= (F1+6;P)Q(F +6,P)".

4
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We solve for # and after variable substitution we obtain
1

(—1iv/22+y? —ey—w’ M

0; =

when P = (z,y,w). So the points

xr

R e

)

(1) ety —ey—w

1 w
+ (—1) /22 +y? —ey—w

Next we project the I2; to the line £ = [0, 1, 0] from the point F». This transformation is expressed
as the matrix

-2¢ 0 0
Te={ 0 0 1-¢
0 0 -2
The projected points ); are then given by
q(c, Fy, Fp, £) =
(m 0, —(1+ Ay +2(—1)ev/2? + y2) . 3)

Step 2: Derivation of ¢(c, A, B, £). Now find the spherical projection, or in the cross-section, the
projection to the circle. Let ¢’ be a circle centered at F; whose radius is 7. The points R/, which
are the intersections of the line F; P with this circle, may be found without difficulty due to the
simplicity of the circle, all that is necessary is essentially a normalization. In particular

= (s (C)VEET).

Now we must determine the projection of the points R to the image line £. The projection is
just a perspective transformation from the unknown point B. By symmetry the point B lies on the
line I F5, we therefore parameterize B with [, writing B = (0,1, 1). Then the matrix projecting a
point to the line £ from B may be expressed as

[ 0 0
U=|0 0 -1
00

And thus,
q(c, BBl = R,

= (lraz, 0, —ry + I(=1)'/2? + y?) (4)

Step 3: For what B and radius of ¢ is g(c, Fy, Fy,£) = q(¢, A, B,£)? If r and I can be chosen
independently of z, y, and w such that equations (3) and (4) are equal (up to a scale, remember
that we work in homogeneous coordinates), then we have shown that the two projections are
equivalent. This is indeed the case, and if we choose

e
14€2’
B = 1

l =

5
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then substituting in (4) gives

il 5 o g ;
14e27 v+ 1+ €2

( 2¢ex 2(—1)i6\/$2+y2) '

Multiply this by 1 + €2 and we obtain

(2633, 0,—(1 + €y +2(—1)'e/z% + yz) ;

which is the same as (3). Therefore

Q(CaFI:FQ:E)OCQ(Cf:FI?Bﬂg)
2¢
= (14¢ Fi;1),RA,0,—,1),¢) .
{ +E)Q(®( 1 )a 11(0,1+623 ): )

O

Extension to three dimensions. We can now extend the definition to three dimensions. We as-
sume that ¢ is rotationally symmetric about the z-axis having only two foci F; and F» with coor-
dinates (0,0,0,1) and (0,0, —2¢,e? — 1), and also that the plane p has coordinates [0, 0, 1,0]. Then
q(c, [, F», £) reads

2e
1 e Fi;1),F, 0,0, —,1),p),
( +6)Q(®( 1) ): 13(: ,1‘[‘6‘2' ) p)
where ©(F7; 1) is the sphere centered at F; with a radius of 1.

Including the perspective case and scale parameter. In the current definition we are unable to
represent different scale mirrors or perspective projection. The scale is fixed by the radius of the
sphere and the latus rectum, and in order to represent perspective projection we would need
Fy equal to Fy, but if this were the case, then [y would lie on the plane p, giving a degenerate
projection. We could let the radius of the sphere vary. Although this would allow a change of
scale, the parameterization of the point B would change and we would still not be able to represent
perspective projection. A translation of the plane, however, allows for a scaling parameter as well
as moving p away from Fj so that perspective projection is possible. First, note that ¢(¢’, F1, B, p)
can be written as

Hmo 9 00
0 Hm 0 0
! 1 .
Q(C’Flan[analﬁm]) 0 0 1 0/°
0 0 01
on the right hand side the image plane is at z = —m, and thereby induces a scale of lflﬂ on the
image coordinates. Now let the latus rectum be 4p, this induces a scale in image coordinates of 2p;
placing the plane at z = —[(2p — 1) achieves the same scale, for then the scale is

b+ {4+1(2p—1)
I !
Therefore if ¢ is a quadric with latus rectum 4p, foci at F; = (0,0,0,1) and Fy = (0,0, —4pe, e? — 1),
then

=2p.

q(C)Flana‘e}P =

2e 2¢(2p — 1)
- :1 T g bl :13—‘ 3
q(O(Fl, ) Fi g 0,01, DP
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where when

oo O
o O =D
= o o O

premultiplying by P has the effect of disregarding the y-component, i.e. the horizontal placement
of the image plane. We then write s; ,,, for a spherical projection

Sl,m = q(Q(Flw 1)7F17 (07 Ovlr 1): [0503 lam]) P

representing some central catadioptric projection. The projection of a point (z, y, z, w) in projective
space are in general the two points

((l +m)z, (I +m)y, —z £ I\/z2 + y? +z2) .

In the case above, for a conic of eccentricity € with latus rectum 4p, the projection is represented
by

S 9¢  2e(2p-1) -
T+ed? 1+e:

Summary. All non-degenerate central catadioptric projections are equivalent to a central projection of the
spherical representation of the projective plane to a plane. All such projections can be represented with
the single map s; ,,, where the parameter [ is a function of the eccentricity of the conic and m is a
function of its scale. We enumerate the possible central catadioptric sensors:

1. 0 < e < 1. Elliptic projection is also equivalent to the composition of normalization and

central projection. The distance of the second projection center from the center of a unit
sphere is 1?;2. Given an ellipse ¢ of eccentricity e whose latus rectum is 4p, and whose foci
are 'y = (0,0,0,1) and F» = (0,0, 4pe, €2 — 1), we have

c, I, F =S 5. 2:2p-1) -
Q( y 471y 2:p) ‘53__%6_272_(12%1%)
2. € = 1. Parabolic projection is equivalent to stereographic projection. We have the equiva-
lence up to scale in homogeneous coordinates,

Q'(C, Fh FQJp) = 51,2p—1 P 3
where ¢ is a parabola with latus rectum 4p and foci F} = (0,0,0,1) and F2 = (0,0,1,0).

3. € > 1. Hyperbolic projection is equivalent to the composition of normalization to the sphere
followed by central projection to a plane from a point between the north pole and the
sphere’s center. In a unit sphere, the distance of this point from the center is lfez. The plane

is perpendicular to the line through this point and the center, and its distance from the center

is determined by the length of the latus rectum. In particular a hyperbola ¢ of eccentricity ¢

whose latus rectum is 4p, and whose foci are F} = (0,0,0,1) and F» = (0,0, 4pe, € — 1), we

have
Q(Ca -Fla FQ:P) =8 2, 2e(2p—1) -
TheTr T 14
4. € — oo. Perspective projection with focus F; = (0,0,0,1) and image plane z = — f, i.e. focal

length f, is equivalent to s ;.
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Corollaries.

1. Parabolic projection is conformal. The angles between great circles on the spherical represen-
tation of the projective plane are preserved in the parabolic projective plane. For example,
the horizons of two perpendicular planes are two orthogonal circles. This is because stereo-
graphic projection is conformal [18].

2. Conformal maps on the sphere project to conformal maps in the parabolic projective plane.
In particular, pure rotations of space preserve the angles between great circles, and thus
rotations of space preserve angles in the parabolic projective plane.

3. Catadioptric projections with reciprocal eccentricities are projectively equivalent; such pro-

ections have the same representation, for if ¢ = ¢’ "1, then
J P '

;2 2% 2
- 2 12 2 =
1+e¢ 1+(E) l1+e¢

This implies that any elliptic catadioptric device is projectively equivalent to a hyperbolic
projection. We therefore need only consider one of these cases, and we arbitrarily choose to
refer to such projections as hyperbolic.

4 Images of Lines

It is now trivial to see that the image of a line in the general case is a conic: First the projection of
a line in space to the sphere is great circle. There is a cone through the second center of projection
and this great circle as in Figure 2. The intersection of this cone with the image plane is the line
image and is obviously a conic.

The intersection of any great circle with the equator are two points antipodal on the equator.
The projection of these two points are, in the hyperbolic and parabolic cases, two points antipodal
on the fronto-parallel horizon. Thus, the intersection of any line image and the fronto-parallel
horizon are two points antipodal on the fronto-parallel horizon.

The proof for the projection of an arbitrary line lying on the plane n,x +n,y+n.z = 0 through
the composite mapping with parameters (I, m) is lengthy but straightforward. The image of the
line is a conic with foci

fierz = (U +ming, (- m)ny, (<1)' V1= 2 —n,) ©)
and semi-axes:
B I{l+m)n,
I 7 nZ — ng,
b I+m

?
2 o 72 il
IF ~ g~y

Notice that the foci are collinear with the image center, and thus the major axis contains the image
center.
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Figure 2: The projection of a line to the sphere is a great circle; the projection of the great circle
is obtained from the intersection of the image plane with a cone containing the great circle and
whose vertex is the point of projection.

5 Duality

In standard projective geometry there is a one to one correspondence with points and lines of a
projective plane. On the sphere, a representation of the projective plane, the correspondence is
between a great circle and its poles. We write the dual great circle of a point P as P and the dual
point of a great circle £ as ¢.

An example of their usage is in the following. Suppose we have two points P; and P, on the
sphere and we wish to determine the great circle ¢ between them. We take the dual great circles
of the two points, P; and P,. They must intersect in a pair of points which are antipodal and
represented by Q. Taking the dual @ gives the very great circle through the two original points,
that is £ = Q. This is because the dual great circle P of any point P on the great circle is a great
circle containing the point (). So intersecting any two yields the point Q).

We call P, V P the great circle between points P; and P, and £; A {5 the intersection of the great
circles £; and £y. We express the fact above in the equations

e —

PvP = 161/\]52,

——

LNl = é-';_\/gqg.

The operators A and V can be used on the catadioptric projective plane as well, in particular we
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define for points P;, P, and lines (conics) ¢;, £ on a catadioptric plane,

VP = Si,m (SET};(PI) ) SE;L(PQ)
BNty = St (Sl_’%(gl) A SETL(EQ))

Is there such a relationship embedded within the catadioptric projective plane? What properties
do the sets of projections of great circles all containing a given point P have? We have seen that
the image of a line under catadioptric projection is a conic. We will see that foci of coincident line
images lie on a conic which is the projection of the great circle perpendicular to them all; though
it is not projected by the same point.

Consider the projection of a point by the map s, ,,

((Z +m)z, (I +m)y, —z + 1(~1)'v22 + 42 + zg)

and the foci of a line image,
((l + m)ng, (I + m)ny, —n, + (=1)'/1 — lg) :

They look remarkably similar, especially considering that n2 + n; +n? = 1. Remembering the
point-line duality, the foci look like the projection of the dual point of the great circle, i.e. its
normal. We will see that this is more than a coincidence.

Lemma2. Let{be a line of a catadioptric projective plane 7, which is the projection of a great
circle whose normal is 7. The foci pair of £ is the projection of the point 7 by sy ,,» where I’ and m/
satisfy

I+m = U'+m,
Pyi? = 1.

Proof: The foci of the line are
(@ mine, @4+ mymy, ~ms + (-1 VT - ) .
If

r = Vi-B,
m = l+m—+1-12

then the foci can be rewritten

((l’ +m)ng, (I' + m')ny, —n; + (=1)70 /n2 + n2 + n%) :

This is projection of the point (nz,ny,n,,1) by sy . Conversely, if a point P is projected to a
point pair in a catadioptric projective plane  ;,, this point pair is the foci pair of a line image of a
projective plane 7 71— ., - 0

10
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Figure 3: The two ellipses #; and {3 are projections of two lines in space containing the point P.
Their foci Fy, F,, and G, Go respectively lie on a hyperbola containing the foci of all ellipses
through P. The foci of this hyperbola are the points in P. The point C' is the image center.

Lemma 3. Let {/,} be a set of line images all of which intersect a point P, i.e. for all k, P € #.
Then the locus of foci of the line images lie on a conic ¢ whose foci are the same as the points in P
(see figure 3).

Proof: Assume that P is the projection of the point 2 = (n,,n,,n;) on the sphere. Also assume
that the lines ¢, are images of great circles whose plane’s normals are 7i;,. Because of rotational
symmetry, we may assume without loss of generality that n,, = 0. This implies that for some 6,
that

{[7]} = {[—nz sin B, cos B, ng sin O]} .
Then the foci of the ¢, are,

& = (1 +m)nzsinby, (I + m)cos by,

(=1)'v/1—12 — nysinby) .

But these are the pair of points in the projection of 1, by

SVITEZ lm—T-1%
Therefore this point is in the image of the line 7 by this same projection. Its foci are
fi = ((Z + m)ng, 0, (—1)” - nz) )
which is the projection of % by s; 1. O

We use these lemmas to prove the following duality theorem.

i1
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Theorem 2. Duality. If m;, = (II;, A1) and 7y = (I, Ag) are two catadioptric planes such
that

P24+0%=1 and I1+m="04+m/,

then f; m, which gives the foci of a line image in the context of some catadioptric plane 7, maps
as follows,

Jim AL — g,
oo A — 11,

and their inverse mappings exist. In addition, incidence relationships are preserved by f; ,.:

PP = S (kPO A fika(P)
0Nl = fim (frm @)V frm(f2)),

where P|, P, € TI; and ¢y, £ € As.
We call the projective planes, 7, and 7y v, dual catadioptric projective planes.

Proof: We have already shown the first part of the theorem in Lemma 2. It only remains to show
that incidence relationships are preserved. This follows from Lemma 3 and the fact that incidence
relationships are already known to be preserved on the sphere by the mapping taking antipodal
points to great circles and vice versa. 0

Corollaries.

1. Perspective projection (I = 0) is dual to parabolic projection (I’ = 1). This means that the
parabolic projection of a line is a circle whose center is the perspective projection of the
normal of the plane containing the line. It also implies that the parabolic projection of a pair
of antipodal points are two points whose perpendicular bisector is the projection of the great
circle dual to the antipodal point pair.

2. A catadioptric projection with a mirror of eccentricity ¢ is dual to a catadioptric projection
with mirror eccentricities ’%—:_—g and “—fg :

3. A catadioptric projection with eccentricity £1 + /2 is self-dual (I = %). In this case the foci
of a projected great circle are exactly the projections of the dual points.

6 Conclusion

We presented a novel theory on the geometry of central panoramic or catadioptric vision systems.
In particular, we proved:

o Every single viewpoint catadioptric system is equivalent to central projection to a sphere fol-

lowed by projection from a point on the sphere’s axis. In particular we prove that parabolic
projection is equivalent to stereographic projection, and is therefore conformal.

12
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e Using this equivalence we observe that images of lines in space are mapped to great circles
on the sphere and to conic sections on the catadioptric image plane.

o To every catadioptric projection there is a dual one. dual projections map poles of great
circles on the sphere to the foci of the conic sections corresponding to the great circles of the
poles.

This theory helps in elegantly formulating the problems of uncalibrated recovery of structure
from a single or multiple views. For the single view we proved [9] that calibration of a catadioptric
projection is possible with only two lines, and in general three. In the parabolic case, calibration
is performed by intersecting spheres whose equators are line images. The perspective case proves
to be the only one not providing the sufficient constraints for such a calibration. The natural next
step is to extend this theory to multiple catadioptric views as well as a study of robustness of scene
recovery using the principles described herein.
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