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Abstract

In this paper an algorithm of motion planning us-
tng extensively nonholonomic spheres of small radii
15 presented. Iteratively, a direction of motion from
the current state towards a goal state is expressed in
Cartesian coordinates. Then, the direction is trans-
formed into Ph. Hall coordinates. The coordinates
when mapped into nonholonomic spheres of small radii
determine controls to steer the system. Convergence of
the algorithm is guaranteed if only the system is (small
time) locally controllable. The detailed description of
the algorithm is given and tests on the unicycle mobile
robot shown.

1 Introduction

Nonholonomic systems, those constrained by non-
integrable equations, are frequently encountered in
robotics while studying a motion of free-floating
robots, underwater vessels, wheeled vehicles, planning
a grasp or designing underactuated manipulators. Mo-
tion constraints of the systems given in the Pfaff form
can be transformed into equivalent driftless nonholo-
nomic system:

i=_gilg)ui =Gla)u, (1)
i=1

where dim ¢ = n > m = dim u, q is a state vec-
tor, u is a control vector, g;(¢) are analytic vector
fields associated with the system (1) and called gen-
erators. A minimal requirement for a nonholonomic
system is its controllability. According to Chow’s the-
orem (2], the driftless system (1) is controllable (and
also small time locally controllable) if its Lie algebra,
LA(G) (spanned by generators) spans the state space

everywhere, i.e. ¥,rank LA(G)(q) = n. Obviously, to
be controllable, the system must be nonlinear (when
gi(q) = const., rank LA(G) < m < n). Nonlinearity
of the system makes global considerations fairy com-
plicated. Even locally, around a given point in the
state space, some non-trivial problems can be encoun-
tered while planning a motion in a desired direction.
For local motion planning of nonholonomic systems it
is desirable to distinguish energy affordable directions
of motion from those consuming a lot of energy. The
energy-based metric-like function
T
| e

(2)

defines controls that generate the energy optimal tra-
jectory g(t) joining two states go and gr. In Eq. (2), T
denotes the time of completing a motion. Computa-
tion of the distance d{gg,gr) and the optimal trajec-
tory (energy optimal curve) is a standard task of opti-
mal control although its analytic solution is hardly
ever possible. A small radius attainability sphere
(nonholonomic sphere), centered at the state qq, de-
fines a set of locations, reached by the system (1), as
distant as possible from ¢p, when the energy of mo-
tion fio |lu(t)||?dt = E is fixed and small. Fortu-
nately, the shape of small radius attainability spheres
(o is close to gr) of nonholonomic systems (1), in the
metric-like function introduced by Eq. (2), has been
determined in the paper [5]. Nonholonomic spheres
of small radii are expressed in Ph. Hall coordinates
and therefore, are independent on each particular sys-
tem. For two input nonholonomic systems with three
dimensional state space, the spheres can be generated
even analytically. For other systems they are com-
puted with the use of numeric procedures. A nonholo-
nomic sphere is composed of a set of its radii and each
radius determines controls. A little bit informally, the

min
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nonholonomic radius anchored at go is determined by
the farthest point in the given direction reached by
trajectory initialized at ¢o and subordinated to the
equations of motion (1) when the energy of controls is
small and fixed.

In robotic literature some work has been done in op-
timizing energy expenditure on controls of nonholo-
nomic systems. Since Brockett’s work [1] it is known
that sinusoidal controls are optimal for steering the
Brockett’s integrator. Some results on optimizing the
energy expenditure in the basic Newton algorithm of
nonholonomic motion planning (7] are also known [6].

This paper is organized as follows. In Section 2 the
construction of small radius nonholonomic spheres is
recalled and some basic terminology introduced. In
Section 3 algorithm of motion planning with the use
of nonholonomic spheres is presented. Section 4 pro-
vides extensions of the algorithm to the case of more
controls and high dimensional state spaces. Section 5
concludes the paper.

2 Nonholonomic spheres

Although the construction of nonholonomic spheres is
valid for general driftless nonholonomic systems, for
computational reasons it will be presented for two
input systems, m = 2, with three dimensional state
space, i = 3

i=X(@u+Y(q)v. (3)

Instead of considering a particular system ¢
g1{gQ)uy + go(q)us, with X substituted by g; and Y
by g2, we will describe attainability spheres in a co-
ordinate frame given by the very first n = 3 elements
of Ph. Hall basis of the free Lie algebra spanned by
X and Y. This coordinate system will be referred to
as Ph. Hall coordinate frame and vectors expressed
in that frame are described by Ph. Hall coordinates.
It is reasonable to assume that the Ph. Hall frame
is orthogonal. Ph. Hall basis begins with elements
X,Y,[X,Y],[X,[X,Y],[Y,[X,Y]],... Here above [-,]
denotes the Lie bracket of vector fields. For two vec-
tor fields Z, V, the Lie bracket defines another field

0z v
AT
It is natural to define a measure of complexity of vector
fields
degree(X) = 1, if X is a generator
degree([X,Y]) = degree(X) + degree(Y"),
if [X,Y] is a compound vector field.

v, 2] =
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Figure 1: Ph. Hall coordinate frame and meaning of
spherical coordinates r, ¥y, 7.

When nonholonomic spheres of small radii are needed
for a particular system then Ph. Hall elements are
evaluated for this system at a given point. The re-
sulting spheres are continuously deformed spheres in
system-independent Ph. Hall coordinates. This obser-
vation validates usefulness of investigating spheres in
Ph. Hall coordinate frame. In order to produce points
on spheres with controls, the generalized Campbell-
Baker-Hausdorff-Dynkin (GCBHD) formula is used,
[3]. The formula describes locally trajectories of a
non-autonomous system of differential equations ¢ =
F(t)(g). The trajectory g(t) for small ¢ initialized at
go is given by the formula

+8x ()X (q0) + By ()Y (q0)
+Bx,v) (X, Y](g0) + -

where control-dependent coefficients-Ph. Hall coordi-
nates Bx, By, B(x.y),--- are as follows

Bx(t) = fob u(s)ds, By(t) = fo s)ds,
Bixv)(t) =3 fo *((u(s1) v(sa) — u(sz) v(s1)) dsidsz
Brx[ X,Y]] (t) = Bryx,y)(t) =

(5)

The time t should be small enough that the remainder
of Lie series composed of vector fields of higher degrees
be negligible. The time dependent coefficient multi-
plying any vector field Z is proportional to faagree(2)
therefore there exists t small enough to suppress the
influence of higher degree vector fields. In further
analysis, t = 1 to fix the time horizon. The remainder
of Lie series is suppressed by small amplitudes of u, v,
cf. Eq. (5). Selecting sinusoidal controls as admissi-
ble class of control makes it possible to reformulate
the set of functional equations (5) as a set of algebraic
equations involving parameters of the sinusoids (am-
plitudes, frequencies, and phase shifts). Now, when a
given direction of motion in Ph. Hall frame is given (as
a set of coefficients 3), controls generating the direc-
tion can be computed by solving optimization task in
the parameter space composed of parameters of con-
trols. Sections of three spheres with diverse energy



radii £ are presented in Fig. 2. Due to symmetry of
the spheres, it is enough to present only the semi-half
plane ([X,[X,Y]). Fig. 2 confirms that the motion in
directions corresponding to higher degree vector fields
(here [X,Y]) are much more energy expensive than
motions in directions determined by lower degree vee-
tor fields (here X,Y). As can be seen in Fig. 2, non-
holonomic spheres are not convex.
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Figure 2: The section of nonholonomic spheres with
the energy radiuses F = 0.5,0.75,1 along the plane
(X, [X, Y]).
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3 Motion planning with the use of non-
holonomic spheres

By switching on either controls u, v or their linear
combination it is possible, at a given state go, to gener-
ate motion in the plane spanned by the vectors X (go),
Y(qo); still not enough to span the state space R3.
Therefore, vector fields of the second, and higher de-
gree should supplement the generators. To span R®
it suffices to take the vector field [X,Y] if only the
system (3) is maximally nonholonomic. In nonholo-
nomic motion planning some elements of construction
of nonholonomic spheres can be utilized. In fact, the
basic task is to move, locally, the state in the direc-
tion towards the goal state. It means that a radius
of a particular nonholonomic sphere should be gener-
ated with controls. As the nonholonomic spheres are
defined in Ph. Hall coordinate frame, the real direc-
tion of motion towards the goal should be transformed
into the frame. For controllable systems with n = 3
and m = 2, the algorithm of motion planning with
the use of nonholonomic spheres is implemented as a
sequence of the following steps:

Step 1. Read the initial state gq and the goal one gq4.
Analytically, compute the vector field [X,Y]. The
initial state becomes the current state g..

Step 2. In the current state, evaluate vector fields
X,Y,[X,Y] that results in the vectors X(q.),
Y(qc), [X,Y](g.) forming a coordinate frame for
R3. This coordinate frame is a projection of the
Ph. Hall frame into R® at g..

Step 3. Calculate the direction towards the goal
state gq — g, and express the direction in the co-
ordinate frame

24 — 9c = Bx X(q:) + BrY (g.) + ﬁ[X,Y]{Xs Y](Qéc))
6

Find spherical coordinates corresponding to the
vector of 3-s, cf. Fig. 1

Spherical((Bx, By, Bix,v)) = (m,7,r). (1)

Step 4. Using one dimensional optimization with the
energy radius parameter E varied, compute the
optimal value of E* according to the following
equation

kg 7(ug-) — q4l| = min kg T (uE) — qdl], (8)

where || - || is the Euclidean norm and kg, r(ug)
denotes the state reached by the system (3) ini-
tialized at g. and steered with controls deter-
mined by the values 7, v, E. The angles 7, v are
determined by Eqn. (7), while E sets the value of
7. Additionally,

(ch’T(uE) = Qe; 9d ~ qc)
M. rCuz) — el laa -l <%

where (-,-) denotes the Euclidean inner product
and « is the given angle accuracy of motion to-
wards the goal state.

Step 5. Move the current state g, to the state
kg..r(ug+), that becomes the new current state.

Step 6. Check the stop condition. If ||g. — g4l <
€, the algorithm stops and the final trajectory is
obtained. Here € denotes accuracy of reaching
the goal state. Otherwise the algorithm continues
with Step 2.

The algorithm can be implemented in the reverse di-
rection when the trajectory is searched to join the ini-
tial point g4 and the goal one gop. When the trajectory
is found, controls should be modified to restore the
right direction of motion.

The algorithm can also be modified to be more flexi-
ble in generating the desired direction of motion. For-
mula (8) says that for fixed values of E, 0, v, the



Figure 3: The unicycle robot.

radius r of the nonholonomic sphere is determined as
well as controls generating the spherical coordinates
(n,7,7). As formula (4) provides only approximation
of the desired direction of motion (the vector fields of
degrees higher than two were neglected), then after
computing controls it is required to check whether the
resulting state approaches the goal state or not. Ac-
cording to theoretical consideration for small values of
E the desired direction can be realized as accurately as
required, because the contribution of the higher degree
vector fields to resulting motion is negligible. Conse-
quently, the convergence property of the algorithm is
preserved. However, from the computational perspec-
tive it is reasonable to increase the value of the energy
radius E, even at the price of worsening quality of gen-
erating the desired direction (defined by the angles n,
v), if only the goal state is approached. In this case,
the auxiliary condition (9) is not checked.

4 Simulation results

Several tests were performed to verify the efficiency
of the method of motion planning based on nonholo-
nomic spheres. As an example, the simple unicycle
robot was selected. The unicycle is described by the
kinematic equations

@ cos @ 0
g=|g|={sinf |u+ 0] us=Xu +Yus.
] 0 1

In Eq. (10) z, % denote coordinates of the unicycle on
the plane, while the angle # describes its orientation,
cf. Fig. 3. The control u; is the linear velocity of
the vehicle while the control us is used to change its
orientation. It can be checked easily that the vector
fields X, Y, given by Eqn. (10) together with [X, Y] =
(sin#, — cosf,0)T span the state space everywhere.

The aim of the first test was to plan a trajectory be-
tween the initial state g = (20,10,0°)7 and the goal
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state q¢ = (0,0,0°)T. The goal state was reached
when the distance from the final state to the current
state dropped below ¢ = 0.01. Resulting controls were
piecewise continuous, cf. Figs. 4, 5, with jumps when
each iteration of the algorithm was completed. When
the direction towards the goal state was not to be gen-
erated very precisely, Fig. 4, the number of iterations
to complete the algorithm decreases and the resulting
path is smoother than for the case of very accurate
motion towards the goal, Fig. 5.
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Figure 4: Controls and resulting path for the unicycle
with a rough generation of the direction towards the
goal.

L ST - I : <]

X
% 2.5-% 7.5 10 12.515 17.520

Figure 5: Controls and resulting path for the unicycle
when the direction towards the goal state was gener-
ated very precisely.



approximate exact
iter X y X y
1 744 | -2.27 || 853 | 0.27
2 10.36 0.59 || 0.81 ] -1.55
3 1020 -0.04| 0.73|-1.16
4 10.04 0.00 || 0.58 | -0.71
) 0.27 | -0.07
6 -0.01 | 0.00

Table 1: Positions of the unicycle in the X — Y plane
after consecutive iterations of the algorithm with ap-
proximate and exact motion in a prescribed direction.
The angle 8 = 0 after each iteration.

As nonholonomic spheres display rotational symmetry
with respect to the axis [X, Y], controls generating the
motion along this axis are not determined uniquely.
In fact the controls are parameterized with the phase
shift 1 € [0, 2x] and described by the expression

u(s) = E sin(2ns + 9 + =/2),

v(s) = E sin(2ws + ), s € [0,1]. )

To verify impact of the phase shift parameter v on the
resulting trajectory, a trajectory of the unicycle robot
was planned initialized the state go = (0,1,0)7 and
aimed at reaching the point gy = (0,0,0)%. As can
be checked, the direction towards the goal is given by
the vector —[X,Y](qo). The presented algorithm of
motion planning was run for only one iteration with
varied energy radii £. Resulting paths are presented
in Fig. 6 for ¥ = 0°, and in Fig. 7 for ¢ = 100°. As
can be seen, by varying the phase shift, long and very
precise motions towards the goal can be generated.

5 Extensions

Till now, only the task of steering system with two
inputs and three dimensional state space was consid-
ered in detail. The presented algorithm can be ex-
tended to the case including more controls and high
dimensional state spaces. Generally, more controls
make the motion planning simpler. With three con-
trols that influence generators X, Y, Z, it is possible to
steer a six dimensional state space with vector fields
up to the second degree: X,Y, Z, [X,Y],[X, Z],[Y, Z].
When there are four controls, the dimension of steer-
able state spaces increases to 10. When n increases,
vector fields of higher than the second degree should
be involved. Although it is possible to construct non-
holonomic spheres spanned by two generators and ex-
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Figure 6: Motion in the direction [X, Y] for the phase
shift ¢ = 0° and energy radius £ = 2 (above), and
E =3 (below).

-0.8 -0.6 -0.4 -0.2 0.2 0.4

Figure 7: Motion in the direction [X, Y] for the phase
shift 4 = 100° and energy radius E = 2 (above), and
E =3 (below).



pressed in Ph. Hall frame of dimension n > 3 (for
example in the Ph. Hall frame composed of vector
fields X,Y, [X,Y], [X,[X,Y]], [¥,[X,Y]] ), it cannot
be done analytically. As motion in each iteration of
the algorithm is planned locally, the computational
time of determining controls that steer the system (3)
in the desired direction should be as short as possible.
For the case with n > 3 a hybrid solution is proposed.
When a motion in the direction described by the coor-
dinates say 8x, By, Bx,v], Bix.x.v]» v, x.y] is re-
quired, it can be decomposed into three stage motion.
In the first stage the coordinates 8x, By, 0O x y) are
generated, then the coordinate 3jx [x,y], and, finally,
Bry,x,y))- The first stage motion is performed with the
use of the presented algorithm of motion planning. In
the paper [4] it has been shown that the generation of
vector fields from Ph. Hall basis is very simple. The
motion in the [X,[X,¥]] direction is obtained with
controls

u(s) =sin(2ws + w/4) v(s) =sin(2-27s),  (12)
while in the [V, [X, Y]] direction with controls
u(s) = sin(2 - 2ws) v(s) =sin(2ws +7/4),  (13)

with s € [0,1]. Consequently, two latter stages use
controls derived from Eqns. (12), (13).

6 Conclusions

In this paper an algorithm of motion planning based
on nonholonomic spheres has been introduced. Lo-
cally, the algorithm enables to optimize energy expen-
diture on controls. For the two input driftless non-
holonomic systems with three dimensional state space,
the algorithm uses only analytic formulas for steering,
therefore it is very fast. For general driftless nonholo-
nomic systems, some extensions have been proposed
aimed at reducing the computational complexity of
the motion planning. The algorithm is quite general
as it requires only controllability of the steered drift-
less system.
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