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Abstract

The algorithm for a manipulator movement amidst
unknown obstacles is presented. The algorithm guarantees
the reaching of a target position in finite number of steps.
Manipulator may have arbitrary but finite number of links.
The obstacles may have arbitrary disposition, shapes and
dimensions. Their number may be arbitrary. It is supposed
that the obstacles are stationary and it is supposed that the
target position is reachable. Also is given the simplified
algorithm and the results of the computer imitation of the
manipulator movement based on the simplified algorithm.

1. Introduction

In order to increase the efficiency and productivity of
fabrication robots and manipulators are widely used in
different spheres of industry. The robot must be as
autonomous as possible and it must effectively operate in
natural environment.

In the beginning of robotic era robots operated in
workspace which was free of obstacles. Later the works
dedicated to the invention of algorithms for the control of
manipulators in the presence of obstacles began to appear.
There are algorithms which guarantee finding a trajectory
in the presence of known obstacles if such trajectory exists
[4, 5, 6]. Some authors use the artificial potential methods
(see, for example, [2]). In this method robot is represented
by a point, regions in the workspace that are to be avoided
are modelled by repulsive potentials and the region to
which the robot is to move is modelled by an attractive
potential. In general situation there is no guarantee that a
collision-free path will always be found if one exists [1].
There are different heuristical searching methods (for
example, A* class of searching methods, see for example,
[12]) which find the trajectory avoiding obstacles {even an
optimal one), if such trajectory exists. It is possible to use
such methods in case we have full information about free
and forbidden points before the beginning of the

movement. Then a powerful computer may calculate a
preliminary trajectory and after that the manipulator may
realize this trajectory. But in case of unknown obstacles
the manipulator has to investigate its workspace and plan
its trajectory simultaneously. Then such a difficulty arises
that graph algorithms of a route searching demand the
breadth searching, otherwise the reaching of the target
configuration will not be guaranteed. But during the
breadth searching it is necessary to switch from one node q
to another node q* which may be not adjacent. Then the
problem of manipulator moving from q to q* arises and as
a result the total sum of the manipulator's movements
becomes very big [8]. It is also known that the "depth-
first” algorithms do not guarantee the reaching of the goal
[8].

There is common difficulty for the methods planning
trajectory in the presence of known obstacles: it is very
difficult to borrow full information about workspace of
manipulator in advance and to represent this information in
a form suitable for trajectory planning. Considering our
algorithm one may see that there is no need for the control
system to have full information about workspace in
advance, manipulator will borrow necessary information
by itself in limited quantities and in terms of generalized
coordinates which is suitable for trajectory planning.

The attempts of creating algorithms for the robot
control in presence of unknown obstacles were made. Most
of them cover various two-dimensional cases [11].

In [11] the algorithm for the control of manipulators in
the presence of unknown obstacles in three-dimensional
space is given. Though this algorithm guarantees the
reaching of a target position it has such a limitation that the
manipulator should not have more than three degrees of
freedom.

In [14] the n-dimensional case is considered. The
algorithm is based on the solution of the system of
nonlinear equations using Newton method and therefore it
cannot guarantee the reaching of a target position.



2, Task Formulation and Algorithm

2.1. Preliminary Information

We will consider manipulators which consist of n rigid
bodies (called links) connected in series by either revolute
or prismatic joints [9]. The movement of an (i+1)-th link
with respect to an i-th link in an i-th kinematical pair is
described by the generalized coordinate qi(t). Vector
q(t)=(q,(t), qa(t), .---, ga(t)) is called vector of generalized
coordinates. If we know the functions comprising vector
q(t) then we have complete information about how
manipulator moves. In robotics generalized coordinate
space is widely used. For a certain moment of time t’
manipulator is represented by a point in the generalized
coordinate space q(t)=(q;(t"), qa(t), ..., Qa(t ). This point
corresponds to a certain configuration of the manipulator
in the Cartesian space and therefore the generalized
coordinate space is also called configuration space.

In our case it will be necessary to move a manipulator
from a start configuration to a target one. Let us denote
start configuration as q”:(qlo, Qs een qno) and target
configuration as q"=(q,", g2, ..., @u"). A trajectory q(t) is
represented as a line in the generalized coordinate space
and the movement of manipulator along this trajectory - as
the movement of a point along this line from the point q"
to the point q".

In our case the manipulator will have to move amidst
unknown obstacles. The number of the obstacles, their
disposition and shapes may be arbitrary. If the manipulator
has at least one common point with any obstacle then such
configuration of the manipulator will be considered as
forbidden and the point q describing this configuration in
the generalized coordinate space will be also considered as
forbidden. If the manipulator has no common points with
any obstacle then such configuration of the manipulator
will be considered as permitted and the point q describing
this configuration in the generalized coordinate space will
be also considered as permitted. So the forbidden
configurations will be represented in the generalized
coordinate space as points but before the beginning of the
movement the manipulator does not have information
about them.

We must take into account that because of
manipulator's constructive limitations vector-function q(t)
must satisfy the set of inequalities

alSq(t)Sa2 g8
for every time moment, where a' is the vector of lower
limitations on the values of generalized coordinates
comprising q(t) and a” is the vector of higher limitations.

The points satisfying the inequalities (1) comprise a
hyperparallelepiped in the generalized coordinate space.
We will consider all points in the generalized coordinate
space which do not satisfy the inequalities (1) as forbidden
too.

So in our problem a manipulator will be represented as
a point which will have to move in the hyperparallelepiped
from q" to q" and the trajectory of this point should not
intersect with the forbidden points.
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2.2, Task Formulation

Consider the problem of the manipulator movement
amidst unknown obstacles in the following way: given a
start configuration q” and a target configuration q', in the
workspace obstacles may be present, but before the
beginning of the movement there is no information about
the presence of the obstacles, their number, disposition and
shapes. It is necessary to make the manipulator move from
q0 to qT.

Let us make the following considerations:

1) The disposition, shapes and dimensions of the obstacles
do not change during the whole period of the manipulator
movement,

2) It is known in advance, that the target configuration is
reachable (that is, we know that in the generalized
coordinates space it is possible to find such a line
connecting q” u q" that this line will not intersect with any
forbidden point);

3) The result trajectory must satisfy the inequalities (1) for
every time moment. That is the whole movement must
take place inside the workspace;

4) The manipulator has a sensor system which allows to
define whether the manipulator intersects with an obstacle
or not for an arbitrary current configuration q and for all
configurations lying in a small r-neighborhood of q. r-
neighborhood is a hyperball in the generalized coordinates
space with the center in q and with a radius r>0. We will
not consider the structure of the sensor system.

5) We denote a set of all configurations from a r-
neighborhood of q as Y(q). The set of all forbidden points
from Y(q) will be denoted as Q(q), the set of all permitted
points from Y(q) will be denoted as Z(q). An r-
neighborhood of q with the sets Z(q) and Q(q) may look in
the following way (Figure 1):

Z(q

Figure 1.
Note that the sets Z(q) and Q(q) may be not
continuous.

2.3. Algorithm

The algorithm of manipulator movement amidst
unknown obstacles given below is the modification of the
algorithm given in [7, 8]. Our algorithm is as follows:

1. Consider that a manipulator is in a start
configuration . Manipulator investigates a small T-
neighborhood of the qo and forms the sets Z(q") and Q(qo).
Manipulator generates a trajectory q(t), satisfying the
following conditions:
1.1.It connects ¢ and q",
1.2.No point from this trajectory does coincide with any
point from Q(q”)
1.3.1t satisfies the inequalities (1)



The manipulator begins to follow this trajectory.

2.While following this trajectory two results may happen:
2.1.The manipulator will not meet any obstacle and it will
reach the q'. After reaching the q" the algorithm
terminates its work.

2.2.The manipulator will come to such a point (let us
denote it as q", n=1,2,...) that the next point of the
manipulator trajectory will coincide with a forbidden
point.

In this case the manipulator, being in q", investigates
the r-neighborhood of the q" and forms the sets Z(q") and
Q(q"). After that the manipulator generates a trajectory
satisfying the following conditions:
2.2.1.It connects q" 1 q"
2.2.2.No point from this trajectory does coincide with any
point from the sets Q(q"), i=0,1,...,n
2.2.3.It satisfies the inequalities (1)

The manipulator begins to move along the new trajectory,
n increments by 1 and the algorithm goes to the item 2.

2.4. Theorem

Theorem. If a manipulator moves according to the
algorithm given above it will reach the target configuration
in a finite number of steps.

Proof. Suppose that the manipulator being in q"
(n=0,1,...), generated a trajectory, leading to q" and began
to follow this trajectory. If the manipulator does not meet
obstacles it will reach the target configuration in finite
number of steps (because the length of the trajectory is
finite). Therefore, the endlessness of the manipulator
wandering may be caused only by the endless repeating of
the situation described in the item 2.2 of the Algorithm and
therefore the endless generating of new trajectories may be
caused by the two reasons:

1) the manipulator will infinitely return to the same point

of the trajectory changing,
2) the number of points where it is necessary to change
trajectory will be infinite.

Let us prove that all points where the manipulator changes
its trajectory will be different. Suppose that the
manipulator changed a trajectory being in a point q°, and
later it again changed a trajectory, being in a point gP, that
is s<p. Let us show that q*#q°. Suppose, at first, that, on
the contrary, q'=q". Then Q(q")=Q(q?). When the
manipulator was in q’, it generated a trajectory which did
not intersect with the sets Q(q"), i=0, 1, ... , s. When the
manipulator reached the point ¢P, it discovered that it was
necessary to change the trajectory that is this trajectory
intersected with the set Q(q”). But Q(q")=Q(q") and Q(q")
was taken into account when this trajectory was generated.
It means that the manipulator can not come to a point of
the trajectory changing q° which will be equal to any other
point of the trajectory changing and it means that all points
where the manipulator changes its trajectory are different.

Now let us show that the number of such points is
finite. Suppose that it is infinite. All points of a trajectory
changing must satisfy the inequalities (1). It means, that
the sequence of these points is bounded. According to the
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Boltsano-Weierstrass theorem it is possible to extract from
this sequence a convergent subsequence ¢, i=1,2,...
According to Cauchy property of the convergent sequences
it is possible for any € to find such a number s that all
points ¢, i>s will lie in an e-neighborhood of q'. Let us
take e<r. Consider an arbitrary point q' of the trajectory
changing lying in the e-neighborhood of q*. As far as in q'
the manipulator had to change the trajectory, it means that
that trajectory intersected with Q(q’) (because q' and its
neighbour points belong to Q(q%). From this fact it is
possible to make the conclusion that the set Q(q°) was not
taken into account when that trajectory was generated. But
such situation is impossible if we strictly follow the
conditions of the algorithm. The situation when a
trajectory changing point belongs to the e-neighborhood of
another trajectory changing point will necessarily appear if
the number of the points where trajectory is changing is
infinite. But we showed that such situation is impossible
and it means that a number of the points where it is
necessary to change trajectory will be finite. The theorem
is proved.

So, the number of cases when the manipulator has to
change its trajectory and generate a new one is finite. It is
possible to see that to generate a new trajectory means to
find a trajectory in presence of known obstacles. Therefore
we may also see that the problem of a trajectory finding in
the presence of unknown obstacles may be reduced to the
solution of the finite number of the tasks of a trajectory
finding in the presence of known obstacles. Such methods
are represented for example in [1, 4, 5, 13].

2.5. Theorem consequence

If the manipulator is situated in q°, where it is
necessary to change trajectory, it is not obligatory to
generate a new trajectory immediately but it is also
possible to make at first a finite number of steps according
to another algorithms. Then this finite number of steps will
be added to the finite number of steps of the movement
according to the basic algorithm and in sum we get the
finite number of steps [7]. This consequence allows us to
use algorithms which will help to escape from dead ends
and simplify the process of a manipulator movement.

3. Simplified Algorithm

An algorithm which is given below is a representative
of the family of algorithms using the theorem consequence
[7]. In this algorithm q" denotes a current configuration of
the manipulator. Before the beginning of the algorithm
functioning we open a stack where we will store the
configurations in which the manipulator has changed its
trajectory. The number of configurations which are in the
stack is denoted by J. Before the beginning of the
algorithm work the stack is empty and J=0.

Step 1. Consider that the manipulator is in the start
configuration ¢°. n=0, J=0.



Step 2. If the target configuration q" is reached, then the
algorithm terminates its work. Otherwise calculate a route
q"q" connecting q" and q". q"q" is a finite number of
points lying on a straight line segment connecting q" and
q". Store the number of points comprising q'q" in a
variable number_of_points.

Step 3. Form the sets Y(q"), Q(q"), Z(g".

Step 4. If there is no point from q"q" which coincides
with any point from uwQ(q'), i=0,1,.,n, then the
manipulator moves to the next point of q"q", n increments
by 1 and the algorithm goes to the Step 5. Otherwise the
algorithm goes to the Step 7.

Step 5. If n=1, make the stack empty and consider J=0.
Step 6. If n<number_of_points then the algorithm goes to
the Step 3. Otherwise the algorithm goes to the Step 2.
Step 7. Add q" to the stack, increment J by 1. Choose a
qeZ(q") according to the "pushing from the prehistory
algorithm"(PPA, see below). Manipulator moves to g, n
increments by 1. Denote q as q". The algorithm goes to the
Step 2.

Note that in Step 5 we make the stack empty because n
became equal to [, it means that the manipulator began to
move along preliminary trajectory and we consider it as a
sign that the manipulator has escaped the dead-end.

In this algorithm the preliminary trajectory is chosen as
a straight line segment in the generalized coordinate space.
It significantly simplifies the calculation of the preliminary
trajectory, though it also leads to that fact, that the
reaching of the target configuration will not be guaranteed.
Therefore the algorithm given above should be completed
by the following condition: if the Step 7 was fulfilled N;
times in sequence, then as a preliminary trajectory should
be chosen a higher order line, which would be able to go
round the forbidden points. Though it should be mentioned
that the experiments demonstrated the sufficient
effectiveness of algorithm - the target configuration as a
rule, was reached and there was no need for the
introduction of the higher order line.

We mentioned the "pushing from the prehistory
algorithm" (PPA). It is used in order to simplify an escape
from a dead end, which may arise in a r-neighborhood of a
current configuration.

PPA is based on the following heuristical approach. In
case we discover in Step 4 that q"q' intersects with
wQ(q), i=0,1,..,n, it means that the manipulator should
move not to the next point of q*q” but to another point q of
the manipulator's workspace. This point must be not
forbidden and therefore must be qe Z(q"). We keep in the
stack the manipulator's trajectory changing points. It
means that near these points obstacles were discovered.
Therefore we must choose such a point from Z(q") which
lies as far as possible from the points from the stack and as
close as possible to the q'. Before the beginning of the
PPA functioning let wus store in a variable
number_of_configurations the number of configurations
which are in Z(q"). J is again the number of configurations
in the stack. The PPA is as follows:

Step 1. Consider j=I. )
Step 2. If j>I, then go to the Step 4. Otherwise consider ¢
from the stack.
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Step 3. Call Algorithml (see below) and get from it the
modified Z(q") and the number of configurations in it in
the variable number_of_configurations. Increment j by 1.
Go to Step 2.

Step 4. Choose from Z(q") such a configuration q whose
distance to the q' is minimal in comparison with other
configurations from Z(q").

Algorithml. This algorithm receives from the callee
Z(q"), number_of_configurations, ¢’ and q" and leaves in
Z(q") those configurations whose distances to ¢’ are bigger
than the distance between ¢ and q". After terminating its
work Algorithml returns to the callee the modified set
Z(q") and number_of_configurations. If upon the
terminating of its work Algorithm1 discoveres that it threw
all configurations from Z(q") then it returns Z(q") and
number_of_configurations in the state they were on the
moment of the calling of Algorithml.

3.1. The Simplified Algorithm Implementation
Results

The software for the imitating of a manipulator
movement in the presence of unknown obstacles was
created. The program is based on the simplified algorithm
given above.

As an example let us take the imitation of the
movement of the manipulator with three revolute joints.
The manipulator moves in the plane xOy of the basic
coordinate system. In its start configuration the
manipulator lies on the positive semiaxis of the x axis, in
the target configuration the manipulator should lie on the
negative semiaxis of the x axis. There is one obstacle - a
parallelepiped. Its faces are parallel to the planes of the
basic coordinate system. Figure 2 reproduces the process
of the manipulator movement. The target configuration
was reached in 41 steps. The experiments with another
manipulators and obstacles were also carried out for the
simplified algorithm. They demonstrated the sufficient
effectiveness of this algorithm.

The software for the control of the manipulator
"Adept” in the presence of unknown obstacles based on the
simplified algorithm was also created [10]. The
experiments demonstrated sufficient effectiveness of the
software.

Figure 2.




The theory and algorithms given in this report were
used in the russian scientific and research interuniversity
program “Mechanics, engineering science and control
processes” [3] for the creating of space robots.

4. Conclusion

The algorithm for a manipulator movement amidst
unknown obstacles was presented, This algorithm is
applicable for manipulators with n degrees of freedom
working in the presence of unknown obstacles which may
have arbitrary disposition, shapes and dimensions. Given
the proof of the theorem stating that following this
algorithm a manipulator will reach a target configuration
in a finite number of steps. It is possible to see that in case
of our algorithm there is no need to enter the full
information about manipulator's environment in the
manipulator control system: the manipulator gathers this
information by itself and in quantities, sufficient for the
target configuration reaching. Also was given the theorem
consequence and the simplified algorithm using it. The
results of the practical implementation of the simplified
algorithm were given.
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