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ABSTRACT

A mobile-robot system with a very simplified
2D-rectangular workspace (2D-WS) and
landmark-based positioning system is given. In
this 2D-WS we establish a position error
function PEF, which describes the error of the
position measurement with respect to the
landmarks over the surface of the working
space. If an allowable positioning error
maximum (&,,,) is given, we can calculate by
use of PEF an appropriate set of trajectory,
where the position measurement error will be
lover than the given limit.

Moreover based on PEF we can easily select
the trajectory between the start and goal
positions for different optimum criteria as a
compromise  between speed, trajectory
accuracy, safety, smoothest drive etc.,, for
different traffic conditions. We demonstrate our
results on computer-simulated case study.

1. INTRODUCTION

The models play very important role in
learning from practice. Models of the controlled
systems can be used to refine the commands on
the basis of analyzing the errors. Better models
lead to faster correction of command errors,
requiring less practice to achieve a given level of
performance. The benefits of accurate modelling
are improved performances in all aspects of
control.

Mobile robot systems have different kind of
errors. One of the most significant errors is the
uncertainty of the positioning. Positioning errors
can be divided to more subgroups. Errors arisen
from dead reckoning, from distance and angle
measurement (i.e. errors from trilateration and
triangulation) and from some other random
effects are among others the most important
problems. On the other hand additional to the
sensing errors there are trajectory deviations
caused by the control system, and by the
uncertainty in the description of the environment.
Obviously the error detection and error analysis
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have important role in mobile-robot system
design.

The mobile robot should follow a well-
defined path in the working space. Usually a
position measurement system checks its actual
position. The elapsed time between two checks is
limited by the sensor system speed. Let us
assume a maximal allowed position error {&,,.),
which the mobile robot has to keep throughout
its entire path, and a marker based positioning
system.

Our goal is to develop an arrangement of the
markers, which guarantees that the given
maximal positioning error will not be exceeded.
A path planning process will be performed based
on the full knowledge of PEF .

Usually the position error is treated as a part
of uncertainty in the environment’s and robot’s
geometrical model. [1] Our approach is different.
We discuss the PEF independently of the above-
mentioned uncertainties.

We calculate the position errors with two
different strategies.

In the first case both angle and distance
measurement’s error will be taken into account
(combined triangulation-trilateration). The angle
and distance errors will be handled as unified
errors with different priority. We will prove that
the higher number of discrete measurements (i.e.
the use of more markers) will decrease the value
of the PEF.

In the second case only distance errors will
be analyzed. We will calculate the so-called
segment area size, which corresponds to the
calculated position error at a given position on
the planned trajectory (it describes the possible
locations of the robot). The segment area is
formed with cutting of two (or more) sectors (see
Fig.2.). Cutting of more sectors means distance
measurement from more markers,

In both cases we have to take into
consideration, that the use of more markers (i.e.
more measurement) will significantly increase
the time required for the position control.
Therefore an optimal number of measurements
should be defined for the practical use, which
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guarantees a position error below the given
maximal error (Emay) limit,

1.1. THEORETICAL BACKGROUND

Two different aspects of mobile robot
navigation’s  error  should be  analyzed
simultaneously. The first is the amount of
uncertainty and the second is the presence of the
errors in position measurement. B. R. Donald from
the Cornell University has defined the following
three kinds of uncertainty: uncertainty arising from
sensing errors, control errors, and the uncertainty
in the geometry of the environment [1]. He made
the first systematic approach on the problem of
error detection and recovery based on geometric
and physical reasoning. The last of them he called:
model uncertainty and in [2] he showed, that the
model uncertainty can be represented by position
uncertainty in a generalized configuration space.
Therefore his motion strategies include sensor-
based gross motion, compliant motions, and simple
pushing motions. Further with presence of model
error some plans may not even exist. For this
reason he investigated the EDR (Error Detection
and Recovery) strategies.

The initial assumption of our approach is similar
to the above-mentioned one, but we chose other
method for the analysis. Position error will be
evaluated in three different cases:

1. Position error estimation based solely on

distance measurement. (Chapter 2.)

2. Position error estimation based on angle and
distance measurement. (Chapter 3.)

3. Position error estimation based on segment
area modelling. (Chapter 4.)

2. POSITION ERROR CALCULATION BASED
ON DISTANCE MEASUREMENT

This strategy is useful if distance is the only
measured quantity. Let assume that we measure
the distance from the marker ‘M;” with some
relative error ‘tpy,’. This measurement gives
some segment area with flightiness ‘2py,,” and the
second measurement from the marker ‘M,’ gives
the second segment with flightiness “2p,’. If the
distance to a landmark is the only available
information, a single measurement constrains the
robot’s position to the arc of a circle (see Fig.1).

Fig. 1
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The robot, located at X, senses two landmarks (M,
M,) and measures the distances ‘a‘and ‘b’ to them
respectively. The robot is in the intersection point
(X) of two circles with radius ‘a’ and ‘b’ Their
centers are the points M| and M,. Let assume for
simplicity M, to be in the origin of the coordinate
system.. M, is the point with coordinates (m, 0).
Obviously the robot position X with position errors
(g) is:

_ mz +(a-—*_pml)2 _(bipml)z .
2m (1)

Y:I:E =i\/(ai pml)2 —xz);

X

tg

The set of the possible positions of ‘X’ we call as
Sfault area (what is the cut of the segments). The
result describes among others the well-known
method of the usage of active beacons at known
map-locations and distance measurement (for
example based on the time of flight method). The
marker arrangement for the smallest possible fault
area was investigated. The result is trivial; the
smallest segment area can be achieved if a=b (see
Fig.2).

Fig. 2

Fault area

3. CALCULATION OF THE POSITION
ERROR BASED ON ANGLE AND DISTANCE
MEASUREMENT

The schematic model of the positioning
procedure is on Fig. 3. We measure the distances
(a and b) from the markers (M; and M,). The
position of the markers is known on the map, i.e.
the distance (m) between them is known also.



Measurement is performed for example with a
scanning laser distance measurement technology
[4]. We measure the distance to the given ‘M;’
marker first, and then the laser beam is deflected
(with angle ) to the marker ‘M,’, to which the
distance will be measured also. This procedure is
very similar to the SAS (Side-Angle-Side)
triangulation strategy.

The mobile robot (R} is on its actual position.
Further my.,, can be calculated from the given
marker positions, and Myeysurea) from the measured
‘aand b’ distances and ‘a’ angle. From ‘my.,,” and
‘Mymeasy’ We can derive the k — correction factor
what we can utilize for the trajectory modification
later.

= \Ja® +b* —2abcosa;

(meas.) (2)
1/
(real)
k = w_&; (3)
m(mmx)
Absolute and relative errors of the system:
A(a.s'tb) :| m(real) - m(meas) |
|m(reax‘) - m(?HECLS‘) | 4
(re!}
m(rea.!j
Furthermore generally known:
m(reaf) \'meas} (1 R ) (5)

Where, R, is a given system error (i.e. the
relative error to the given distance). In our
laboratory for the distance measurement with the
laser technology we had 15[m] / 1[mm] = distance
[ error ratio [4].

Let be ‘¢’ the angle error for the ‘c”, and
respectively known ‘mype;’ from measured ‘a’
and ‘b’ distances. From (2) and (5) we get the
final relation for my.,, distance:

m(rmf] = (a(rrmas)(l t Re))z + (b(nwax) (] * Re))z -
K z[a(mfa:)'b(meus } (1 * Re) ’ I COS( a(mm.r) )(1 x 5))’

With reducing equation (6), we examine the values
of ‘a, b, m’ and ‘e’ for ‘R,” minimum. The result
shows, that the minimal ‘R,” can be achieved by
‘a=b’, and ‘a=90"".

The equations can be formulated in the word co-
ordinates too (all this is needed for the modelling
in MATLAB environment), In this case ‘R.’ have
two components: "Rexg, Re’xz’. (Where Reyy is
the ‘x” component of the relative error (R,)
belonging to the ‘a’ distance on the mobile robot
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(R) position). The final equation can be derived
from the followings:

m2 = (Xm? ml) e (Ym2 ml )2’ (7)

Simultaneously is valid the equation (2), where
for distances ‘a’ and ‘b’ in word co-ordinates can

be written:
? :(XR —Xml) +(}Iml (8)
: :(Xm2 _XR) +(Y;r12 _YR) ’
Where:
X, — X, £ Rel,;
Xp— X, tRe’; 5
(9).
¥ =2k, +ReYR,

With replacing (8) and (9) into the (2), from the
comparison the equations (2) and (7), we get the
final conditions for the minimal relative error
divided for the ‘X’ and ‘Y’ co-ordinates.

4. POSITION ERROR CALCULATION
BASED ON THE SEGMENT AREA
MODELLING

This is very similar method to the above mention
(chapter 2.). The only difference is, in chapter 2.
for distance measurement TOF method has been
used, and now combination of ‘light striping’ and
‘laser eye’ methods will be investigated what we
are using in our laboratory. Laser eye is a
combined range and video sensor consisting of a
camera and a laser range finder arranged so that
the optical axis of the camera and the laser beam
are parallel or coincident. Light striping: a line
(laser beam) projected into the scene allows
recovery of the depth of the point at which the
light beam strikes (marker), by triangulation.

The calculation was prepared only for the cut of
two segments belonging to the smallest error area.
It can be proved, that it is enough to prepare the



measurement from two markers in case of known
trajectory. Measurements from additional markers
(if they have different distance from the mobile
robot position), will not significantly increase the
accuracy of position determination, only the time
consumption will be increased

Further we have to endeavor, that the cut of
segments (see Fig.2} has more or less linear form,
so the cut area could be form like a parallelogram,
This is possible under 1% relative error of the
distance, what can be easily kept with our ‘light
striping - laser eye’ technology measurements too
[3]. On Fig. 4, where the relative error is more than
1%, the nearly linear fault area modell can be seen.

Fig. 4.
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In our general calculation let, M;R # M>R and
‘a” is the angle between’ MR’ and ‘M,R’. The
fault area (A) is performed with the following
forms.

m,
a= - N
sina
m
b =B (10)
SIn &
m.,.m
A=bm =—"2;
SIN &

Looking for the conditions of the minimal errors
can be performed with the first derivation of (10)
based on ‘a’, ‘b’ and ‘o’ angle. We get the result —
minimal fault area-, when a=b and the angle
a=90".

Further, if a maximal position error is given
(Emax)» it 1S possible to calculate only with ‘d’
diameter of the parallelogram, because with given
Emax We can plot the navigation’s path, along the
trajectory (see Fig.5).
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The diameter (d) can be calculated based on the
followings (See Fig.4.):

12 2 2,
b =a" —m;

. (11).
b =a.cosa;

d*=(b+b) +ml;
d =\/[Jb+(f:z.cos.:z)]2 +m];

(12).

With performing the first derivation of formula
(12) based on ‘a’, ‘b’, and angle ‘o’ we get the
conditions for the minimal diameter (d). From
Fig.4, and after derivation can be seen, that the
fault area is minimum, when the triangle M,, R, M,
is almost right-angled. (M,, M, are the markers
and R is the mobile robot.)

5. POSITION ERROR EVALUATION

The accuracy is calculated along the entire path.
The minimal frequency of the position
measurements is given by the system. Based on
this, and in knowledge of the above-mentioned
conditions of (g, b, @) would be divided the path,
and we can determine the poses of the most
accurate position measuring. The frequency of the
position measuring will change (increase), if
another agent(s) is on the scene.

Further, the relationship between the accuracy of
the input measurements and the accuracy of the
final estimate of the desired pose variables is
formed by the notion of the Geomertric Dilution Of
Precision (GDOP) [5]. This metric expresses
variation in the output estimate ‘X’ (geometric
variables constituting the pose) with variations in
the input parameters ‘S’ (sensor data).

AX

GDOP =—; (13);
AS



Where, we can take the limit for AS. In case, if
(AS—0), GDOP is equal with Jacobian (J) of the
measurement equation,

In our case the pose estimation and the
associated uncertainty based on triangulation using
imprecise bearings, to the two specially displaced
markers, where the ambiguous region is almost a
parallelogram, see Fig. 2.

The GDOP for two markers located at the
coordinates M,=(0,0), M,=(5.,0) is given by:
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a —=b
m m
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Where, xg, yg are the robot coordinates, ‘m’ is
the distance between markers, (m=5), and the
magnitude of ‘]’ grows as the robot moves away
from the ‘x’ axis. On Fig. 6, we can see the
growing of GDOP and the calculated position
error. Further we can compare, that the position
error calculated from the segments area and the
calculated GDOP are very similar to each other.
This is verify, that our calculation with segment
area model is correct and, it is possible to calculate
the markers arrangement in the interest of the
biggest accuracy of position measurements.

This is what we expected, because if a maximal
position error is given (gm.), can be determined
the robot position, in which the robot must change
the conditions of the next measurement.

Fig. 6.
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6. TRAJECTORY PLANNING

Trajectory planning can be performed in
knowledge of the calculated position error
function. Each possible trajectory between the
dock pairs has its own given maximal position
error (Emuy), and calculated position errors (t) in
each points of the trajectory. Calculated position
error is proportional to the above mentioned
segment area. Real accuracy of the trajectory is
given with calculated (1), but they are

predetermined distance measurements to this
position error, from the given markers. For the
relation between ‘1’ and ‘gq,, is valid:

T < Enax (15).

The calculation can be performed with the
above-mentioned strategies, see chapters 2., 3., 4.

In our laboratory we simulated the position error
calculation in MATLAB environment.

Lot of trajectories exist between the given dock
pairs which has different accuracy, traffic density
and length (see Fig. 7.). Based on position error
function (PEF), and given allowed maximal
position error (gna), we can select the final
trajectory between the start and goal positions for
the different criteria of accuracy. The selection can
be done on the following principle

Fig. 7.
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MAX — maximal accuracy (theoretically - exact trajectory)

max — maximal accuracy (achieved with measuring)

MIN - given minimal accuracy what is equal with max. pos emorg,,
A/ B - starting / goal dock positions

Conditions for trajectory selecting:
- The map is given in the memory of
mobile robot, with known obstacles and
markers positions.



- The set of all navigation paths is known
with a given allowed max. pos. errors

(amax)-
Trajectory selection process, see on Fig. 8.

7. CONCLUSION

In practical use some workspace with obstacles
and the required accuracy of the robot is usually
given. In this paper we described a procedure of
markers’ arrangement around the trajectories to
keep the accuracy between the given intervals.
Further we proved, that the best accuracy could be
achieved, if the markers are equidistant from the
mobile robot and from each other. Moreover we
highlighted that the accuracy is susceptible with
the angle (c) between the markers and the mobile
robot. We verified, that the best accuracy can be
achieved in case of a=90". Finally we can define
to a given accuracy, in given environment and
trajectories, the needed number of markers and
their displacement.

Fig. 8
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