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Abstract

This paper describes a novel approach for robot local-
ization using a view-based representation with panoramic
images. We propose to use a representation based on a com-
plex basis of eigenvectors. We demonstrate that this results
in a speed up of building the eigenspace and in a fast and
accurate localization.

1 Introduction

To enable localization of a mobile robot in an outdoor
or indoor environment, a number of methods was proposed
that construct a model of the appearance of the environment
by capturing images of locations, obtained with an omnidi-
rectional sensor [4, 1, 3, 6, 8, 7]. The model of appearance
is predominantly compressed based on the eigenspace ap-
proach, which has been successfully used in many areas of
computer vision [11, 10].

In the training stage, we acquire panoramic images at
several locations. All the images are then compressed by
the PCA, resulting in a set of eigenvectors, which, together
with the points in the eigenspace corresponding to the im-
ages, form the final representation. During navigation, lo-
calization is performed by projecting the momentary im-
age directly onto the eigenspace (in the case of robust pro-
cedure we have to solve an overdetermined set of equa-
tions [9]), followed by the search for the nearest point in the
eigenspace. One of the major problems with this kind of
representation is how to adequately deal not only with the
location of the sensor, but also with its orientation. Some
recent approaches [1, 4] used representations that were in-
variant to rotation, while others tried to explicitly encode the
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rotation [12, 6]. As we argued in [7], none of them is suit-
able for robust localization in the presence of unexpected
obstacles or excessive noise, so we proposed a representa-
tion which explicitly integrates all possible rotations in the
eigenspace. The main drawback of this method is the high
computational complexity of building the eigenspace.

In this paper we show how we can exploit some prop-
erties of the space of rotated panoramic images to alleviate
this problem. Our method was triggered by the previous
work of Uenohara and Kanade [14] that investigated the
eigen-basis for a set of images of a single rotated template.
In their contribution, Uenohara and Kanade described the
relationship between the eigenvectors of a set of uniformly
inplane rotated images of an object and the basis vectors of
the DCT. They show that the eigenvectors are completely
defined by the fact that the inner product matrix of the im-
age vectors is a symmetric Toeplitz matrix. As they claim,
the eigenvectors of the inner product matrix are invariant
of the image content and they can be generated much more
efficiently by calculating the DCT transforms of the auto-
correlation vector. This greatly alleviates the computational
expense of the training phase.

In this paper we extend the approach to multiple in-
stances of rotated panoramic snapshots of the environment
and show how a parametric eigenspace of a set of rotated
panoramic images can be built without the need to per-
form the SVD algorithm on a complete covariance or inner
product matrix. Starting from the fact that image shifting
can be optimally described with complex Fourier basis, we
show that one can construct a compound representation that
integrates the Fourier basis and the eigenspace approach.

The paper is organized as follows. In section 2 we give
an overview on how eigenvectors can be calculated for a set
of rotated versions of a panoramic image. In section 3 we
then give a detailed description of our approach to the build-
ing of the eigenspace for a set of rotated panoramic images
obtained at multiple locations. In section 4 we show the re-
sults of applying the proposed algorithm to the problem of



localization. The special properties of complex eigenspaces
that enable efficient and fast localization are also described
in this section. We conclude with a summary and an outline
of the work in progress.

2 Eigenspace representation of a set of ro-
tated versions of a panoramic image

Let us first assume, that all of the images in the train-
ing set capture the same scene from a single point of view,
but under different inplane rotation. The only constraint is
that with inplane rotation the information content is pre-
served. Such is the case when rotated an image of an ob-
ject on a homogeneous background [14], or with panoramic
images rotated around the optical axis [7]. If we unwarp
the panoramic image to a cylindrical projection, the rotation
can be expressed simply as a rowwise shift (Fig. 1). Since
the images are uniformly rotated (shifted), each image can
be generated by rotating (shifting) the original image x; for
2 [N.

We represent images from the training set as normalized
image vectors, from which the mean image is subtracted, in
an image matrix X € IR™"*V

X=[X0 X1 XN-1],
where n is the number of pixels in the image and N is the
number of images.

The most straightforward way to calculate the eigensys-
tem is first to subtract the mean of all the images and then to
normalize all image vectors to unit energy. We then calcu-
late the SVD of the covariance matrix C = IR™*" of these
normalized vectors

X3
T x{
C=XX :[X{] X1 xN—l} I
T
XN-1
The eigenvectors v;, ¢ =0,...,N — 1 form an orthog-

onal basis. Sorted with respect to descending eigenvalues
Ai, i = 0,...,N — 1, they represent the best linear ap-
proximation of the image data.

Since the number of pixel elements 7 in an image is usu-
ally high, the computation of the matrix C is a time consum-
ing task of high storage demands. However, it is possible to
formulate the equations in such a way that it becomes suf-
ficient to calculate the eigenvectors vi, ¢ =0,...,N —1,
of the inner product maltrix ¢ € RV*N
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Figure 1. (@) Panoramic image taken with a
spherical mirror. (b) The same image un-
warped to a cylindrical image.

Q:XTX = XN-1 ]

(1)

Since the eigenvectors v/ are the solution of X7 Xv/ =
Novl, we can calculate the eigenvectors of XX7T by
XXTXv! = MXv![2]. In this way, we derive the eigen-
vectors v; of the covariance matrix just by projecting the v}

on the set of images,

v; = %X v; .
k4
Uenochara and Kanade [14] showed that in the case of
the image set consisting of rotated examples of one origi-
nal image, @) is a symmetric Toeplitz matrix. Since () is
also circulant, its eigenvectors vj are not dependent on the
contents of the images [14]. @ is of the form

qo q1 cee gn—2 d4N-1
qN-1 Go q1 cee GN-2
Q= | av—2 gav-1 Qo q

q1 e gN-2 4gN-1 qo



It can be derived from the shift theorem [5], that the
eigenvectors of a general circulant matrix are the N basis
vectors from the Fourier matrix F' = [v{, v{,..., V}y_]

T
Mo = [I,Mk,w%,...ww”l)k] , k=0,...,N-1,

where w = e~ 2"I/N = § = /T .
The eigenvalues can be calculated simply by retrieving
the magnitude of the DFT of one row of (J;

N-1
/\;c = Z q.ie_zﬂjt_’:’: .
=0

This interesting property also emphasizes the central
point of the Fourier analysis, as it indicates that the Fourier
basis diagonalizes every periodic constant coefficient op-
erator, in our case the circular shift operator [13]. In
other words, all basis functions of the Fourier transform are
eigenvectors of the circular shift operator [5].

Since q; = gn—4, OUr matrix is circulant symmetric, and
therefore we can choose an appropriate set of real-valued
orthogonal eigenvectors. As it turns out, the proper basis
are the cosine functions from the real and the sine functions
from the imaginary part of the Fourier matrix [13].

We can therefore compute the eigensystem of ¢
just by first computing the autocorrelation vector
(91, G2,.-.,gn—1), and then by calculating the X val-
ues, which should be afterwards sorted by decreasing
magnitude. The eigenvectors v} corresponding to k largest
eigenvalues can then be easily selected from the corre-

sponding basis vectors of the Discrete cosine transform
(DCT) [14]:

0,...,N -1

m(2m 4+ 1)k|
' LN -1

Vg = COS [ S

Thus, with the help of the DCT, it is possible to compute the
basis vectors much more efficiently.

m =
k = 0,

3 An extension to a set of rotated panoramic
images acquired at different locations

When dealing with the problem of localization of a mo-
bile robot [7], we need to encode P images from P loca-
tions, each of them being rotated N times (Fig. 2). In this
case, we cannot directly apply the previous approach to the
calculation of eigenvectors of circulant matrices, since the
inner product matrix A,

Qu Qu2 Qip
i = BRI e Qo Qo Qap ’
G @2 Qpp
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is composed of several circulant blocks Q;;, which are, in
general, not symmetric. However, as we will show, it is still
possible to calculate the eigenvectors without performing
the SVD decomposition of A.
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Figure 2. Map of P = 62 locations, where im-
ages were taken for training the robot. Im-
ages shown correspond to locations 7, 19, 37
and 62, respectively.

We have to solve the eigenvalue problem
Aw' = pw', (2)

where (1, w') is the eigenpair of A. The fact that the matrix
blocks (J;; of A are circulant matrices is crucial. As it was
already mentioned, every circulant matrix can be diagonal-
ized in the same basis by Fourier matrix F'. Consequently
all the matrices (Q;; have the same set of eigenvectors vy,
k=1...N. We shall find the eigenvectors w’ of A among
the vectors of the form

Wi = [aklvf,akgvg, ¥ .akpv;;r]T k=1 ... N .
(3)
Equation (2) can be rewritten blockwise as
P
> Qulongvy) = pogivi, i=1 ... P .
Jj=1

Since vy, is an eigenvector of every Q;; the equations sim-
plify to
P
NEVE = pogevh, i=1 P
O!],;J ,'.;jvk - #G{kzvk, T = cen 4
3=1

ks . . / .
}Nher-e A isan @genvalue of Q,; corresponding to v, This
implies a new eigenvalue problem

AO’.}‘; = pap (4)



where
% 'k 'k
A’lﬂ A}f - . A}};P
A= Azl Ay oo Agp
Ap1 Apa App
and

7
ap = [Oikl, 2y .- O.'kp]
Since A is block-symmetric, A is symmetric and we have
P linearly independent eigenvectors cv;, which provide P
linearly independent eigenvectors wy, in (3). Since the same
procedure can be performed for every v, we can obtain
N - P linearly independent eigenvectors of A.

It is therefore possible to solve the eigenproblem using
N decompositions of order P. Since P is usually small in
comparison to the total number of images P- N, this method
offers a similar improvement as the method in [14].

However, by looking at the properties of the circulant
matrices one can deduce, that this method works only if we
use the complex Fourier basis as the eigenvector set for the
circulant matrix. In fact, this set of basis vectors is the only
common eigenspace for all the submatrices Q;; from A.

3.1 Complex eigenspace of spinning images
Once we estimated the eigenvectors w’ of the inner prod-

uct matrix A, we can calculate the eigenvectors for our set
of images as follows,

We then sort the eigenvectors according to their eigen-
values p,. To illustrate the background of the formation of
the eigenvectors, we show in Fig. 3 the images of the vec-
tors w’ and w. As a comparison, in Fig. 4 we depict the
corresponding eigenvectors calculated using SVD.

As A; indicate the variance that each eigenvector encom-
passes, we can use only K, K << min(n, V- P) eigenvec-
tors in the final representation. Since the eigenvectors come
in symmetric pairs, we store just one of a pair. A good esti-
mate of the compressing efficiency of the eigenspace is the
energy of the eigenspace, which can be calculated as

Yico M

= =00,
Jj=0 "\

where 5 is the total number of eigenvectors.

To represent each training image in the eigenspace, we
have to estimate its coefficients by projecting the image on
the basis. Since our eigenvectors are complex, the coeffi-
cient vectors are also complex, and can be viewed as points
in the complex eigen—subspace. In Fig. 5 we can see the
coefficients for an image and its rotated siblings. The ro-
tation (shift) of the image results in the change of angle of
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Figure 3. (a) Real and (b) imaginary part of one
of the w' vectors. (c) Real and (d) imaginary
part of one of the w vectors.

the coefficient vector in the complex eigenspace, while the
magnitudes of the coefficients do not change.

Because of this property, it is not necessary to store the
coefficients for all the images. In fact, if we have just one
representative coefficient for one viewpoint, all the others
can be generated on the fly with a simple rotation in the
complex plane.

Let x; be the ¢-th image and x,; 7 =i+1,...,(i+N—
1) a set of its rotated siblings. Images are evenly rotated,
each by 27 /N radians regarding to its predecessor. The co-
efficient g;; of the image x; can be calculated as < x;,e; >.
Let the j—th coefficient of the image ¢ + 1 be q(;41);. The
angle between the two coefficients is

Re(qiy1); — 9i5)
Im(quty; — @j)

¢; = arctan



Figure 4. (a) One of the eigenvectors v’ of ()
calculated by EVD. (b) Corresponding eigen-
vector v.

Every other coefficient g, can be now calculated as

i+1,
L,

o i+ N =)
K

“T(r—i T
Grg = qige®™ 1 5 o=

4 Robot localization

Once the eigenspace is built, we can interpolate the
memorized coefficients in order to form a hypersurface that
represents our knowledge of the training data. For mobile
robot localization, the parameters to be retrieved are x and
v coordinates of the robot and the relative orientation. This
is achieved by projecting the momentary input image into
the eigenspace and search for the nearest coefficient on the
hypersurface.

Since we memorized only one coefficient vector per lo-
cation, we search among the scores of N projected coef-
ficients, i.e., we first search for the nearest neighbor of the
coefficient vector corresponding to the input image and then
we rotate this coefficient vector by @, where @ is a vector
of estimated ¢y, values.

4.1 Using shift invariant properties of coefficients
The time complexity of the search can be quite high if

the parameter space is large. It is however easy to decrease
it dramatically by using a two-step search.
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Figure 5. Complex coefficients correspond-
ing to the first ten eigenvectors for one image
of the training-set and its rotated siblings.

A closer look at the coefficients reveals that the modulus
of the coefficient vectors does not change for the coefficient
of the original image and its rotated siblings. If q is the
coefficient vector of an input image, we first calculate its
modulus vector m

m, = v/(Re(@:))* + (Im(a:))? -

In the first search we make a list of coefficients on the hy-
persurface which have a modulus vector close to m. These
points and their parameters are then the only candidates for
the second search. As our experiments show, this strategy
dramatically speeds up the algorithm. In fact, a search that
would normally take around 120 seconds was completed in
8-10 seconds on average.

4.2 Results of localization

In this section we present the results of localization of a
mobile robot equipped with a panoramic camera in an envi-
ronment of roughly 6x9 meters. Training images were taken
at 62 locations, each image was rotated 50 times, so that the
interval of rotation was 7.2°. Tests were performed on an
eigenspace of 5 and 10 dimensions for a testing set of 100
test images. The results can be seen in Fig. 6.

In table 1 we compared the times required for building
the eigenspace by 1) using the standard decomposition of
the correlation matrix X X7, 2) by calculating the decom-
position of the inner product matrix X7 X and 3) by using
our approach. The tests were made for images of dimen-
sions 40 x 68, the latter being the width of the image. Each
image was therefore rotated 68 times, i.e., for 40 locations
we got 2720 images. Since this is also the number of image
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Figure 6. Results of localization for a 10 di-
mensional eigenspace. Black dots denote
test locations. Empty dots denote estimated
locations of the robot.

elements, this is the border case when the covariance ma-
trix is of the same size as the inner product matrix, and the
complexity of the SVD method reaches its upper bound.

5 Conclusion

In this paper we presented a novel approach to the prob-
lem of mobile robot localization using panoramic images.
In our previous work we have shown how to overcome the
problem of inplane rotation of the panoramic sensor and at
the same time achieve robustness by using an eigenspace
model based on all the rotated images integrated in the train-
ing set. The main limitation of our method was the high

locations (P) | XX | XTX [ CPLX |

10 25073 | 558 16.1

20 2569.6 | 429.2 | 105.3
30 2634.8 | 1400.3 | 312.4
40 3007.7 | 32523 | 853.2

Table 1. Timings for building of eigenspace
(in seconds).
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complexity of building the eigenspace. We now show that
the eigenspace of such a set of images can be efficiently
built by using the complex Fourier basis as the eigenvector
set for the inner product matrix. The complex eigenspace
representation is therefore a compound representation that
integrates the Fourier basis and the eigenspace approach.
Furthermore, it has some properties that enable a faster
search in the coefficient set.

Since our representation enables robust estimation of
eigenspace parameters, our plan is to focus now on testing
the robustness of the method against noise, occlusion and
variations to illumination.
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