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Abstract
In this paper a comparison of classical, adaptive and
neural control strategies for a robor arm with two
revolute joints is presented. The classical control scheme
is based on a conventional PD controller. Another
conventional structure, the computed torque scheme, is
also presented. Better results are obtained when a PD -
neural control strategy is implemented. If parametric
uncertainties occur, an adaptive control scheme is used to
preserve the performances. The performances of the
implemented control strategies for trajectory tracking are
analysed by computer simulation, The advantage of a
neural control technique for robot arms is that it avoids
this a priory-modelling problem. If a PD controller
already controls a robot arm the advantage of proposed
structure Is that extension to a PD - neural controller for
performances improvement Is easy.

1. Introduction

Rigid robot systems are subjects of the research in a both
robotic and control fields. The reported research leads to a
variety of control methods for rigid robot systems [3]. The
present paper is addressed to robotic manipulator control.
High speed and high precision trajectory tracking are
frequently requirements for applications of robot arms.

Conventional controllers for robot arm structures are
based on independent control schemes in which each joint
is controlled separately ([3], [7]) by a simple servo loop.
This classical control scheme is inadequate for precise
trajectory tracking. The imposed performances for
industrial applications require the consideration of the
complete dynamics of the robot arm. Furthermore, in real-
time applications, the ignoring parts of the robot
dynamics, or errors in the parameters of the robot arm
may cause the inefficiency of this classical control (such
as PD controller). An alternative solution to PD control is
the computed torque technique. This classical method is in
fact a nonlinear technique that takes account of the

dynamic coupling between the robot links. The main
disadvantage of this structure is the assumption of an
exactly known dynamic model. However, the basic idea
of this method remains important and it is the base of the
neural and adaptive control structures ([1], [2], [7], [8]).

Even in  well-structured industrial applications,
manipulators are subject of the structured uncertainty, i.e.
the parameter uncertainty due to unknown load, friction
coefficients and so on. When the dynamic model of the
system is not known a priori or is not available, a control
law is erected based on an estimated model. This is the
basic idea behind adaptive control strategies [7]. Over the
last few years several authors ([5], [8], [9], [12]) have
considered the use of neural networks within a control
system for robot arms.

2. Classical Control Methods

The robot arm is modeled as a set of n rigid bodies
connected in series with one end fixed to the ground and
the other end free. The bodies are connected via either
revolute or prismatic joints and a torque actuator acts at
each joint. The dynamic equation of an n-link robot arm is
given by ([3]; [10])

T=J(g)i+V(g.q)+Glg)+F(g) (M
where
- Tisan(nx 1) vector of joint torques;
- J(g)is the (n % n) manipulator inertia matrix;
- V(q,c})is an (n X n) matrix representing centrifugal
and Coriolis effects;
- G(q)isan (nx 1) vector representing gravity;
- F(g) isan (n x 1) vector representing friction forces;
- q.q, g are the (n X 1) vectors of joint positions, speed
and accelerations, respectively.
The equation (1) form a set of coupled nonlinear ordinary
differential equations, which are quite complex, even for
simple robot arms.



The control of the simple planar robot arm with two
revolute joints shown in Fig. 1 will be considered.
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The elements of the dynamic equation (1) for this robot
arm with electrical motor dynamics are found to be
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with ¢; = cos (g;); 5; = sin (q;);

Cr2 = €os (qr+ q2); Sp2 = sin(qp + gq2)
J; = moments of inertia for electrical motor /.
n; = factor of reduction gear i.

v; = viscous friction for joint i.

C; = Coulomb friction for joint i.

The conventional PD controller consists of compensation
of the gravity effects and of the classical state feedback.
The equation of the PD control law is [3]

T=G(q)+K,e+K,q (6)

where T is the total torque driving the robot arm, K, and
K, are (n x n) constant diagonal matrices and the error e is
defined as

e=qu-q (N
A used computed-torque control scheme is based on the
exactly linearization of the nonlinear dynamics of the
robot arm. This control strategy is illustrated in Fig. 2. If
the dynamic model is exact, the dynamic perturbations are
exactly cancelled. The total torque driving the robot arm
is given by [1]

T=J(g)r'+V(g.a)i+Gla)+ F(4) (8)
f, \}, é, F are estimates of J, V, G, F,
respectively, and T is defined as

T =i, +K,e+K e (9)

The closed loop equation is found to be
é+K,e+Kpe=
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where:

where f:J—]; V -V (~7=G—(:‘; F=F-F
are the modelling errors.
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If the manipulator's parameters are perfectly known, the
closed loop equation (10) takes a linear, decoupled form:

é‘+Kvé+er=0 (1)
The computed-torque control method has performance
problems because of its reliance on a fixed dynamic
model. The robot arm structures have to face uncertainty
in the dynamics parameters. Two classes of approach have
been studied to maintain performances in the presence of
parametric uncertainties - the robust control and the
adaptive control. The next section deals with an adaptive
control strategy for the robot arm.

3. Adaptive Control Strategy

The adaptive controllers are based on an adaptation
mechanism,  which  keeps extracting  parameter
information on-line, so these controllers can provide
performances in the face of the parametric uncertainties.
The modern adaptive control approach consists in the
explicit introduction of the linear parameterization of the
robot dynamics. The adaptive controllers can be classified
into three major categories [12]: direct, indirect and
composite.

For the robot arm structure (1) an indirect adaptive
controller is proposed in this paper. The method has been
pioneered by Middleton and Goodwin [4], who used



prediction errors on the filtered joint torques to generate
parameter estimates to be used in the control law. The
controller is in fact composed of a modified computed-
torque control and a modified least-squares estimator.

Let's consider the uncertain parameters are the viscous
friction coefficients, the Coulomb friction coefficients and
the load mass. Therefore we have

9=[mp v C) vy Cz]r (12)

where 6 is the vector of the uncertain (or unknown)
parameters.

The dynamics of the robot arm can be written as

T=1(q.0)+V(q.4.0)+G(q.0)+F(3.8)  (13)
A Tinear parameterization of (13) is
J(g.0)i+V(9.4.0)q+Glg,0)+ F(4,0)= i

=Jcl@)i+Velg.9)+Gelg)+ Fe(§)+ Rig. 4. 50
where Je(.), Vd.), Gel.), Fef.) represent the known
(certain) part of the dynamics and R(g,q.g) is the
regressor matrix.

The design of the control law is based on the estimate of
the torque:

T=dz (q)i+Ve (g, G} +Ge(g)+ Fe @)+ R(q..§)8 (15)

where 8 is the vector of estimated parameters.

Now we can calculate the prediction error for the torque
from (14), (15):

o % -
-T=R(q,4.9)-(0-8)=R(q.4.9)0 (16)

~d
with 8 =6 -0 the estimation parameter error vector.

The prediction error is filtered to eliminate the
measurements of the accelerations in the control law.
First, the torque T is filtered through a first-degree filter
with the transfer function
1 —
Ts+1

i

H(s)= (17

In (17), @; =1/7 is the crossover frequency of the filter.

The filtered torque is the convolution

T, =h(t)*T(1) (18)
where A(t) is the impulse response of H(s).
The estimated torque is also filtered. We define
Te=Jc(@)i+Ve(e.)i+Gelgh+Felg)  (19)

and from (153), (19) the estimated torque can be written as

T=Tc +R(¢.4.§)0 (20)

We have:
Tep (1) =h(1)*T(t) (21)
D(t)=h(t)*R(1) (22)
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In the relations (21), (22), Tq- and the filtered regressor

matrix @ depend only of the state ¢{z) and of the time
derivative g(t ), and not of the accelerations [4].

Ter 1) =T (g(0),4(1));  @(1) =D(q(t).4(1))
Then we obtain the filtered estimated torque from (20),
(21), (22):

T) =Ty +@-6 (23)
Now we can obtain the filtered prediction error, which
will be used in the adaptation law. From (16), (18), (23)
the filtered prediction error is
=T =T (1) + @) -0 — h(1) *T(1)
The torque T can be written as
T = TC + R : 9 s

therefore the filtered prediction error becomes

r =hO)*Te (1) + () -0 — h(t) * Te. (1) — (1) - 0

=D(q(1),4(1))- 0 (25)
The adaptation parameter law is based on a least-squares
estimator [3] that it has as input the filtered prediction
error (25). The equations of the adaptation law are;

df () _dow) T
e e’ (g.q)e (1) (26)
dr
=T 0. ). )T 1) @7)
with I"'(0)=I""(0) >0. The matrix rin=rfm>0 is

the amplification matrix.

The final adaptive control law consists of the computed-
torque equation (8) and the estimates provided by the
adaptation law (26), (27):

T =il +V(q.d)+Gla)+F(3)

" " . . (28)
=J(q,0)T"+V(q,4.0)+G(q.8)+ F(4,6)
with T" given by (9).
The adaptive control structure is presented in Fig. 3.
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The least-squares estimator (26), (27) has good
convergence and stability properties [3]. A disadvantage
can be the complexity of the algorithm and the correlation
between the prediction error and the estimation parameter
error [3]. This disadvantage can be canceled by addition
of a stabilizing signal to the control law [1].

4. Neural Controllers

The advantage of a neural control technique for robotic
arms is that it avoids this a priory-modelling problem.
Although the equations of motion (1) are complex and
nonlinear for all robot arms, they have several
fundamental properties, which can be exploited to
facilitate control system design.

The proposed neural network controller is shown in Fig.
4. The ANN model is used to model the inverse dynamics
of each joint for nonlinear compensation of the robot arm
([2], [6], [11]). Control inputs to the joints are composed
of both feedback PD control and ANN control. The
outputs of the feedback and neural controllers are summed
to obtain the total control command applied at the joints.
The feedback controller is based on errors between the
desired joint states and actual joint states. The ANN
output is trained to minimize a quadratic cost function
when PD controller is used [12].

The dynamic equation for an n-link rigid robot arm in
vectorial form is

T =J(gki+V(g.9)i+Gla)+Fla)=J(aki+0lg.4) (29)
Given a desired trajectory defined in terms of joint
variables, namely (qd,qd,ijd) the next step in our
control problem is to compute the necessary torques for
the joints so that the robot arm follows the desired
trajectory. Equation (29) represents the inverse dynamics
of a robot arm; that is, given a set of joint variables
(4. cj,éj). we can obtain the corresponding torque values to
be use to drive the actuator.
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From equation (29) the robot arm’s direct dynamics can be
obtained as follows:
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J@)¥i=T-0(g.q) (30)

and then

G=J"q)r -7 (q)0q.4)=R(g.4.T) (31)

This equation refers to a nonlinear mapping from the
robot input (joint terque T) to the robot output (joint
motion). The robot inverse dynamics can be written as

T=R"(g.4.4) (32)
where the transformation R is a nonlinear mapping from
the joint coordinate space to the joint torque space.

The nonlinear inverse transtormation can be decoupled
into n less complex transformations, namely:

‘rl_l (q9 q-lo C‘])
T=R"(g.4.4)= (33)
' (9:4.4)
where  r7'(g,4.4) defines the inverse dynamics

transformation of the corresponding joint.
In practice, robot dynamics cannot be modelled exactly.

An estimated model R is used to predict the
feedforward torques and servo-feedback is usually
included to bring robustness to the overall control scheme.
The system dynamics are not time invariant and undergo
changes such as variations in payloads, changes in the
friction coefficients of the joints etc. Hence, the model

estimate &' has to be modified accordingly in order to

accommodate these changes. To achieve this, an adaptive
or a learning control element is usually associated with the
control structure. In the developed control architecture,

R~ is modelled by artificial neural networks. Each

r,”' can be modelled by a neural network such that

n'g.q.4)| [N(g.¢.4.W)
T=R"(q.4.4)=
i g.4.9)| | N,(g..4.W,)

where N; represents the output of each ANN model used

1l

(34)

to realize the nonlinear mapping ;' and W terms denote
the set of adjustable weights of the corresponding ANN.

The inverse dynamics is learned by measuring the input
and output signals in the robot and then adjusting the
connection weights vector by using a learning algorithm.

5. Computer Simulation and Comparisons

For simulation and comparisons, the planar robot arm

with two revolute joints (1)}-(5) is used. The simulation

model parameters are (SI units):

- my =10, my; =25, link masses (at the distal ends of the
links)



- Iy =1, =05, link lengths

-Vj':Vg:],C}:Cg:Z.

Mass m; consists of mass of link 2, mas, = 2.5 and mass of
payload, m, = 2.5.

The robot arm starts at position (g;=¢>= 0) and the control
objective is to track the desired trajectory given by

Gig = 0.4-sin(0,4mf); gy = —0.5-sin(0,5m)
First, the PD controller (6) is implemented. The PD tuning
matrices K, and K, are of diagonal form, with K,;=1000,
K,2=500, K,=100, K,;=30. The evolution of tracking
eITors

e=le; e =[qu-q1 G- gl

is presented in Fig. 5. We can see that the PD controller
works, but the tracking performances are not so good. The
PD - neural controller is used when the control structure
from Fig. 4 is accomplished, but we used two two-layered
neural networks with five inputs (g;,4;,4.¢;.¢; l’:ﬁ’

50 neurons in the hidden layer and one output to learn the
robot arm inverse dynamics. After the neural network
learned the robot arm’s inverse dynamics, it is used in
neurocontrol scheme for on-line control of robot arm. The
tracking errors in the PD - neural case are shown in Fig. 6.
It can be seen that the performances are improved - the
errors are smaller compared to the PD control case.

Tracking emrors lor g1 {---) and korg2( )
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Fig. 5

When the model of the robot arm is well known, the use
of the computed-torque method is recommended. The
equations (8), (9) are used and a simulation has been done
for the tuning parameters K,; = 50, K,; = 50, K,=6,
K.-=15. The time evolution of errors in this simulated case
is presented in Fig. 7.

385

Tracking erors for g1 [+ - -} and forq2( __ )

Lfs]

Fig. 6

Tracking emors forgl {--Jand forg2( _ )
01 SR SN i A .

0.08
0.06
00451 -

0.02

002;
004«
Q06+ "

008

.83

Fig. 7

The computed-torque method can be successfully used
when the model is exactly known. If parametric
uncertainties occur, an adaptive control method can be
used. The adaptive control law (26)-(28) is implemented
with the design parameters Kj,; = 50, K,; =50, K,; =6,
K2 15, w;=5 the

F(0)=[yj,- ]i:L—s, Yi; =15. The results are presented in

and diagonal matrix

Fig. 8. We can see that even if the estimated parameters

~

g =

tracking errors remains good. The profile of the estimated

[r?zp G, Cz]r are used, the evolation of
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payload s, is shown in Fig. 9. The estimated parameter

has a fast convergence to its actual ("true") value.

Tracking emors for gl |- -Jand forq2 ()
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&

Fig. 9

The imposed trajectories are preserved in the presence of
the parametric uncertainties,

6. Conclusions

Classical, adaptive and neural strategies have been applied
to the control of a simple planar robot arm with two
revolute joints. The results obtained show that the
classical PD control can be used for unpretentious
applications, but it is inadequate for precise trajectory
tracking. The computed-torque method solves the

precision tracking problem using an exactly linearization
of the nonlinearities of the robot arm model. The main
disadvantage is the assumption of an exactly known
dynamic model. If the model is imprecise known, an
adaptive control law based on the computed torque
method, with a least squares estimator as adaptation law,
is implemented. The simulation results prove that the
tracking performances are preserved. The simulation
showed that the proposed neural controller obtains results
comparable to those achieved using conventional control
strategies. The advantage of a neural control technique for
robot arm is that it avoids this a priory-modelling
problem. If a PD controller already controls a robot arm
the advantage of proposed structure is that extension to a
PD-neural controller for performances improvement is
easy.
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