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Abstract

In this paper we present the H, methodology in order to
compute the controller for a robot arm with two revolute
Joints. We consider a general method of formulating
control problem, which makes use of linear fractional
transformation as introduced by Doyle. The formulation
makes use of the general two-port configuration of the
generalized plant with a generalized controller. The H,
norm is the quadratic criterion used in optimal control as
LQOG. The overall control objective is to minintize the H,
norm of the transfer matrix function from the weighted
exogenous inputs to the weighted controlled outputs. The
advantage of H, control technique, which uses the
linearized model of the robot structure, is that it is
completely automated and very flexible. The order of the
linear model can be reduced so we obtain a low order
controller for the real structure without the loose of
performances. Finally, we prove that the closed loop
control structure has very good inner robustness.

1. Introduction

Rigid robot systems are subjects of the research in a both
robotic and control fields. The reported research leads to a
variety of control methods for rigid robot systems. The
present paper is addressed to robotic manipulator control.
High speed and high precision trajectory tracking are
frequently requirements for applications of robot arms.

Conventional controllers for robot arm structures are
based on independent control schemes in which each joint
is controlled separately by a simple servo loop. This
classical control scheme is inadequate for precise
trajectory tracking. The imposed performances for
industrial applications require the consideration of the
complete dynamics of the robot arm. Furthermore, in real-
time applications, the ignoring parts of the robot
dynamics, or errors in the parameters of the robot arm
may cause the inefficiency of this classical control (such
as PD controller). Even in well-structured industrial

applications, manipulators are subject of the structured
uncertainty, i.e. the parameter uncertainty due to unknown
load, friction coefficients and so on. When the dynamic
model of the system is not known a priori or is not
available, a control law is designed based on an estimated
model. (the basic idea behind adaptive control strategies)
or on the specific robust control methods.

The organization of this paper is the following. In section
2 the nonlinear model of a vertical planar robot arm with
two revolute joints is presented. Also we state the two-
port representation of the generalized plant for H, design.
Section 3 deals with H, control technique for the robot
arm, which represent the generalization of the classical
LQG control by introducing the so-called weighting
Junctions. In section 4 we apply the reduction for the
balanced robot model. The original and reduced models
have matching DC gains (steady-state response) in order
to fulfill all the tracking requirements. The section 5 is
dedicated to the computer simulation and comparisons.
Finally, the section 6 collects the conclusions.

2. H; Design Architecture

2.1. The Robot Arm Model

The robot arm is modeled as a set of n rigid bodies
connected in series with one end fixed to the ground and
the other end free. The bodies are connected via either
revolute or prismatic joints and a torque actuator acts at
each joint. The dynamic equation of an n-link robot arm is
given by ([2]; [8]):

T=J(g}i+V(a.9)i+Glg)+F(g) (1)
where
- T isan (n x 1) vector of joint torques;
- J(q) is the (n X n) manipulator inertia matrix;
- V(g, Q)is an (n X n) matrix representing centrifugal and
Coriolis effects;
- G(g)is an (n x [) vector representing gravity;
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- F(q) 1s an {n x ) vector representing friction forces;
- ¢,q.4q are the (n x I) vectors of joint positions, speed
and accelerations, respectively.

Fig. 1. Two link planar manipulator arm

The equations (1) form a set of coupled nonlinear ordinary
differential equations, which are quite complex, even for
simple robotic arms. Is considered the control of the
simple vertical planar robot arm with two revolute joints
shown in Fig. 1.

The elements of the dynamic equation (1) for this robot
arm with electrical motor dynamics are found to be:

2 2 2 2
J(q}=|:ll (4 m) s + 2y +Jy - ol +m3111203} (2)
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Flg)= . A (5)
vagy +C2318”(9‘z)

with ¢; = cos (q)); §; = sin (gq;);

ciz = cos (qy+ ga); §p2 = Sin (g + ¢2)

J; = moments of inertia for electrical motor i.
n; = factor of reduction gear /.

v; = viscous friction for joint i.

C; = Coulomb friction for joint i.

The robot arm starts at position (g; = 0, g» = 0) and the
control objective is to track the desired trajectories given
by a step modification in angle references or by a
sinusoidal reference trajectory. Adding the dynamic of the
DC-motors, gears and variators, we find an eight order
nonlinear equations system: the four-order robot model
(the mechanical dynamics} presented above with the states

. . T T

[ar.d1.92.02 " =1, %20 x3.x4] (6)
and a four-order actuator model (the electrical dynamics)
described by:

S X7 = Rixs—m K, x,
4
dem Xy —Raxg —n.K 50y e
Ly
x? = K\'IU(‘I _'r‘l'
Tvl
iy = K2Upa =%
L TvZ

The state vector will have eight elements:

[ql’(.]l’qi'élﬂ11912'Um]’Um2F :[.q,Aa.x3,x4,.\g,x6,x7,.rg]r

In (7) (with appropriate electrical parameters)
Uy, Ugpare the voltages supplied by the designed

controller (inputs for the general plant model).
2.2. Two-port representation of robot arm model

Generally, if we consider w = {r, d, n} the exogenous
input of the system (r for reference signals, d for
disturbances and n for measurement noises), z = {z;, za,
z3} the quality output of the system and u the control input
{controller output) and (y = €) the controller input (system
error), we have the representation from Fig. 2 (see [4])

aghiie 2t

Fig. 2 The H; controller design architecture

W, W, and W5 are appropriate weighting functions, used
in the controller design process. We consider a general
method of formulating control problem, which makes use
of linear fractional transformation as introduced by Doyle.
The formulation makes use of the general two-port
configuration of the generalized plant with a generalized
controller, The classical control loop from Fig. 2. is
equivalent with the so-called two-port representation of
the generalized plant from Fig. 3,

w—P By Pz
u Y

Fig. 3. Two-port representation of control loop




The generalized plant P, has different order (McMillan
number) and different number of inputs and outputs with
respect to the original plant, according with weighting
functions and designer strategies.

The overall control objective is to minimize the norm of
the transfer matrix function from the weighted exogenous
inputs w to the weighted controlled quality outputs z, so
the optimization problem is:

inf |Hf,. (8)
KeRH., Z
where
Hy=F (P.K)Y=Py+PyK(I—KPy )" Py )

P Ay A
By By

partitioned according to the dimensions of w, u and z, y,
respectively.

] is the original linear model of the plant

In our specific case, we propose the following two-port
control architecture from Fig. 4,

_Nwl ;21
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Fig. 4. H, design architecture
the quality outputs are:

(10)

the measurements are only the angles, and we shall
prove that this is a reasonable choice.

the controller inputs are the angular errors

the exogenous plant inputs are the angle references

the controller outputs are the command voltages

|

With reference to Fig. 3., we define
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3. H, Controller Design

We consider a general method for formulating H, control
problem, which makes wuse of linear fractional
transformation as introduced by Doyle. The formulation
makes use of the general two-port configuration of the
generalized plant presented in Fig. 3. The overall control
objective is to minimize the norm of the transfer matrix
function from the weighted exogenous inputs to the
weighted controlled outputs.

The H; optimal problem can be stated as
inf |13

KeRH, I "ll2
and is suitable for linear systems. We shall use in the next
sections only the linearized model G of the nonlinear two-
joint robot arm around the equilibrium point q; =q, =0.

(12)

For the moment we shall not consider dry or viscous
friction.

Beginning with this linear model G, we shall derive the
generalized plant Py (called also the augmented plant)
using the following general formulas:

: W, [-WG
By(s)= H[{%(S) = ng (13)

I |-G
The design of the H; controller is based on this augmented

plant matrix transfer Pyw(s). From (12) we can see that the
augmented plant can be represented in state-space form:

(14)

We can solve the H*-norm optimal control problem by
observing that it is equivalent to a conventional Linear-
Quadratic Gaussian optimal control problem. The H’
optimal controller K(s) is thus feasible in the usual LQG
manner as a full-state feedback K, and a Kalman filter
with residual gain matrix K; with following relations:

a) Kalman Filter:

F=A T+ K (y-Cy8-Dyyu)

Ky =(EC;+31D1T1 IDuD; Tl

AT + 4z - (zc + B,0] [, 0T T (5T + B,0T, T
b) Full-state feedback

u=K.%
k. =5, ) (BT P+ DTC,)
AT p+pra-(BIP+Dhe,f (04o,, ) (87 P+ DY)

S|\A=K;Cy—B,K. +K;DyK, |Kf

K(s)= (15)

C



4. Model Order Reduction

From (13) and (15) we can see that the controller order is
the sum of the original plant order and the orders of each
weighting functions. The controller and the augmented
(generalized) plant have the same order. Since the
linearized model is an eight order model, even by using
scalar weighting functions we can expect an at least eight
order optimal H, controller. From the real implementation
point of view, this is unacceptable. One can either reduce
the order of the plant model prior to controller design, or
reduce the controller order in the final stage (after the
controller design), or to use both methods.

By reducing the robot arm model order we are able to
reduce the controller order. We have three possibilities for
the model order reduction: balanced truncation, balanced
residualization and optimal Hankel norm approximation.
Residualization, unlike truncation and optimal Hankel
norm approximation, preserves the steady-state gain of the
system (which is very important in our case since we are
interested in tracking capabilities), it is simple and
computationally inexpensive. Since our controller has the
same order as the generalized plant P, eight, we shall
prove that we are able to dramatically reduce the
controller order to two. In the next we shall use the so-
called balanced realization. A balanced realization is an
asymptotically stable minimal realization in which the
controllability and observability Gramians are equal and
diagonal. Any minimal realization of a stable transfer
function can be balanced by a simple state similarity
transformation. We define the Hankel singular values of
G(s) making use of the minimal state space representation

of G(s):
G(s)=(4,.8,.C,.D,) (16)

Then
G,,(s)i(A,B, C.,D) (17)

is balanced if the solutions to the following Lyapunov
equations are equal:

AP+PAT +BB =0
ATO+0A+C C=0

P and Q are the controllability and observability
Gramians, also defined by

= P=0=diago,,04,...0,)=% (19)

A A
P=[e"BBTe" dt; 0= [V CTCMdr  (20)
0 0

The o; ‘s are the ordered Hankel singular values of G(s),
more generally defined as

b | =

A
o;=[A(PO)] (21)

Ji=loon

390

In a balanced realization the value of each o, is associated
with the state x; of the balanced system. The size of G;is a
relative measure of the contribution x; makes to input-
output behaviour of the system.

After balancing a system, each state is just as controllable
as it is observable, and a measure of state’s joint
observability and controllability is given by its associated
Hankel singular values.

Let (A, B, C, D) be a balanced minimal realization of a
stable system G(s), and partition the state vector x, of

X

dimension n, into
X

:| where x, is the vector of n-k
states which we
partitioning of A,
become

wish to remove. With appropriate
B and C, the state-space equations

=Apx, +Apx, + B

(22)

12

= Ay x; + Ay x, + By
y=Cx;+Coxy+ Du

4.1. Truncation

A k-th order truncation of the realization

G=(A,B,C, D) is given by

G, =(A1,B,,C, D) (23)

The truncated model G,is equal to G at infinite

frequency because

D (24)

but apart from this there is little that can be said about the
relationship between G and G, .

An advantage of model truncation is that the poles of
truncated model are a subset of the poles of the original
model and therefore retain any physical interpretation they
might have.

4.2. Residualization

In truncation, we discard all the states and dynamics
associated with x,. Suppose that instead of this we

simply set x2 =0, i.e. we residualize x,, in state-space
equations. One can solve for x, in terms of x;and v and

back substitution of x, , then gives



o

X1 =(A11 "A12A521A21 ) X +(Bl - Aleglez)'“

(25)
v= (C1 _CZAZ_ZIAZI)'xl + (D - CzAz_lez)‘ u

Let assume A,, is invertible and define
- 1
A=Ay — Ap A Ay
A

B, =B, - AyAxnB, (26)

<
4

C,=Ci = CyAnAy

A
|D,=D~CyA5 B,
The reduced order model

G,(5) ;(A,,B,,C,, D) (27

5
is called residualization of G(s)=(A, B,C, D).

In our case, we find the following Gramian for the
balanced system:

I =diag(2.3946,0.1945,0.0001,0.0001,0,0,0,0)  (28)
It is clear that we keep only the first two balanced states,
the remainder elements having no importance in the input-
output system behaviour. It is necessary to detect the
physical signification of these two principals states by
computing the power of the state signal:

x=Tv= xg X, = Tz

Retaining the first two elements of the balanced state,
xgxb = X)) + xp, =74y + T4y} (29)
It is clear that only the states [v, x,]=[g, ¢,]. the

measurement outputs, are important from the input-output
point of view because these states appear magnified in the
two main components of the balanced reduced order state
vector. It follows that we can use for design the second
order balanced reduced model of the robot arm.

5. Controller Design, Computer Simulation
and Results

With reference to Fig. 4., we chose
1

W, =10% %
0

0 (30)

and from (15) we obtain a four-order H; controller.

In this moment we are able to test the control system
performances, The tracking capabilities are tested for step
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angle references and for low-frequency sinusoidal angle
references. In order to prove the inner robustness
properties, we apply a strong step modification for mass
m,, simulating the real manipulator function of robot arm.
The simulation results are the following (neglecting the
dry and viscous friction):

a) Step response. The system has the initial position
q  =q>=30°and we apply step

| reference
1 =q5 = 60°. (angle in radians).

a

q

From Fig. 5 we observe a very good behaviour of the
control system. Both robot arms are driven in the desired
position in less than half second, with no overshoot. The
evolution of current intensity of DC-motors (actuators) is
represented in Fig. 6.

The next simulated experiment is presented in Fig. 7.
using different low frequencies for the two robot arms.

angle reference slep modification from 30 1o 60 degrees

gy

I
1.2t
1.1

i
[
1
!

0.9 feferf_e_nce_ ] 1 :
TN

0.8 I i ; - robol arm trajeclory

07 - -]

0.6-

05l

1 2
Time {Seconds)

Fig. 5. Step reference angle trajectory

0

angle reference slep modificalion from 30 lo 60 degrees

current evolution [A] |

25
20 ¢

m2 slep modification _ .
from 2.5 Kg to 10 Kg

T

N

4

3
Time {Seconds)
Fig. 6. Step reference DC-motor current evolution



b) Low-frequency sinusoidal references; We apply a
g, =30° -sin(r)

sinusoidal reference |
g, =30 -sin(2¢)

angle response to sinusoidal references [rad)

06[ - S e SRS
0.4 i - ‘ : d ' P e f:l 1o |
i IS J ‘;’ 7 : l! ' ‘!|
i fed  Ggp b bt R
Q2 A bof Wil 2 0 g%l e e o AE <
i [ I R i |I i oo
AR Py il
LS A SR S S M Y W M
oo P L TRR
RS S i i { I,‘?
020 - - by R N VOO T
SRR AN AR R R S &
1 ‘ i ] “
0.8 5 = el gt J--J|
o6l ... ... P SIS R a
0 2 4 6 8 10 12 14

Time (Seconds)

Fig. 7. Angle response to sinusoidal reference

current ewolution to sinusoidal references

BT w ohe 2o ‘ A R ]
4 |
3 -

mass m2 step. modification
23 RS from 2.5 Kg to-10 Kg - -
! |
1 7 4
i » 1
Qi | . 8
-1 =
o 2 4 6 8 10 12 14
Time (Seconds)

Fig. 8. Current evolution to sinusoidal reference

6. Conclusions

In this paper we presented H, methodology for designing
a reduced order controller for a two-joint robot arm.
Starting with the nonlinearly eight-order model, we

proposed the following methodology for the controller
design:
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- Obtain the linear model from the set of nonlinearly
differential equation around the equilibrium point
9, =92 =0.

- Obtain the balanced realization of the linear model in
order to compute the reduced order model using
balanced residualization. Starting with an eight order
linear model we find a two-order reduced model.

- Compute the H, controller using appropriate
weighting functions. In our case, we do not use W,
and W, is chosen a scalar matrix only for
methodological reasons.

- Test the control system behaviour for evaluating the
tracking performances.

Following these steps, we found a four-order 2x2 H,
controller with very good dynamical performances. The
command voltages (controller outputs) are limited to 100
V. Simulating the input step response, we obtain a very
good response, with no overshoot and less than half
second transitory time. The low-order frequency response
is also very good, with no important phase lag. The
control system proved a good robustness performance,
tested by step modification of the mass ms, simulating the
real function of the gripper. Other research direction may

include the H, controller design in presence of dry
friction.
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