399

Cooperative Control of Mobile Robots Based on Petri Net
Hideharu KASHIMA, Ryosuke MASUDA

School of Information Technology and Electronics, Tokai University

1117 Kitakaname Hiratsuka-shi Kanagawa, JAPAN
E-mail: masuda@tokai.ac.jp

Abstract

A simulation and control method for multi-mobile
robots based on an event condition system is described.
The cooperative behavior of robots is expressed using an
extended Petri net that uses events, conditions, and
special interconnected arcs. Petri net representation is
used for the lower-level control of single robot motion,
and unified Petri net representation is used for the
upper-level control of multi-robot cooperation. Both
representation and control are carried out by a Petri net
tool that uses a client/server system connected to an
Ethernet.

The effectiveness of this technique is confirmed using
Sundamental experiments on cooperative motion with two
intelligent mobile robots that have a multi-sensor system.

1. Introduction

Recently, there have been many studies carried out
on the cooperation of multiple mobile robots, and
various types of control methods have been proposed.
However, there is still no standard representation for
multi-robot cooperation, and thus researchers continue to
use their own representation methods. Therefore, we
believe it is worthwhile to develop a control method for a
complex total system that can handle control problems
related to single movement, cooperative motion,
collision avoidance, etc. A unified system representation
and a control method for multi-robot tasks in which
“task sharing” and “cooperation” are included are
necessary. In the past few years, attempts have been
made to design an automation system by using Petri nets,
which was developed for the modeling of a parallel
information processing system [1] to be used as an
interface between humans and robot systems. Hasegawa

et al. proposed a practical representation method for

automation and robotics [2]. Koyama et al. proposed a
simple but higher-level control language called “cell
language”[3]. C. Renji et al. used Petri net for the
cooperative assembly by multi-agent system [4]. Iwai et
al. were working to develop effective motion planning by
using several features of graph representation [5]. Most
of these applications were developed for planning of
simple task. In this paper, we propose a practical
and control method for multi-robot

planning a

cooperation system using Petri net [6].

2. Representation of Robot Motion

by Petri Net

A multi-robot system is considered to be an
event-condition system. All of the motions and
tasks are decided according to events and
conditions. An event is an action that is
generated in a system, and the activation of an
event is managed by the system conditions. To
generate a new event, it is necessary to establish
a specific condition. The unique features of

multi-robot  cooperation are asynchronous,
sequential, and parallel characteristics. Petri net
is capable of representing all of these

characteristics effectively. An event can be
activated if and only if all of the preconditions are
satisfied and all of the post conditions are
satisfied. That 1is, the asynchronous
sequential conditions. In Petri net, multiple
conditions may be activated simultaneously, and
each event can be individually generated to
transfer multiple tokens through each event.
Furthermore, Petri net has the ability to
represent the concurrency with which the change
in conditions related to multiple events is decided

and



according to the timing of the occurrence of these
events. Using these special features, Petri net can
be used as a multi-task Tuling machine. As for
the robot system, place (condition) represents the
state of motion, and transition (event) represents
the change in robot motion. Therefor, the
holding of robot motion is shown by the token on
the place, and the task sequence of a single robot
is graphically represented by the flow of tokens
through the events, By combining this single
robot net, cooperative motion of multiple robots
can be made possible.

i

EventE (touching)

State motion II

(O
O

Sensor state$
(touch wall)

State motion I

®
(®

Sensor statey
(find wall)

Fig. 1 Petri net representation

signal

Searching i
éetected

Approaching

Touched '\I]

Fig. 2 Petri net for pushing box task,

Waiting

Finish

Fig.1 shows a fundamental Petri net. In this figure, a
condition (place) is represented by a circle, an event
(transition) is represented by a bar, and holding of the
condition is represented by a black mark called a token.
If the input
are satisfied, an event E is

Each element is connected by directed arcs.
side conditions (I and ¢)
activated, and as a result, new output conditions (I and
{>) are established.  This activation of an event is called
“fire” or * firing”, and the tokens are transferred to
output side conditions. The condition ¥¢ can be
thought of as a control signal from a sensor system,

400

and the state motion II can be thought of as an output
to the control system.

As an example of a robot task, think about one robot
being given the task of pushing a box. In this task, if
the robot finds the box while searching, it starts to carry
the box to the goal position. This task can be represented
by the Petri net, seen in Fig.2. In this Petri net, total
motion is decomposed into four simple motions and
aligned in a fixed order. When a robot is under the
condition of “searching” and given the condition of “find
a box,” the event of motion is activated to move the
token and then transfer to the condition “following a
After touching the box, the robot pushes it to the
goal point, and then the task is either in the “end of

k1]

box.

pushing” or “standing by” state.

2. Cooperative Control using

a Multi-Sensor System

Here, we describe the task of pushing a box with two
robots. For the representation of the cooperative task
motions, the inhibiting arc and the enabling arc are added
to the fundamental Petri net. By using this extended
Petri net, the interaction with two robots can be clearly
represented. Fig.3 shows the Petri net representation of
the cooperative robot motions. This net shows an
exclusive robot motion in which the motion of one robot
is inhibited, while the other robot pushes the box. The

box is pushed by the two robots, one robot at a time.

Taskof robot 1

_Task of robot 2

Fig.3 Pushing a box using two robots by exclusive control.

The cooperative task is represented by the exchange of
the information between individual tasks. When the
cooperation task is finished, the tokens are transmitted to



each part, and the individual task will start again.
Using this method, the task can be executed on the graph
as a simulation. The firing of the event is determined
by investigating the sensory signal of each robot. At
the time of token transmission, the message from the

robot controller is transmitted to the Petri net.

4. Control System based on Petri Net

We have developed a method to represent the sensory
control motions of a single robot [2]. But here, a new
control method is utilized, because when the usual Petri
net is used to represent a multiple robot cooperation
system at every control layer, the net may be too
complex to be managed by a designer. So in this
approach, the system is decomposed into a robot part and
a cooperation control part. The advantage of this method
is the fact that the robot controller side and the Petri net
side are perfectly independent of the cooperative control
even though the robot controller is also written using the
Petri net. Therefore, the exchange of information
between the net and the robots is carried out using a
“message.” Petri net describes the sequence of the task
and collects information regarding the system condition
from which the token departs and the other condition to
which the token reaches. The Petri net also sends the
command to the robot controller as a “message”
according to the transformation of the tokens. The
controller uses this information to change its action, and
then sends back the occurrence of events judged from
sensing of the situation. After receiving the command
from the Petri net, the robots can be controlled using a
simple rule based on reflective motion. By repeating the
exchange of such information, the Petri net can manage
the complete cooperative task motion of the robots.

Petri net can be used for the description of task
motions as well as for communication tools between
robots.  One unique feature of a Petri net is that it has
the flexibility to apply to any type of robot. Once a
certain transition such as pushing a box is allotted as a
robot motion, only changing the lower level control rule
of an individual robot can make it possible to begin use
of a new type of robot. This method can be applied to
any type of multi-robot or multi-sensory control system.

For the mobile robot (Khepera) used in this study, we

401

use a subsumption control architecture. Based on the
rules shown in Tablel, motions B1 and B2 were defined.
The reflective motion shown in Table 3 was activated
according to the sensing information given in Table 2,
Here, the avoidance action while moving forward to the
goal position (B1 = AVOID, B2 = FORWARD) is given as
the fundamental motion. This robot has eight proximity
sensors, two touch sensors, and two light sensors,
Suppose that the robot recognizes the number of
proximity sensors that output the maximum signal,

1 = max (proximity data). This sensor is considered to
The robot
can then choose the motion listed in Table 4 (this case,

H_AVOID) and send the drive signal to the wheel drivers.

be located at the position closest to the wall.

Table 1 Examples of motion for each transition.

Motion Expression
B1 Follow the light { Bl=H_AVOID
with avoiding B2=F LIGHT
Follow the light B1=F_LIGHT
B2 with pushing B2=PUSH
Move forward B1=FORWARD

Table 2 Sensor and detected information

Sensor Detected information

Proximity sensor proximity_data=“0,0,394,540, - 7
(Surrounding 8) 0 (far) ~1023 (close)
distance within 2cm for white paper

Photo sensor light._data = “500,500,230,240,---"

{center 1) 0 (intense light) ~500 (no light)
Touch sensor push = 0 (non touch) ,1{touch right),
(front bothside 2) | 2 (touchleft), 3 (touch both)

Table 3 Sensor processing and related motion

Name Sensor processing Motion
H_AVOID I=max Act sensitive for
(proximity data) avoiding
PUSH if push=1 then Pushing a box
move=right
if push=2 then
move=left
F_LIGHT J=min(light_data) Following
LEFT Non Going right
RIGHT Non Going left
FORWARD Non Going forward

At the initial state, if the motions are defined as “B1 =
AVOID” “B2 FORWARD,” then the robot
proceeds forward and is able to avoid obstacles that it
detects. In the Petri net, either B1 or B2 is selected
depending on the transition of the token.

and



The motion of the robot can be determined by allotting
the subsumption relation of Bl and B2. Before finding
the next condition, the robot moves according to the
command given previously.

Table 4 Example of “H_AVOID”

Number of maximum | Command Motion
detecting sensor I to robot

. No change
0 "D.4-2" | Turn right slightly
1 "D,8,-5" Move forward right
2 "D,5,-5" Turn right large
3 "D,-5,5" Turn left large
4 "D,-5,8" Move forward left
5 "D,-2,4" Turn left slightly
6 "D,8,8" Move forward fast
7 "D,8,8" Move forward fast

Touch sensor

Wheel

Encoder

Wheel
Encoder

Fig.5 Sensor allocation of the robot.

In the robot control system, the occurrence of a
condition represented by the generation of tokens, is
dependent on the system’s sensing information. Before
beginning a task, the data base is created using the
sensing data from Table 1. The controller that actually
controls the robot must not only control the robot but
also determine the timing with which to fire the events in

order to generate the token for the next state.

5. Simulation System

A cooperation task can be simulated when the Petri
net representation of the total control system has been
completed . The reason behind the occurrence of an
inappropriate behavior or the generation of a deadlock

state can also be checked through a simulation.

402

; T
T ug
’\g,:,g;f;;:a“,;x =
e

ST betavior 00 52 bahaviop WD

Cieoveriressen A

I

' 1 2
e 190 VSR e i
T AT e

Fig.6 Petri net tool and robot controller.

Fig.6 shows the Petri net tool we used in our research
[4]. This system carries out the total task simulation by
manually transforming the tokens one by one. The upper
part of the image in Fig.6 shows the Petri net server that
is connected to the TCP/IP by more than one robot, and
the lower part of Fig.6 is the display image of a robot
client. Each robot should have sensor conditions, a
subsumption structure, and transmission control of
messages from the robot to the Petri net.  Actually, the
debugging process in which deadlock analysis and re-
design are included, and the implementation process are
carried out by utilizing the system with Petri net in the
same manner.

The process for control design of a robot system from
the method described in this paper is as follows,

(1) expression of motion

(2) selection of sensor information

(3) simulation (deadlock analysis and re-design)
(4) allocation of control signal

execution of a task

&)



khepera/place=hakken hakonifureru
/Trans now=kaihi,next=osu

Fig.7 Information transmitted between the robots
and the Petri net controller.
Table 5 Massage contents.

403

Actual motion ;a |,
Next condition to do ;b

place/now=a,next=b

Actual motion;c ,
Next condition to do ;d

trans/now= ¢,next=d

Fire->T_NAME Next firing transition

(action) ;T_NAME

The designed Petri net is connected to a client/server
system by an Ethernet. In other words, each robot can
get information regarding the task by connecting a robot
When the

robot determines that the tokens for the condition can be

client (controller) to a server (Petri net).

transformed using the sensor information, the event
named “T_NAME” is forced to fire by inputting the
As a
result, the conditions that must be done now and checked
next, given by the message.
now=hakken next=fureru /Trans now=kaihi next=osu”

command “Fire—>kaihi” to the Petri net server.

are “Name/place
The total task is completed using this continuance. The
robot client must have the knowledge base necessary to
recognize changes in conditions from the sensor
information in advance.

Execution of the cooperation task can be shown to be
possible if an experiment on the unity robot task is
successfully conducted using the Petri net because the
system is not dependent on the number of the robots.
Even if the number of robots increases, there is no need
to make drastic changes in the control system.

6.Experiments on a Cooperation Task

We conducted an experiment on control for the task of
pushing a box by using a Petri net with a single robot.

An experiment on the cooperation between two robots
was also conducted. The robots used were both
intelligent mobile robots (Khepera) that have eight
proximity sensors, two photo sensors, two touch sensors
and, two encoders. The robot was surrounded by a
white wall measuring 30cm x 50cm, and on the working
plane there were two Scm x Scm white cubic obstacles,
and a cylindrical object (in the task description we call it
a “box™) 6 cm in diameter with a light source.
The Petri net expression for a single robot is shown in
Fig.9. The robot was made to act based on this Petri net
expression, and by using the token flow in Petri net, it
was possible to observe the intended behavior of the
robot,

This net was designed for the task of finding a box,
avoiding obstacles while following the box, pushing the
box to the goal, leaving from the box, and stopping .

obstacle 1

bax

pushing

obstacle 2

robot

Fig.8 Task of pushing a box by single robot

find a box

avoidance

finish pushing

Fig.9 Petri net of a single robot task

The robot began to move forward, beginning with the
condition of “looking for a box.” After the light
was found a “following a box” action was started
according to the flow of the token in the net, and the



obstacle was avoided while moving. The task of
“pushing a box” was conducted until it changed to the “it
is pushed” action and the value of the encoder reached

the setup value.

Looking

cooperation
Petri net of a cooperation task

Fig.10

Next, the same task was done using two robots,
Fig.10 shows the Petri net representation of the
cooperation task. The robot began from the state of
“pushing a box™ after moving a given distance judged by
the encorder, the token was transmitted to the next state,
and then the action of “leaving from the box” was
observed. In our experiments we were able to
effectively express the cooperation behavior, and this
expression enables us to control the cooperation
behavior.

The results of the experiments and consideration for
them are as follows. For each fundamental motion and
cooperation task, we made experiments ten or more
times. Most of the trials the tasks were completely
executed, but a few percent of the trials could not
reached to the goal. The task failures that the transition
did not fire were caused by,

(1) miss-recognition of condition by proximity sensor.
(2) Measurement error of encoder counter.
(3) Communication delay to the server.

These points are the next problems to be solved.

7. Conclusion

A technique for expressing the cooperation behavior
of a multi-mobile robot with a multi-sensor system by
using Petri net was described. The work to describe a
program to compose the behavior of the robot was
substituted for the work to construct a net intuitively by

404

this method. In addition, we found that it was effective
to consider the lower-level control of a single robot and
the higher-level control of cooperative action separately.

Fig.11 Experiment of cooperated task

This finding is applicable to behavior planning with
obstacle avoidance for mobile robots and cooperation
task planning for multi-robots in a general environment.
We have shown that it is possible to describe
control with a behavior-based approach of Petri
net. The treatment of larger numbers of events
and the use of sensor fusion processing to
recognize a condition are problems left for the
future work. Therefore, a sensor that has larger
amounts of information (for example, a vision
sensor or a range sensor) will be necessary to
make cooperative control by Petri net more
effective.

References

[1]]. L. Peterson: Petri net Theory and the Modeling of
Systems, Prentice Hall (1981)

[2] Koyama ,Miyake: Development of FA Cell Control
Language by using Petri Net, Journal of the Robotics
Society of Japan(RSJ),Vol.17,No.5,pp649-657 (1999)

[3]1C. Renji et al. : Cooperative Assembly Algorithm of
Multiple Distributed Agent Based Robotic System,
Proc. on 30" ISR, pp.545-552 (1999)

[4] K. Ishii, N.Hiyama: Motion Planning of a Mobile
Robot with Petri Nets, proc.of 17"RSJ, pp605-606
(1999)

[5] Hasegawa, Masuda et al.: Proposal of Mark Flow
Graph for Discrete System Ceontrol, Proc. of SICE
Vol.20, No.9, pp.122-129, (1984)

[6] Kashima, Masuda: Cooperation of Multi-mobile
Robot by Event Driven Control Theory, Proc. of
Robotics Symposia Japan, Vol.2, pp713-718, (1999).

[7] Petri net simulator:
http://home.arcor-online.de/wolf.garbe/petrisoft.html



