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Abstract: In this paper mobile robot control laws in
discrete time, including obstacle avoidance based on
distance sensorial information are proposed. The mobile
robot is assumed to evolve in a semi-structured
environment. The control systems are based on the use of
the extended impedance concept, in which the relationship
between fictitious forces and motion error is regulated. The
fictitious forces are generated from the information
provided by ultrasound sensors on the distance from the
obstacle to the robot. The control algorithms also prevent
from the potential problem of control command saturation.
The paper includes the stability analysis in discrete time of
the developed control systems, using positive definite
potential functions. The algorithms are tested on Pioneer
mobile robot.

1. Introduction

Mobile robots are mechanical devices capable of
moving in some environment with a certain degree of
autonomy. The environment can be classified as structured
when it is well known and the motion can be planned in
advance, or as partially structured when there are
uncertainties which imply some on-line planning of the
motions.

During the movement in partially structured
environments, an obstacle can suddenly appear on the
robot trajectory. Then, a sensorial system should detect the
obstacle, measure its distance and orientation for
calculating a control action to change the robot trajectory,
thus avoiding the obstacle,

In this article it is used the concept of generalized
impedance which relates fictitious forces to vehicle motion.
Fictitious forces are calculated as a function of the
measured distances. A similar concept for a generalized
spring effect in robot manipulators is presented in [5]. An
application of the impedance concept to avoid obstacles
with robot manipulators has been presented in [4].

The control architecture presented in this paper
combines two feedback loops: a motion control loop [7]
and a second internal impedance control loop [3]. This last
loop provides a modification on target position when an
obstacle appears on the trajectory of the mobile robot [6].

Main contributions of this paper are the design of
stable motion control laws in discrete time that include the
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actuators saturation problem; the design of a motion
control structure for obstacle avoidance and its
corresponding stability analysis; and the performance test
of the control algorithms on a Pioneer mobile robot.

The paper is organized as follows. After this
introductory section, section 2 describes the kinematics
equations of an experimental robot; section 3 presents the
control problem formulation; section 4 defines the fictitious
force for distance feedback; section 5 presents the
proposed control algorithms including their stability
analysis; section 6 describes the results; and finally, section
7 contains the main conclusions of the work.

2. Kinematics Equations

Consider the unicycle-like robot positioned at a non-
zero distance from a goal frame <g>. Its motion towards
<g> is governed by the combined action of both the
angular velocity @ and the linear velocity vector u, which
is always directed as one of the axes of the frame <a>
attached to the robot, as depicted in figure 1.
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Figure 1. Position and orientation of the vehicle.

Then, the usual set of kinematic equations, which
involves Cartesian position (x,y) of the vehicle and its
orientation angle ¢ are



Xia1) = Xy Ty - T - cos@y,

Yest) = Yoy T ey T - Singye ()

Beary = Py T D T

where i, is the magnitude of u, and x, ¥ and ¢ are all
measured with respect to the target frame <g> origin and x-
axis orientation and T is the sample time.

Now, by representing the vehicle position in polar
coordinates, and considering the error vector e with
orientation 6 respecting to the x-axis of frame <g>, as well
as by letting a=08-¢ be the angle measured between the
main vehicle axis and the distance vector e, the above
kinematic equations can be rewritten [1].
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3. Problem Formulation

Let us consider the kinematic model of the mobile
robot given by equation (2). The main characteristics of the
control problem are:

1. The objective to be reached by the mobile robot
itself (the target frame <g>). The problem of reaching the
target frame can be formulated in two different ways: the
first one is in terms of a desired motion trajectory and the
second one is in terms of the target position (in this second

‘situation we can additionally consider a desired final
orientation 6=0).

2. The dynamic relationship (mechanical impedance)
between the position error and the interaction force F(k)
acting on the mobile robot. In this paper, F(k) is a fictitious
force generated from the distance information coming from
the exteroceptive sensors (ultrasonic sensors).

Then, the problem of motion control corresponds to
the design of a controller that drives the mobile robot (the
unicycle-like vehicle) to the point of coordinates e=0 and o
=0 (and additionally consider 6=0) starting from any non
zero distance from the target frame <g>. The path
following is a particular case of motion control in which
the target frame <g> is moved on a prescribed path.

The problem of impedance control, in addition,
corresponds to the design of a controller that, after
detecting obstacles in the robot working environment,
momentarily modifies the target position in order to avoid
these obstacles.

4, Sensorial Distance Feedback

The regulation of the mechanical impedance needs
some feedback of the interaction force between the robot
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and the environment. Interaction forces imply a physical
contact with the environment, which, in the case of mobile
robots, generally represents a collision. In order to avoid
obstacles, it is necessary to interact with the obstacles
without collision. Thus, the interaction force F(k) is
represented by a fictitious force generated as a function of
the robot - obstacle distance, as shown in Figure 2. The
force F(k) has got two components: F.(k) is the
perpendicular component and F (k) the longitudinal
component to the robot movement.

The trajectory change associated to the obstacle
avoidance is performed by using the impedance concept,
for which the mechanical interaction has been substituted
by a distance and non-contact interaction taking into
account the distance from the robot to the detected obstacle
[4].

The magnitude of force F(k) is computed as [2]

Fk)= a—b-[d(k) —a’min]4 (3)
where
are positive constants, such that

a—b-(dmax—dmin)' =0

dmax  Is the maximum robot-obstacle distance measured by
the sensorial system;
dmin Is the minimum robot-obstacle distance measured by
the sensorial system; and
d(k) s the robot-obstacle distance (dmin < d(k) < dmax).
Y\\/ X
<g>

Mobile Robot

Figure 2. Action of the fictitious force F(k) on the mobile
robot.

Figure 3 represents the block diagram of the proposed
control system, where, in Cartesian coordinates,

xXq is the desired (xg,y4.¢) position vector ;
W is the rotation angle; and

X is the position error xg-X.

ey is the modified position error;

5. Control Algorithms

One typical problem when implementing a controller
is that of the practical range of control actions, If not
considered in the theoretical design, possible saturation of
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Figure 3. The block diagram of the proposed control system.

actuators will occur and, in such a case, the design
performance of the control system can not be guaranteed to
be attained. In this section controller saturation is taken
into account without a considerable additional calculation
effort. Out of the three variables e, & and & the former is
considered critical in terms of saturation because it directly
affects the linear velocity w. Thus, in the theoretical
development of the controllers, u will be guaranteed to be
bounded within prescribed limits,

The mobile robot is a continuous-time system and the
controller is developed in discrete-time. The Lyapunov
candidate function and its derivates are proposed in
continuous-time, but the analysis is made in discrete-time.

For example, if V) =g(, and Vi) =2q,q are the

Lyapunov candidate function and its derivate in continuous
time, then its discrete time expressions are Vi = qé) and

Vieen =Yio) = 2400 ey = 9001 )-

5.1 Motion control I: Positioning without
prescribing orientation

Let the unicycle-like vehicle be initially positioned at
any non zero distance from the target frame <g> and let the
state variables be e and e, assumed as directly measurable
for any e>0. Let us consider the like Lyapunov like
candidate function

1,5 1, :
Vi =g he by dy St f20 “)

The discretized expressions for its derivate is given as

forward difference [‘]V(k ) _V(k)Jalong the trajectory

described in (2),
Vieey =¥y =h 'f‘u)(e(m) ~ ) )+ a(k)(a(kn) - am)

V[k+|] = V(” = —u(k] hT e(k) COS(alk})
sin(a ) (3)
(k)
Wy @y THugy oy T
)
The first term in the second member of (5) can be
non-positive by letting the linear velocity iy, have the form

Uy =¥ tanh(e(‘,))cos(a(“)l with y >0 {6)

It is clear that y = ‘u . According to the velocity uy, in

max
(6), forward difference in (5) becomes

Vien =V =hr T e,y tanh(e{k))cosz(a(k))— Oy Ey T
b4 T%—) &) sin(am)cos(a{k])
a1

(N
in which the second and third terms in the second member

can also be made non-positive, by letting the angular
velocity @y, have the form

tanh(e : ) .
D) =0 Ayt m‘““(am)‘-‘os(“m) (8)
(%)
withg >0, !(gnm‘=o‘-n+y.0,5, and thus leading to the

following expression for the forward difference of the
original Lyapunov like function.

Vie) =Viey =7 £ T ¢ tanh(e(k))cos2 (am )— oay T

e(k)

— 0 when &k —>w
alk)

AV(e,a)<0:>{
which results in a negative definite function. This means
asymptotic convergence to zero of state variables, thus
verifying the control objective.

Now it is important to analyze 6 in order to know
about the orientation of the mobile robot when it reaches
the target position.

Remark 1: Considering ey, in equation (2) and the
equation (8) and (6) we have

Xigay) = a(k)(l ~To)
The solution is
=gy explkT(1-7 o) 9

that is bounded for all k if (T o>1)and tends to zero as k

tends to infinite. Now, by referring to equation (8), it
becomes clear that @(k) — 0 when k — .
Remark 2: From (2) and (6)




Bty — O tanh e,
Leet) M) =g T MW g @y cosay,
T e
(&)
As @, —0 when k—oo then (g, _g(k))9 0

when k- w.
Remark 3: In the system equations, considering that
tanh ey, <1, We can write

€l

¥yT .
By L0+ 5 5111[2 a(k)]

which solution in k=N is

sin[Z &) ]+ sin[Z ) cxp[T(l -c T)]]+ e
By <60y + % -+ sinf2 g expl(N-2)7 (1o T)]]+
i+ Si“[z gy expl(N -1)T(1-o T)]]
(10)

Considering the series development of sin function,
then the sum of (10) is bounded by

2, _l(zau)3 + 1 (2‘20)5

1-p 31-p° 31-p°
1 (27a0)2u+1

(2n+1) 1_p’(2n+])' +...
(11)

8(N)<6(0)+yT-

+(-1)

with p=exp[T(1-oT)].

The sum is bounded for all N. This implies that &, is
bounded.

From remark 2 and remark 3 we see that 6y, —
constant when k—co. Then, the final value of the robot
orientation when approaching the target position is
constant, which means that the robot does not keep rotating
about its own center.

Remark 4: As oy =6y - @n and o and & are
bounded as shown in remarks 1 and 3, then ¢ is also
bounded.

5.2 Motion control II : Positioning with
prescribed orientation

Let again the unicycle-like vehicle be initially
positioned at any non zero distance from the target frame
<g> and let the state variables be ¢, & and «, directly
measurable for any e>0. Let us consider the Lyapunov like
candidate function

1, » 1 1, .
Viy = 5 ey + 5 @i+ 165 L)
with A, j > 0. Its forward difference (V{RH) —V“,))along the
trajectory described in (2) is given by

Ve =V = b el =€)
et~ [+ OB =]

View = Viny =~y h T ey cosleryy)

sinfay)) sinfery)
~Ou G T+ ayy T———= jTuy) Oy
) i)
(13)

The first term on second member in (13) can be non-
positive by letting the linear velocity u, have the form

|u{k) =y tanh(e[k})cos(am‘)] with y >0 (14)

where y =y |. According to the velocity wuy, in (14),
}’ Miax g y )

forward difference in (13) becomes

Vi = Vi) =—7 hT e, tanh(e,) Jcos? ()

tanh(e(k))

oy ayT+yT Ay sin(a(k))cos(a(k))

()
E’lh(e(k) )

'—j ]/T 5 9(“ sin(a(k))COS(a(k))
€k}

(15)
in which the second and third terms in the second member

can also be made non-positive, by letting the angular
velocity @, have the form

i) _t.anh(e[k] )

@) =T Oy +o-;; +y " sin(a(k))cos(a(k])
k
tanh(e : ) sin{e;,
a e(;“‘—)— % _cfu-:”) cos(a“.))

(16)

O =rrto vyt joy05;

With r,o> D-s |
and thus leading to the following expression for the
forward difference of the original global Lyapunov like

function

1/“.”) - V(“ =—h- ¥ T- €(k) . tﬂnhe(k) * {3052 a(L)

-

era(,\)—O'TQé)<0

elk)
AV(e.a,8)<0=<alk)> 0 when k >0
o(k)

which results in a negative definite form. This means that
the state variables asymptotically converge to zero in
accomplishment of the control objective.

The control action of equation (16) cannot be
implemented for a=0. To avoid this problem, we propose
the use of a lower bound for this variable in the first term
of (16). It is now necessary to verify that the stability
conditions are kept.

a

Adding and subtracting the term [0-.9_} where

@,



Xy =0 -sign(cx(k)), 8 > 0, equation (16) can be rewritten as

a,—a
Wy = Oy + T G| (k)J
(%) ok (£)
@ |:au "y

where @qy, is the expression of (16) with o in the first
term, and

2 a — Xy . | S
_ Cz)n{k) +o -9“_) l: (J if ia(k)! >0

From equation (17), three cases can be analyzed.
Case I: ‘a(k)i >§ : Here a,is equal to gy, , then
I

‘/(k+l)_1/(k) *h-}f-T-e(kJ-tanhem-cos“am

which leads to the situation already analyzed.
Case Il : ?a(k)‘ <4 and gy # 0 : Forward difference

becomes
Vieny=Viy=—h-y T -¢-tanhey, -cos” Ay

%)

,r.T.a(gk)_o'.T.g(i).

0
In this case (< @y @, <1 thus implying that forward

difference is negative definite and asymptotic convergence
of control errors to zero is again verified.

Case III : Evolution of #&k) when au=ay.1,=0. In
this case

(21
ocT (%)

85y =0
PR
thus it is not evident the convergence to zero of signal &%).
We can now recall the LaSalle’s theorem for autonomous
systems [8] by noting that:

1. The system is autonomous.

2. There exists a set

Sle,0.)1AV = (V. ~ V)= 0-

3. If AV =0, it means that g(k)=0ande(k)=0.

From equations (2) in closed loop

G(M) —9(,\_] <yT sin(a(k))cos(a{k,)

when ayy =0 %lg(w Agmjz 0 which means &%)
=constant.
4. Now we can obtain the constant value of &%) in
the set 8. From equations (2) in closed loop, when
a(k)=0and e(k)= 0 and consequently g{k+1)=0
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The right choice of constants makes the second equilibrium
is found outside of natural work interval [-m;n]. Following
La Salle theorem, this means that control error signals
converge asymptotically to zero.

As a general conclusion and since for the three cases
the error signals converge asymptotically to zero, the
control objective is guaranteed for the controller with
bounded w, control action.

It is immediately concluded that Oy = { in S.

5.3 Impedance Control
The desired impedance Z,, is defined as

Ziy=Bz+K
and the impedance relationship is taken as

(18)

_ -l
Yoy = 2y B

where
B, K are positive constants;
i () is the magnitude of F (fictitious force) on z-domain.

Xaz 18 the change in the movement objective of the robot.

Constant B represent a damping effect and K a spring effect
in the interaction between the mobile robot and the
obstacle.

By referring to figure 3, it is taken

W =X, sign(Fr,))

where F,, is the component of F (fictitious force)
perpendicular to the direction of robot movement. Then,
the transformation

cosyy  seny ()
R, =|—seny cosy 0%

0 0 1

is applied, where the position error is X =X, —X_ and

When the

fictitious force is zero, x,. = xg, and the objective of the

the new position error is X, =X, —X,.

motion control loop is achieved, meaning that X — 0 as

k — o . The Cartesian to polar coordinate transformation
is performed through

e=yx,—x.) +(3s - v.)

n= aran3[(yd = e = xc)]

where : x.'=[x. y. @] is the vector of Cartesian coordinates



of the robot, xg’=[x, ys @i is the vector of Cartesian

coordinates of the destination position and atan3 is the arc

tangent function that covers a 2m range angle in positive
and negative directions.

6. Examples

In the following examples, the values u;,,,=0.3m/sec
and ®q,=1.6rad/sec have been considered in order to

select design parameters and avoid saturation of control
actions. The parameters value of the impedance controller
are K=10 Nt/rad and B=1.2 Nt.sec/rad. For this example,
the impedance control loop is active when the mobile robot
finds an obstacle at less than 1.0 m.

6.1 Motion Control I : Positioning without

prescribed orientation ( x4=4.8, y4=2.5)
Figure 4 shows the trajectory described by the mobile

robot, for a case in which an obstacle appears on its

original trajectory towards the target. Dashed line describes

the free space trajectory of the mobile robot.

9 x T T : . 1 :

x[m]

Figure 4, Trajectory described by the mobile robot to avoid
an obstacle on its path.

Figure 5 shows the corresponding linear and angular
velocities along that trajectory.

6.2 Motion Control II : Positioning with

prescribed orientation ( X4=4.8, y4=2.5, @g=-1/4 )

Figure 6 shows the trajectory described by the mobile
robot, for a case in which an obstacle appears on its
original trajectory towards the target. Figure 7 shows the
corresponding linear and angular velocities along that
trajectory. Dashed line describes the free space trajectory
of the mobile robot.
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Figure 5. Linear and angular velocities of the mobile robot
when avoiding obstacles.

yiml

~
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Figure 6. Trajectory described by the mobile robot to avoid
an obstacle on its path.

6.3 Motion Control III : Path following

R

Figure 8 shows the trajectory described by the mobile
robot when it follows a path. Solid line describe the path
reference of the mobile robot. Figure 9 shows the
corresponding linear and angular velocities

7. Conclusions
This paper presents a simple and effective closed loop
control law for a unicycle-like vehicle, combined with an
effective control law for obstacle avoidance. Three control
objectives are considered: positioning with and without
final orientation of the vehicle, and path following. The
control system is structured based in two loops, the
position control loop and the impedance control loop.



Impedance is defined in reference to a fictitious force as a
function of the sensed distance to any obstacles close to the
robot path. The controller keeps position error e within
admissible bounds in order to avoid saturation of control
actions. The control system is proved to globally and
asymptotically drive the control errors towards zero, Tests
on Pioneer mobile robot have been carried out in order to
show the good performance properties of the proposed

0.4 T T T

0.2f

0F

u[mm/sec]

-0.21

0.4 L )

3.5 4

w(rad/sec]

1.5 2
t[msec]

Figure 7. Linear and angular velocities of the mobile robot
when avoiding obstacles.

9 T . - - . -
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Figure 8. Trajectory described by the mobile robot to
follow a path.
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