413

Single Beacon Acoustic for AUV Navigation

P. Baccou, B. Jouvencel, V. Creuze
baccou@lirmm.fr, jouvence@lirmm.fr, creuze@lirmm.fr
LIRMM
161, rue Ada
34392 Montpellier cedex 5
France

Abstract

This paper presents an algorithm allowing an AUV
to determine its position with respect to a beacon by
ranging to that beacon. The beacon’s absolute
position is known onboard the AUV so that the
relative position can be converted into an absolute
position. The major difficulty of this approach is that
a single range measurement does not completely
constrain the vehicles relative position. The AUV
then has to ping the beacon from different places,
while measuring its displacements between pings, in
order to triangulate its position. Since the AUV can
initially have a very approximate knowledge of its
own absolute position, the navigation procedure is
divided into three phases. The first step consists of
obtaining an initial estimate of the vehicle’s absolute
position and of the disturbances affecting the quality
of the dead reckoned displacements (underwater
components and speed bias). The second step consists
of refining the position and the disturbance
estimates by navigating with respect to the beacon so
as to maximize the information matrix. Finally, the
third step consists of the actual survey during which
the AUV keeps ranging to the beacon to maintain an
accurate absolute position,

1. INTRODUCTION

Long baseline navigation systems have been used for
several decades [1] for the positioning of underwater
equipment and manned submersibles, and more recently for
the navigation of Autonomous Underwater Vehicles
[21[3]14][5]. Although, these systems can offer a good
positioning accuracy, provided the array is correctly
calibrated, they also have several drawbacks., The
deployment and the recovery of the transponders as well as
the calibration of the array are ship-time consuming and
therefore expensive. Furthermore, the whole process has to
be repeated each time the array is moved to a different place.
The overall cost of the system is also substantial given the
cost of each beacon.

Therefore, a different approach consisting of using a single
beacon is being studied [6][7][8]. The advantage of such a
solution is that the calibration reduces to the determination of
the beacon’s location. Whereas the vehicle track is distorted
by errors on the baseline calibration in the classical long

baseline approach, any beacon position calibration error
results in a shift of the AUV position equal to the calibration
error in the single beacon approach. This approach could
appear very attractive at first sight. It has, however, an
important disadvantage associated with the fact that it is not
possible to determine the vehicle’s position from a single
ping. In classical long baseline navigation, the replies to a
single ping can be used to triangulate the AUV’s position
(provided the number of returns is sufficient and the
measured ranges are valid). With a single beacon, the AUV
has to ping the beacon from different places in order to
triangulate its position. The baselines between ranges are
then created by the displacements of the AUV, which have to
be measured with maximal accuracy. As opposed to the
solution presented in [8], which relies on an accurate dead
reckoning system to measure the displacements, our concern
is to provide a solution for vehicles equipped with low-cost
sensors. The availability of a Doppler velocity log is then not
an option due to the sensor’s cost, and we rather consider that
the vehicle’s speed is approximately known by a priori
calibration of the vehicle’s water speed as a function of
propeller rpm. At this point, however, we consider that the
vehicle has a reliable heading reference, but we are currently
studying modifications of the algorithm to remove this
restriction. The vehicle’s speed, used in the computation of
the displacements, is then affected by a bias due to speed vs.
rpm calibration errors and by the unknown underwater
current components. These error sources will be estimated
together with the vehicle’s position.

The beacon’s absolute position is known by the AUV, but
in many cases the AUV will only approximately know its
own Initial absolute position. This is the case if the AUV has
to dive deep after a surface GPS fix, or if it has traveled for a
long time underwater before getting within range of the
beacon. For this reason, we will assume that the AUV has no
knowledge of its initial absolute position. The first step then
consists of obtaining an estimate of the AUV’s absolute
position by having the AUV describe a circle while ranging
to the beacon and dead reckoning its displacements between
ranges. A least squares optimization is then applied to the
data resulting in an initial estimate of the AUV’s absolute
position and initial estimates for the speed bias and the
underwater current components. To reduce the uncertainty on
these estimates and obtain an accurate absolute position
before beginning the survey, the AUV runs a Kalman filter
taking round-trip travel times as observations and estimating
the AUV’s position and the disturbances. The vehicle travels
S0 as to maximize the information matrix until the estimation
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error covariance has sufficiently reduced. The AUV then
start its survey in good conditions and follow its desired
survey trajectory. The positioning during the survey is
performed by the same Kalman filter.

The paper is organized as follows: section II defines
important reference frame, Section III describes the
initialization procedure allowing to obtain the initial state
estimate and its error covariance matrix used to initialize the
Kalman filter. Section IV describes the Kalman filter in
details and particularly how the vehicle’s motion between
ping and reply is taken into account. Section V describes how
the position estimate is improved thanks to the information
matrix. Section VI presents simulation results.

2. DEFINITIONS

The location of the beacon in the local absolute reference
frame Ry is (Xy, ¥, Zv). This location is known by the AUV.
The axes xy and y, respectively point north and east, and z,
points down. The mobile frame R, is located at the center of
gravity of the vehicle with its axes Xy, Ym, Zn parallel to x,
Yo, Zo- The knowledge of the beacon’s depth allows to convert
the 3D problem into a 2D problem. The terminology ‘range’
in the remaining of the paper should then be understood as x-
y range (slant range corrected for the depth difference
between the vehicle and the beacon). The acoustic travel
times are measured like in a Long Base Line system: the
vehicle pings, the beacon replies upon reception after a given
timeout and the vehicle detects the time of arrival of the
reply. Slant ranges are calculated based on the known
average speed of sound.

3. INITIALIZATION
3.1. Principle

The initialization of the beacon’s location consists of
commanding a 360° rotation to the AUV while ranging to the
beacon and measuring the displacements between pings
(Fig.1). The vehicle would thus describe a circular path in the
absence of underwater current or a distorted circle otherwise.
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Fig. 1: Geometry of the initialization procedure
In the presence of a speed bias (du) and of an underwater
current (Ve,,Vee) all assumed to be constant, the north and east
components of the vehicle’s displacement over a sampling
period At can be modeled by:

{Ax:C OC (u—du)At+venAt )

Ay=COSy(u—du) At+veeAt

Where u is the vehicle’s calibrated water referenced speed,
0 is pitch and y its heading. C8, S8, Cy, Sy are cos(8),
sin{B), cos(y), sin(y) abbreviations.

The displacements between ranges i and n can then be
written:

k=n k=n k=n
Ax;,=)"CO,Cyu, At-duy"CO, Cy, At+v, > At
k=i

k=i k=i

k=n k=n k=n

AY, o= COSY, u, At-du) CO, Sy At+v,, > At
k=i k=i k=i

)

Let Ry, be the mobile frame at the time d, is measured (end
of the rotation) and (x,y) be the vehicle’s absolute position at
that time. The i range can be expressed as a function of the
vehicle’s position at the end of the rotation and of the
displacement between ranges i and n by:

2
d;:[(Xb~x+AXi.n)2+(yb-y+Ayi,n )2]!' 3)
The system of equations (3) can be solved for
(xy,du,ven,vee) by non-linear least squares using the
Levenberg-Marquardt algorithm. However, because the
problem can have local minima, we could not initialize the
search with (0,0,0,0,0) without risking convergence to an
erroneous solution. Therefore, in order to initialize closer to
the correct solution, the system without current or speed bias
is first solved starting at (x,y)=(0,0). The approximate vehicle
position obtained in that case is then used to initiate the
search in the presence of current (the current components and
the bias being still initialized at 0).

3.2. Range pre-processing

In our simulations, we chose to use a selection of 14
ranges for the estimation of (x,y,du,v.,,ve.). Since ranges can
sometimes be spurious because of noise or multi path, the 14
ranges have to be selected carefully. The set of ranges is first
pre-filtered as follows: the difference between successive
ranges is computed and a threshold is applied. If the
difference is greater than the threshold, further testing is
performed by looking at the ranges before and after the
considered pair. Depending on the results of these additional
tests, either both ranges are discarded or only one.

A median method is then applied to the remaining ranges:

s  Select 14 ranges randomly (depends on the noise and
on the number of ranges),

e Compute the solution to equation (3),

*  Characterize the solution with the median of the range
residuals.

Repeat these steps N times and keep the set of 14 ranges

providing the smallest median residual.
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N has to be chosen even larger that the range
measurements are noisy. This is of course at the expense of a
longer computation time. For the simulations, we used N=70
(it’s because of the greatest of the ranges noises: 20% are
spurious and 20% are affected by a Gaussian noise). We can
use N=30 for 10% of spurious ranges and 15% with a
Gaussian noise.

3.3. Uncertainty on the initial estimation

The system of equations (3) can be expressed by:

d=1f(X,y,0,u,At)+n (4)

Where d is the wvector of the selected ranges,
X=(X,¥,VenVee,du)’, and n is a Gaussian noise on the measured
ranges with variance matrix R. The non-linear least squares
optimization provides the covariance matrix of X (Cramer-
Rao lower bound):

P= [aﬂX)j(HBH +RY (%?J 7

Where H is the Jacobian of the ranges with respect to v, 6,
u and P, is the covariance matrix of y, 8, u. The result of the
optimization is used to initialize the state vector of the
Kalman filter described below, and the covariance matrix P is
used to initialize the estimation error covariance matrix of the
filter.

®)

4. EXTENDED KALMAN FILTER
4.1. State equation

The state vector is made up of the vehicle’s position (x,y)
in Ry, the vehicle’s depth (z), the components of the
underwater current (v.n,,Ve.) and the speed bias (du). The
inputs are the vehicle’s heading v, its pitch 8 and its water-
referenced speed u. The covariance matrix of the inputs is the
diagonal matrix C;, = diag(c\,,,z, 0’9,2, Gu,z). The current and
the speed bias are modeled as constant. The state noise vector
is v and its covariance matrix Qy. The state equation is then
expressed by:

] [x] [COCW{u—dupve

y y COSylu—du Hvee

z | =z |4 —SOu-du) At+vk
Ven Ven (6)
Vee Vee 0
du|, |du] i 0 1,

4.2. Observation equation

The observation equation expresses the acoustic round-trip
time of flight (T) as a function of the vehicle’s state at the
time of the ping and at the time the vehicle receives the reply
from the beacon. The vehicle’s motion between the ping and

the reception is then taken into account, and the observations
are expressed in terms of all the state variables. The
measurement noise on the travel times is represented by w;.
It variance is Ry. The speed of sound is noted ¢ and the
beacon turn around time At,.

l [(Xb"}"(ping)z'{‘(Yb -ifping)2 +(Zb --%ping)2 ]/2

~ ~ ~ 2
+[(Xb -Xreccpl)2+()/b*Yreccpt)2+(2b -Zrecept)z]

+Atr+Wk
(7)
In general, a time of flight is buffered by the acoustic
ranging system and made available for processing after a
preset timeout following the ping time. The vehicle’s

estimated state at that time is Xk« . The prediction step

being applied first, the vehicle predicted state is X+ .
Since the state prediction does not modify the current
components and the speed bias estimates, these estimates are
constant from the ping time to the time of flight processing
time. The vehicle’s position is then back propagated in time
using the current state and the inputs, which were memorized
since the ping. Since the ping time (ty,) is known and the
reception time (t..p) can be calculated by adding the time of
flight to the ping time, the position of the vehicle at the ping
and at the reception of the reply can then be calculated by:
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recept k+1k Z[ 91 Sl’Ul (ui—dﬁk+lfl)+€/cek+m]ﬁt
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1L+lfl.

zrecepl: Zk+1fk+r 2891 (l-li—dﬁkﬂfk) At

I=trecept

(8)
4.3. Equations of the filter

The filter equations are different from the classical
equations in that inputs Uy=(y,8,u)' can be found both in the
state and the observation equations. Equations (6) and (7) can
be rewritten:

X =X, Up)+vy )
Zy =h(X; , Up)+w,

The filter proceeds in two steps. The first step is a
prediction of the state based on the inputs in U,. 1t basically
corresponds to dead reckoning using the last estimates of the
underwater current. The state is predicted together with its
prediction error covariance Py :
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{Xkﬂlk:f(kak,Uk) (10)

Pen=FPu B 4Tk CinJ L +Qx

The second step takes place when a time of flight is
available. The predicted state is corrected based on the
information carried by the new measurement. The prediction
error covariance matrix Py, is also computed:

{kam :Xk+]fk +K k+l (Z‘k+l _h(Xk-mk U ))

(11)
i
Pk+l/k+1 =Ppn _Kk+1 (Hyi P +Sk+1 )

The following Jacobian matrices have to be calculated:

(X, U)
F = k —
X=Xy

T
U=l

ch(X,U
o =20

BE(X, U)
aUu | X=X
U=U,
h(X, U)
au

(12)

k+l =
K=Xpims

=V

X=Xy -
U=U,,,

Skr1 = JkriCinD'ysy is a correlation term accounting for the
tact that inputs are both in the state and the observation
equations. Because of this correlation, the expression of the
Kalman gain is a little more complicated than usual:

Kk+l =(Pk+1ka}lc+l +Sk+1 )

-1
(Hk+1Pk+1ﬁ'kH;\'+l +Dk+lcinD:;+1 +R+Hk+lsk+l +S::+1HL+1 )

(13)
4.4. Time of flight validation

When a time of flight is available, its validity is first
checked by means of the Mahalanobis distance. The
innovation and its variance are calculated by:

Via=Ten DX s Ugn)
Py, =HiuProaHin + D CinDiy +R

Vis

(14)

(15)
+Hyuy8141 +SkaHin
The time of flight T\, is validated and used to correct the
predicted state if it passes the following test:

VLHP;:Hka <y withy typically equal 1.32 (16)

5. MAXIMIZATION OF THE INFORMATION
MATRIX

Before navigating with respect of the beacon, we want to
reduce the uncertainty on the state vector. A study of the
information matrix similar to that described in [9] showed
that the trajectory that maximizes the information (or
conversely minimize the estimation error covariance) consists
of leaving the beacon on either side of the vehicle so that the
vehicle’s heading deviates by 90° from the line joining the
vehicle and the beacon (the vehicle describes a circle
centered at the beacon) [7]. In order to increase the
information, we use the following procedure. At the end of

the 360° rotation, the vehicle is commanded to move at 90°
with respect to the beacon. When this condition is achieved,
the volume of the prediction error covariance ellipsoid is
calculated by:

C, = +/det(P) (17)

When a new time of flight is made available and used by
the filter, the volume is calculated for the new covariance
matrix:

Cy =q/det(Py ) (18)

The vehicle keeps circling around the beacon until the
ration of Cy over C, is smaller that a preset threshold
(function of N). The AUV then reaches its first waypoint and
starts doing its survey. At this point the vehicle still uses the
filter to estimate its position during the survey.

6. SIMULATIONS RESULTS

The algorithm described above has been tested in
simulation using the simulator of the torpedo-shaped AUV
Taipan developed at LIRMM [10]. In the simulation, the
current was set so as to have a 0.2 m/s magnitude and a 60°
direction. The speed bias was set at 0.2 m/s. In order to
simplify the visualization of the tracks, the absolute position
of the beacon is subtracted from all the absolute positions.
The beacon then appears to be located at (0,0) on the plots.
During the initialization phase, the vehicle dead-reckons its
displacements between ranges without any knowledge of its
absolute initial position. For the plots, however, the dead-
reckoned position was initialized by the vehicle’s actual
initial position. After the initialization, the filter provides the
estimated position of the vehicle in Rg, which is used to steer
the AUV so as to leave the beacon at 90°. We present results
for two different vehicle tracks. The first track consists of
parallel legs (Fig.2). The second track consists of radial legs
(Fig.4).

The AUV starts its 360° rotation at the square mark located
at about (-200,-200) with an initial heading of about 135°.
The dead-reckoned path is a circle (dark line) since the
vehicle is not aware of the current. The actual vehicle
trajectory is show by the distorted circle (light line). The
ranges measured during the initialization of the radial
mission (a ping every second) are shown in Figure 6.
Throughout the simulation, the ranges (or times of flight)
were simulated so that 20% of them would be spurious, 20%
would be affected by a Gaussian noise with a 10m standard
deviation, and the remaining would be affected by a Gaussian
noise with an 0.5m standard deviation. The 14 ranges
selected for the resolution of the least squares optimization
are shown as circles with a star inside.
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Fig.2: parallel trajectory (dark: estimated, light: actual)
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Fig.3: Current and speed bias for the parallel trajectory
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Fig.4: radial trajectory (dark: estimated, light: actual)
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Fig.5: Current and speed bias for the radial trajectory
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Fig.6: Ranges measured during the initialization of the
radial mission

The estimated position of the vehicle at the end of the
initialization is shown by a cross at about (-200,-150) in
figure 2. It can be seen that this estimated position is very
close to the actual position of the vehicle after the distorted
circle. The estimated position then jumps from the end of the
circle to these coordinates. From there, the actual and
estimated trajectories are very close to each other and remain
so until the end. The estimates of the underwater current and
speed bias components along the runs are shown in figure 3
and 5 (the straight lines show the actual current and speed
bias components). It can be seen that the estimates converge
to the correct values during the 90° navigation phase. The
radial track gives better results principally because of the
vehicle travels at varying headings.

7. CONCLUSION

In addition to its interest as an alternate solution to classical
long baseline, we believe that the range-only solution is
worth studying in the more general framework of multiple
vehicle operations. Navigation with respect to a beacon by
range measurements supposes that the vehicle is able to
estimate its position relative to the beacon. If the beacon
becomes mobile (carried by another AUV), then the AUV
could be able to determine its relative position exactly in the
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same way, provided that the beacon can transmit its depth
and displacements to the AUV by acoustic communications.
Assuming clock synchronization between multiple AUVs, it
is then possible to consider having a master vehicle that
would ping and transmit its displacements and have the other
AUYVs determine their position relative to the master AUV,

It has been shown in [7] that this algorithm can also be
used to home on a beacon of unknown coordinates.

The simulation results presented in this paper were
obtained using the simulator of the Taipan AUV developed at
LIRMM (Fig.7). An acoustic modem (Fig.8) incorporating a
range measurement capability to a beacon has recently been
integrated in Taipan, with the objective of experimenting the
algorithm. The vehicle with the acoustic modem transducer is
shown in figure 7. In addition to the modem, the vehicle is
fitted with a pressure sensor, pitch rate and yaw rate
gyrometers, a DGPS, a magnetic compass, a pitch and roll
inclinometer. The vehicle speed is based on a priori propeller
rpm / speed calibration, so that estimation of the underwater
current is critical.

In comparison with long baseline navigation, this method
is better in a lot of points : the implementation into play of
considerable resources can be avoiding (one beacon against 3
with long baseline), no calibration, less expensive (you need
only one range sensor), allows externs parameters
estimations (north and east current) without any specific
sensors, you can also estimate your own error (speed biases).
In opposition, you must realize a specific initialization
(maneuvers and lost of time) before beginning a mission.
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Fig.7: Taipan (length: 1.8m, diameter: 15 cm, weight: 30
kg)

Fig.8: Taipan with the acoustic modem transducer,



