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Abstract

Mobile robots require the ability to build their own
maps to navigate in unknown environments. This pa-
per introduces g new method for learning multiresolu-
tion maps for navigation in changing worlds. It ex-
tends our navigation architecture [1] that integrates a
multiresolution and fuzzy ART based feature world mod-
els. In a companion paper [3] we introduce a new
method for updating the fuzzy ART model in non-static
worlds. We describe our new navigation architecture
that, by integrating this new capability, is able to dy-
namically not only increase but also decrease local res-
olution according to variations in the local cluttering
and complezity of the world. The paper presents ex-
perimental results obtained with @ Nomad 200 mobile
robot that demonstrate the effectiveness of the proposed
method.

1 Imtroduction

Maps are an essential component to enable mobile
robot navigation in complex environments. They are
needed for path-planning, self-localisation, and human-
robot interaction. While it is possible to pre-install
maps in a robot, to navigate in unknown environments,
robots must be able to build their own models of the
world.

A widespread approach for mobile robot navigation
is based on the occupancy grid representation of the
environment [7]. Occupancy grids represent the world
as a two dimensional array of evenly-spaced cells, with
each cell holding a value which represents the confi-
dence in whether it is occupied space or free space.
Although grid-based models are easy to build and
maintain, they impose a constant resolution structure
onto the environment without any selectivity concern-
ing the nature and clutter of the world. A very lo-
calized feature of the world may impose a very high
(constant-)resolution grid over the entire state-space.
This implies high data requirements, and induces ex-
cessive detail on world modeling and updating, on rea-
soning (high computational costs), and on the paths
that result from such a model. Also, the difficulties on

the direct application of grid-based models on localiza-
tion have been pointed out in [9]. An alternative for
overcoming the space and time complexities of grid-
based methods is to use a variable resolution state-
space partition (e.g. [10]). Local resolution is usually
only high enough to capture the important local de-
tail of the world. This enables a lower number of cells
(space) and thus lower search effort (time). Another
alternative to the costs of grid-based models is to use
a set of geometric primitives (or features) for repre-
senting objects in the world (e.g. [5], [9]). Geometric
primitive representations, have been difficult to build,
but are significantly more compact, less complex, and
fully applicable to high- and low-level motion planning
(e.g. [1]) and localization approaches (e.g. [9]). With
higher dimensions the geometric model data require-
ments become exponentially smaller than the require-
ments of constant-resolution cellular models.

In this paper we introduce a new method for learn-
ing multiresolution maps on dynamic worlds. The new
method works in conjunction with the feature-based
method proposed in the companion paper [3]. With
the method proposed in this paper, the system is able
to locally adapt the multiresolution model used in our
architecture, to dynamic increases and decreases of lo-
cal clutter and complexity in the world. Our new navi-
gation architecture (Fig. 1) integrates the new method,
and extends our previous work [1] as described in this
paper.

The paper is organized as follows. Section 2 presents
an overview of our navigation architecture. Section 3
presents a discussion on dynamic worlds and how our
learning architecture relate to them. Section 4 intro-
duces a new method to dynamically update a multires-
olution grid model in response to changing worlds. Sec-
tion 5 presents experimental results. Finally, in Section
6 we give some concluding remarks.

2 Navigation Architecture

For completeness, in this section we present an
overview of our current navigation architecture. Please
see [1] for further details — lack of space prevents a more
detailed description here.
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Figure 1: Architecture of predictive on-line trajectory filtering on a dynamically updated model for navigation in

changing environments.

2.1 Core of the Learning Architecture

Figure 1 illustrates our current navigation architec-
ture. The original core from which the architecture
was developed is the parti-game learning approach [6],
[1]. The system can simultaneously, learn a model of
its environment, and learn to navigate to a goal re-
gion in an unknown world, having the predefined abil-
ities of doing straight-line motion to a specified posi-
tion in the world, and obstacle detection (not avoid-
ance). The learning approach is based on a selective
and iterative partitioning of the state-space. It is a
multiresolution approach, beginning with a large parti-
tion, P, and then increasing resolution by subdividing
the state-space (e.g. see Figs. 2(a), 4) in areas where
the learner predicts that a higher resolution is needed.
Cells are organised in a kd-tree, for fast state-to-cell
mapping [1]. For each cell i there is a set, NEIGHS(Z),
of (cell-) neighbours of i. In order to reach the goal,
the mobile robot path is planned to traverse a sequence
of cells. The ability of straight-line motion is used as
a greedy controller to move from one cell to the next
cell on the path. This request to move to the next cell
on the path (which is a neighbouring cell) may fail —
usually due to an unexpected obstacle that is detected
to be obstructing the robot path. A database, D, that
includes the cell-outcomes observed when the system
aims at a new cell, is memorised and maintained, ac-
cumulating experience in real-time. D includes a col-
lection of ouTCOMES(%,j) sets. OUTCOMES(i,j) is
the set of cells that were previously observed to be at-
tained when the system was on cell ¢ and aimed cell at
j- In the absence of observed experience an optimistic
assumption is taken [1]. The combination of database
D, and partition P constitutes one internal learned
world model — the parti-game (world) model (Fig. 1).

Database I is in turn used to plan the sequence
of cells to reach the goal cell, using a game-like min-

imax shortest path approach. The next cell on the
path is chosen taking into account a worst case as-
sumption, i.e. we imagine that for each cell we may
aim, an imaginary adversary is able to force the worst
next-cell outcome. In this way we always aim at the
neighbouring cell with the best worst-outcome. For
this purpose, the minimax shortest distance from cell
1 to goal, Jy (1), is computed [1] using Dynamic Pro-
gramming methods. For choosing spatial resolution,
cells are split when the robot is caught on a losing cell
- a cell for which the distance to the goal cell is oo,
i.e. for the current resolution, the game of arriving at
the goal cell is lost. In these situations, as explained in
[1], cells in the border between losing and non-losing
cells are split. Cells which have just been split must
be subject to forgetting of accumulated cell-outcome
experience. This induces further local exploration in
places the system had difficulties to navigate [1].

2.2 Learning a Feature Map of the World

In our previous work [1] we have introduced and
demonstrated the effectiveness of a new approach for
learning a map of the world, that is based on the fuzzy
ART neural architecture [4]. The method was inte-
grated into our navigation architecture for improving
its world model, by making better use of sensor infor-
mation received from sensors. The method has sev-
eral desirable characteristics [1]: it is self-organising
and multifunctional, has small data requirements and
low computational complexity, has the significant ad-
vantage of being capable of incremental on-line oper-
ation according to the How of sensor data reception,
and is easy to extend to higher dimensions. With
the approach the system incrementally extracts and
updates a collection of rectangular geometric primi-
tives, whose union represents occupied space, where
sensor data points associated with objects have been
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perceived - a kind of unsupervised clustering. Famil-
iar inputs are directly associated to their rectangular
categories, while novel exemplars continue to trigger
the generation of new categories. This method corre-
sponds to the “Dynamic feature creation” module of
Fig. 1. The extracted rectangles form what we define
as the fuzzy ART (world) model [1]. The composite
contribution of the parti-game and fuzzy ART models
forms an/the improved (overall) world model (Fig. 1).

2.3 Improving Learning by Predictive On-
line Trajectory Filtering (POTF)

The parti-game learning approach was extended by
the introduction of a method for Predictive On-line
Trajectory Filtering (POTF) [1]. Figure 1 presents the
overall architecture illustrating the main ideas of the
POTF navigation method. A distinction between a
predictive mode and a real mode is established. One
of the main ideas of the method, is to reduce real-
robot exploration by giving priority to predictive ex-
ploration, by taking advantage of the learned fuzzy
ART world model, and allowing a very significant re-
duction on the time-consuming exploration effort that
is associated with searching the world with a real robot.
In both modes, path planning is performed using the
parti-game approach, with the parti-game model being
incrementally updated, according to the results of both
predictive and real exploration. However, only in real
mode is the fuzzy ART model incrementally updated,
because only in this mode is real sensor data available
for this purpose. In [2] we have presented quantitative
results demonstrating: (1) the benefits of the POTF
method, and (2) that the world model and navigation
method is general purpose for learning multiple and
different navigation paths.

3 Dynamic Worlds

An important general aspect of a map building
method is its ability to cope with non static worlds.
A changing robot world can be seen as a union of one
or more changes, each belonging to one, out of two
possible classes [1]. On class 1, a new object is created
on a previous free-space location. Changes of class 2
correspond to the opposite, i.e. an object is removed
creating a free area on the state-space.

As discussed in [3], [1], the fuzzy ART based map
building method is clearly able to cope with changes
of class 1. In fact a new object will lead to new sensor
perception points, which will generate new, or update
existing, fuzzy ART categories and corresponding rect-
angular geometric primitives on the map. However, the
method is not able to appropriately cope with changes
of class 2. For that purpose in [3] we introduce the
Prune-Able Fuzzy ART neural architecture, and ex-
tend the map learning method, complementing it with
the ability to remove (or possibly update) geometric
primitives on the map, in response to the possible re-
moval of objects in the world. This corresponds to the
“Dynamic feature pruning” module of Fig. 1.

As discussed in [1] the core of the navigation ar-
chitecture (the parti-game learning approach) is able
to deal with changes of class 1. On the other hand,
changes of class 2 do not prevent navigation to the goal.
However, after having converged to a stable start-goal
path, the system is not able to take advantage of a
possible better path that could have become possible
after the removal an obstacle (a change of class 2).
The opportunity to explore the new better path will
only arise when a new obstacle obstructs the previ-
ous solution path. However, in both cases, the execu-
tion of new exploration in response to changing worlds
is dependent of the important operation of forgetting
accumulated experience — that is associated with cell
splitting (Sec. 2.1). Further, if we permit that new ex-
ploration will always be performed at the cost of (using
only) additional increases of partition resolution, then
the multiresolution model may no longer have the ca-
pability to adapt its resolution to the local clutter and
complexity in the world. In this way we would lose the
advantage when comparing to constant resolution cel-
lular models (Sec. 1). As noted in [1], this motivates
the introduction of methods such that the system is
able to tackle changing worlds in a more general way.
This will be done in the next section.

4 Dynamic Selective Cells Merging

From the motivation of Sec. 3 we have devel-
oped a new method, Dynamic Selective Cells Merg-
ing (DSCM), for the dynamic simplification of the/a
multiresolution world model (in particular that of our
navigation architecture). This also uses our companion
work [3]. Whenever a feature is pruned from the fuzzy
ART model, this is a sign that some obstacle in the
world has disappeared, making the world less cluttered
and complex locally. Qur system clearly identifies this
as an opportunity for simplifying the partition model
by lowering local resolution through the merging (e.g.
Fig. 2(b)) of selected cells. Thus, whenever a feature
is pruned from the world representation, Algorithm 1
(Fig. 3) is called. The objective of this algorithm is to
provide a simplification of the partition model of the
world by cells merging, whenever it finds an opportu-
nity. In step 1 the algorithm verifies if the changes that
have occurred constitute an opportunity for model sim-
plification by cells merging. In our work cells merging
was triggered when one of the following two criteria
occurred:

Criteria 1. A pruned fuzzy ART rectangle inter-
sected the border between two or more cells (e.g.
Fig. 2(c)).

Criteria 2. The model changes (rectangle pruning or
cells merging) cause the occurrence of a situation
where two “brother-cells” no longer have a fuzzy
ART feature inside of both their areas.

When criteria 1 is met the kd-tree is searched un-
til the node that originated the intercepted border is
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(a)
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Figure 2: (a) Cells subdivision; (b) Cells merging; (¢)
Example with feature pruning and merging two cells.

ALGORITHM 1 (SELECTIVE CELLS MERGING)
1. IF fuzzy ART model changes (features pruned) do not allow
cells merging (partition simplification) THEN RETURN.
2, ELSE WHILE World changes allow cells merging
2.1 Let C| and C, be the cells to be merged.

2.2 IF C, and C, are “brother-cells” on the Fkd-tree.
THEN

2.2.1 Merge C) and ¢, and let the resulting cell be
referenced as C.

2.2.2 Update the new C, coordinates in the world.

2.2.3 Remove C| and C, from the kd-tree. It remains
the “parent-cell” called called C.

2.2.4 Transfer the contents of NEIGHS(C,) to
the NEIGHS(C,) set, ie. NEIGHS(C,) :=
NEIGHS(C,) + NEIGHS(C,) — {C,,C,}

2.2,5 Substitute in all sets NEIGHS(?)
and OUTCOMES(i, j) all the references to C,
by €.

2.2.6 Delete in all the sets NEIGHS(i) and
OUTCOMES(i, 7) all the repeated (redundant)
references to C, that were originated by the sub-
stitution of C, by Cf.

END OF THE WHILE CYCLE
MODEL-CHANGED:=TRUE.
RETURN.

o e

Figure 3: Algorithm 1: selective cells merging.

found. All the descendant nodes from this node are
removed from the tree, and give rise to only one cell
that results from the merging(s).

In the situation when two “brother-cells” no longer
include any features inside (criteria 2), then the
two cells are merged, the corresponding leaf nodes
are deleted from the tree, and the correspond-
ing “father-node” proceeds by representing the new
unique/merged cell, and the system tests criteria 2
with the new cell.

Whenever one of these criteria is met, we start the
process of merging “brother-cells” (step 2) which leads
to a new cell with the characteristics of the corre-
sponding “father-cell” cell that existed before split-
ting. During the merging process the NEIGHS(?) set
is updated (step 2.2.4) with 7 being the cell resulting
from merging. The NEIGHS(7) set will contain all the
cells which are neighbours of both merged cells, except
the merged cells themselves. In the sets NEIGHS({i)
and oUTCOMES(i, j) all the references to the merged
cells are substituted by references to the new cell (step
2.2.5), with redundant references being deleted (step
2.2.6).

It can be easily seen that it may occur a case where
the merging of cells propagates to higher levels in the
kd-tree, which means that we come back to nodes that
represent cells that already existed in very early stages
of the partition (lower resolution). This means that
the experience accumulated in the ouTcoMESs(i,7)
sets of the merged cells will be lost. To mitigate this
behaviour the approach can be complemented with a
mechanism to limit the number of chain-mergings up
along the kd-tree. However, the loss of information re-
sulting from the merging of cells poses no problem since
the system also has the fuzzy ART model representing
obstacles; And the system can make an efficient predic-
tive exploration in predictive mode (POTF - Sec. 2.3)
to split the cells again, as needed to arrive at the goal,
but now according to the new distribution of obstacles
in the world.

Thus the method proposed in this section intro-
duces the following advantageous characteristics. In-
crease or decrease the partition resolution to better
adapt the model according to variations on the spa-
tial distribution of local clutter and complexity of the
world. This leads to a forgetting of information which
in turn induces new exploration (mostly done in pre-
dictive mode). Further: the additional exploration will
enable the system to take advantage of better navi-
gation paths that may have become available after a
removal of obstacles — thus overcoming the limitation
of the system in response to world changes of class 2
(discussion on Sec. 3). The method proposed in this
section corresponds to the “Dynamic cells merging”
module of Fig. 1.

5 Experimental Results and Discussion

The experiments presented here were conducted us-
ing a Nomad 200 robot [8]. The robot is equipped with
a Laser range sensor, sonars and infrared range sensors
around its turret. In the specific experiments presented
in this paper, the infrared sensors were used to create
fuzzy ART features, and the Laser was used for the
obstacle removal perception mechanism [3]. The robot
includes two motors on its base that are used to con-
trol its translational and rotational movement. The
experiments were organised as a sequence of trials to
navigate to a goal. Only the first trial starts with an
empty world model, but after that the model is con-
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tinuously updated during the sequence of trials. To
perform robot localisation, we have simply used ac-
cumulation of encoder information, with location ac-
cumulators being reset at the beginning of each trial.
Even though this simple approach induces errors, it
was sufficient to experimentally validate the effective-
ness of the proposed method.

Figure 4 presents the results of two similar simu-
lation experiments composed of three trials each. All
obstacles were removed from the world on the second
trials of both experiments. However, Experiment 1
(Figs. 4{a),(b)) did not use DSCM and feature pruning
[3], but Experiment 2 (Fig. 4(c)-(e)) used both these
methods. In Fig. 4 all fuzzy ART rectangles (FARs)
are represented with a security border gap [1]. As ex-
pected, without DSCM, the system was not able to
discover a shorter path to the goal on Trial 2 of Ex-
periment 1 (Fig. 4(b)). Experiment 2 clearly demon-
strates the benefits of the DSCM method. In fact,
using DSCM, the system was able to obtain a bet-
ter/shorter path to the goal (Figs. 4(d},(e)). Ideally,
in this situation the system should have merged all the
cells, thus enabling the robot to move directly from
start to goal. However, due to the perceptual range
limitation of the Laser sensor, not all FARs were re-
moved from the model by the method of [3]. The robot
only detects the removal of obstacles that can be per-
ceived when the robot traverses the defined path. In
this way all the obstacles that disappeared outside the
perceptual range of the robot continued to be repre-
sented as FARs in the fuzzy ART model, thus limiting
the opportunities for the DSCM method to work.

Figure 5 presents Experiment 3 which was per-
formed with the real robot and demonstrates the oper-
ation of the system when using DSCM and the pruning
method of [3]. Again, these proposed methods enabled
the system to correctly update the parti-came model,
in particular the experience database, D (Sec. 2.1).
Also, because the fuzzy ART model was used in Exper-
iment 3, without using these new methods, the system
would have been blocked from arriving at the goal by
a closed barrier of obstacle-related fuzzy ART rectan-
gles that would have been temporally accumulated, as
early as in trial 2. Experiment 3 is similar to an Ex-
periment presented in [1] except that in the later, only
the parti-game part of the navigation system was used,
thus not taking advantage of the benefits of POTF.

Compared to other methods in the feld of dy-
namic map building/update, our navigation architec-
ture, based on the multiresolution partition and the
fuzzy ART features method, inherits the benefits that
were discussed in Sec. 1, and [1], in the context of
worlds not necessarily dynamic. In comparison to [9]
our method takes advantage of a broader set of sen-
sor data situations to update the fuzzy ART model
[3]; Also we integrate the multiresolution model which
significantly strengthens the navigation architecture.
In the multiresolution method of [10] the world model
is updated to reflect the presence of a freshly sensed

obstacle when it obstructs the robot path - a change
of class 1 (Sec. 3). It is not able to take advantage
of sensor information to deal with changes of class 2.
It updates a free space confidence of a region from
the knowledge that the robot body trajectory has just
swept the region, but as natural the system does not
chose paths through known obstacles to search for pos-
sible class 2 model updates. Our method differs in that
it continuously integrates sensor data into the model.
Also, it is able to tackle changes of class 2 in the world;
being able to use perceived sensor information to se-
lectively and continuously, not only increase, but also
decrease partition resolution in response to variations
in the spatial distribution of obstacles.

6 Conclusions

In this paper we have introduced a new method for
selective cells merging in multiresolution grid world
models. The new method enables the system to in-
crease or decrease its local resolution in response to
variations on the local clutter of the world, enabling
the system to make a better representation of the com-
plexity each region of the environment. The method
was integrated into our navigation architecture extend-
ing it in order to improve its behaviour in changing
worlds. Experimental results were presented demon-
strating the effectiveness of the proposed method.
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