473

Cyclic Gait of A Novel One-legged Robot

Tao Geng

Yupu Yang Xiaoming Xu

Laboratory of Intelligent Control, Department of Automation
A9903091, Shanghai Jiaotong University
Shanghai, 200030, P.R. CHINA

+86(21)-62932953

yngeng@?263.net

Abstract

A novel construction of one-legged robot is proposed,
which, unlike previous one-legged robot with springy legs,
consists of three revolute joints, two links and two feet. On
some conditions, it can be modeled as a two-degree-of-
Sfreedom manipulator. Inspired by our observation of a
Jumping frog, we design a cyclic gait for this one-legged
robot. The gait is divided into four phases. During only two
phases is active control exerted on the knee joint. The
trajectory planning of the four phases is formulized as a
problem of optimization subject to several constraints,
including the ZMP constraint.

1. Introduction

1.1 One-legged robot

It is evident that legged locomotion is superior to
wheeled locomotion on rugged terrain. By means of
jumping or leaping, the animals and legged robots can
easily negotiate some obstacles that may be impassible for
the wheeled vehicles. Among the legged robots, the planar
one-legged robots have absorbed many researchers due to
the simplicity of its mechanical design. It was thought that
the analysis and experiments of the one-legged robots may
enlighten designing of the biped, quadruped and multi-
legged robots. The first one-legged hopper built by Rabert
[1] had a pneumatic cylinder installed in its leg and hence
moved as a springy inverted pendulum while on the
ground. Most of the one-legged robots proposed during the
past two decades [7,8,9,10,11,12] were somewhat similar
to Rabert’s, since they all had some apparatus like a spring
to restore energy and provide force for takeoff, As a
result of such constructions, the well-established robot-
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control theory (e.g., computed torque control) can not be
effectively applied on these one-legged robots

The control strategy, adopted by Rabert [1], Pedro [7]
and most of others, decouples the control problem of the
one-legged hopper into three separate parts: hopping
height control, forward speed control, and attitude control.
Since the dynamic coupling effects becomes enormous in
the case of large velocities, this strategy may not work
perfectly on a fast locomotive robot. However, various
control methods have been developed for the high-speed
manipulators composed of revolute joints [6,14,15,16,].
Moreover, the technologies of driving and sensing of the
revolute joints have been perfectly developed in the past
years. Therefore, from an engineering viewpoint, we
propose a one-legged locomotive robot which consists of
revolute joints and may be able to take advantage of those
control methods having been implemented successfully on
high speed manipulators.

1.2 Model

Figure 2 is a sketch of the robot, which has three joints,
two links and two feet. It is assumed that (1) the actuators
and power sources are located at the three joints; (2) the
four links are made of light sheet metal whose mass,
compared with that of the joints, are negligible. Thus it is
reasonable to simplify the robot as a model shown in figure
3 .In figure 3, the three points of mass correspond to the
three joints. The links and feet are massless.
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Figurel. Snapshots of a jumping frog
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FigureZ. & sketch of the one-legged robot

1.3 Four phases of the cyclic gait

Observing of animals often illuminate robotics
researchers. Jumping is the essential motion manner of
frogs. Figure 1 is snapshots of a jumping frog during its
flight phase. The trajectory of its center of mass (COM) is
a ballistic curve, which is completely determined by the
velocity of its COM at the instant of takeoff. There are
no relative motions between its trunk and legs in flight
phase, as if its hip and knee joints were “locked”. This
strategy 1s economic, since internal motions don’t
contribute to increasing the flight distance of its COM.
However, the one-legged robots [11,12,13] had to regulate
its aftitude in flight phase, which was energy consuming

and, unfortunately, didn’t increase the flight distance of the
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Figure 3. Nodel of the robot

Inspired by the jumping frog, we designed a cyclic

jumping gait for our robot. A complete gait cycle is
illustrated in figure 4. It is divided into four phases:
Phase 1. The time duration between the instant of landing
of foot A and the instant of takeoff of foot A is phase 1. On
some conditions, the robot can be seen as a manipulator
during this phase.
Phase 2. This phase begins at the instant of takeoff of foot
A, terminates at the instant of landing of foot B. It is
assumed that, just after the instant of takeoff of foot A, the
knee joint is locked by some mechanical apparatus. Just
before the instant of landing of foot B, the knee joint is
unlocked. In order to facilitate actualization of locking, the
rotating rate of knee joint is specified to have just been
decreased to be zero at the instant of takeoff. During this
phase, rotational motion and translational motion decouple
from each other. The trajectory of the COM is a ballistic
curve. The three points of mass rotate about the COM at a
fixed speed which is equal to the rotating speed of link 1
at the instant of takeoff.
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Phase 3.This phase is the same as phase 1, except for that
foot A and foot B swap their roles. :

Phase 4. This phase is the same as phase 2, except for that
foot A and foot B swap their roles.

Noting that the first half of the cyclic gait (i.e., phase 1
and phase 2) and the second half have identical dynamics,
we will only consider the first half. Since the links of feet
have been assumed to be massless, so their motions have
no effects on the dynamics of the robot. Consequently we
will not consider the motion of the airborne foot, except for
supposing that it has already been rotated to be parallel to
the ground just before landing.

This paper is organized as follows: The second section
addresses equations and constraints of phase 1 and 2. Then
an optimal trajectory of locomotion is planned in the third
section. Section 4 is some commentary.

Notations:
m  Mass of each of the three joints.

(X] » Y1 )a(X21y2)7(xch¢:)
joint 2 and the COM, respectively.

Locations of joint 1,

Velocity of the COM.
v _c,landing Velocities of joint
1, joint 2, and COM just before landing of foot A,
respectively.

v 1,Janding’ v 2,landing’

+ + .. . . .
U landing © 2,landing Velocities of joint 1and joint 2

just before landing of foot A, respectively.

q_[’]anding . q_2,landing Angles of leg—link land 2 jUSt

before landing of foot A, respectively. (see figure 5 )

q*l,landing _ q+2,landing Angles of leg-link land 2 just

after landing of foot A, respectively. (see figure 5 )

 anding - t+landing The time instants just before and

just after landing of foot A, respectively.

0] W Angular rates of leg-link 1 and 2,

1 s 2

respectively.(see figure 3)

Xe flight » Ye flight Location of the COM during flight

phase, i.e., the phase 2.

Location of the COM at the

X¢ takeoff Yc,takcoﬁ‘
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instant of takeoff of foot A.
T,
T

Duration of flight phase, i.e., the phase 2.
Duration of phase 1.

2. Problem formulization

In this section , the motion equations and constraints of
phase 1 and 2 are derived.

2.1 Phase 1: Foot A on the ground.

For convenience, we divide phse 1 into two time
-t ~t? & ~
segments: © janding ~ U landing 34t anding ~ Lrakeoft -

2.1.1 Landing of foot A

joirt0

Figureb, Landing of foot A

At landing, foot A hits the ground. As Goswami has
done [2], we model the landing as an inelastic impulsive
impact, which implies that (1) the angular momentum of
the robot with respect to joint 0 (see figure 4) is conserved;
(2) the angular momentum of joint 2 with respect to joint 1
is conserved.

According to this model of the impact, following
equations can be derived:

mu l,landingx r+tmv 2,lzmding>< Iy

r,

(1)

ks & +
= mbv ],landingx r,tmbv 2,landing><

M Y janding™ (T2 = 1) =m v ousnne (r,- 1) (2

()

- o
d 1,landing™d 1,landing

(4)

In figure 5, following equations can also be derived:

N —F
9 2,landing™ 4 2 landing
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= = c
v L landing — Y e Ianding-'-U 1 (5)

= v c, landing+ v

% (6)

v —Z,Ianding

Where, V¢, V", arevelocities of joint 1 and 2 ,relative
1 2 ]

to the COM.

Note that , at the time instant tj;, 4ino » (1) @ 0;

2,landing ~
(2) joint 1 and 2 are rotating about the COM at a speed

equal t0 © 7 110 gine - Thus the values of V%, v° can
be computed as

vt =

! Llanding * T'1 (N

v =w _l,landing |t (8)
Considering equations (1)~(8), we can write

+ + T
[(‘) 1,landing > @ 2,landing]

_ & - T
=H [(“) 1,landing » o 2,landing] 9)

Where H is a 2 %2 matrix determined by the three
parameters: 4 | 1a0ding, 4 2, 1andingand L ¢, landing

2.1.2 From the instant "), ;,, to the instant of

takeoff of foot A.

It is assumed that the friction coefficient is large enough
to avoid sliding of foot A on the ground. Thus there are
two constraints which must be satisfied during this time

period:

(1) The vertical ground reaction force acting on the robot,
N, , must be positive, i.e., N, >0 (10)
N, can be derived as

N, =3mg + my, + nmy, (11)

(2) To describe the dynamic stability of locomotion and the
physical admissibility of the gait, we adopt the concept of
ZMP, which was first introduced by Vukobrtoric [3], and
has been frequently used in the study of dynamical
locomotion of bipedal robots.

The ZMP is defined as the point on the ground about which
the sum of all the moments of active forces is equal to zero.
If the ZMP is inside the contact polygon between the foot
and the ground, the locomotion is dynamically stable [4].
In the case of our one-legged robot in the sagittal plane, the

ZMP condition is
| Xzup | <0.5 footlength (12)
Xzmp can be computed as:
:@1+g)x1+6?2+g)xl_(§'1}71+§2372) (13)
35+, ¥

On condition that the constraints formulated above have
been satisfied, the one-legged robot can be seen as a
manipulator during this time period. As a result,
locomotion of the robot in this phase is to be simplified as a
trajectory tracking problem of a two-degree-of-freedom
manipulator.

ZMP

By Lagrange’s formulation [5], the dynamics equation
of the two link rigid manipulator can be written as

D{g)g+ Clg, q) +C(g)=T (14)

Where, q:[ql,qz]T, D(q) is the inertia matrix, G(q) is

the gravity vector, T is the input torque vector,
C(q, Q) is the matrix of centripetal acceleration
and Coriolis terms.

2.2 Phase 2: the flight phase

The condition for takeoff is that the vertical ground

reaction force is zero, i.e., Ny’ takeoft = 0 (15)

Considering what has been described about this phase
in section 1.3, the trajectory of COM during this phase can
be given as (see figure 6)

1Y @ — CoM

footh™ X

Figure6. The first flizht phase

Xe flight =v cx,takeoff t (16)

_ 2
Yefight™ Yetakeoft T U cytakeoff * t—0.58t (17)

According to the properties of this phase defined in
section l. 3, the following equations are required:



ql,landingB ~ 4 takeoff =~ @ 1, takeoff Tf (18)
_ _ . 2

Y c,landing _YC,takcofT+ v cy. takeoff Tf_ 0.5¢T f (19)

) 1,takcoff= w 71,landing (20)

Where, q j3,ding B 18 the angular position of leg-link 1 at

the instant of landing of foot B (see figure 6). It can be
derived as

41, 1andings = qil,landing + q_2,landing e (21)

3. Trajectory planning

From equations (16) ~ (21), it can be deduced that the
trajectory of phase 2 is completely determined by
following four parameters:

v cx,takeoff» 2 cy,takeoff qil,landing »q 2,landing .

Therefore, we need only to plan the trajectory of phase 1.
We use time polynomial functions to describe the

evolution of q, , q, , W, ,W,, ie,

Q1) =agt'+a;ti+a,tPra, tha, (22)
Qa(t) = byt>+b,t>+b, t+b, (23)
W, (t) = dagt’+3a,t>+2a,t+a, (24)
w,(t) = 3bst*+2b,ttb, 0<t<T (25)

According to the equations in section 2, following
constraints must be fulfilled:

4100} = Q') 1anding (26)
9:(0) = @'} 1anding (27)
©1(0) =97 landing (28)
©,5(0) =973 1anding (29)
q:1(T) = q takeoff (30)
2:(T) = —q2 janding (31)
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L l(T) = _l,landing (32)
w,(T) =0 (33)
Ny, takeorr=0 (34)

Considering equations (1) ~ (9) and equations (26)
~(34), one can concludes that the polynomial functions
(22) ~ (25) are uniquely defined by following four
independent parameters:

qil,lan(ling ’ qiz,landing » qlﬂtakeoff , T, but these

parameters must be chosen in order to ensure that the
trajectories of q, q,ii satisfy the constraints (10)
and (12). We solved this problem numerically by using
the optimization algorithm fmincon in MATLAB.

The horizontal distance the COM travels during a
complete gait cycle is selected as criteria in the
optimization, which can be written as

Cmax =i X, takeoff X+c, landingJr Y ex. takeoff * Tf)

To ensure the physical admissibility of the gait, in
addition to constraints (10) and (12), finite angular rate
and finite torque of the joints are taken into account as
another two nonlinear constraints in the optimization. A
simulation result is shown in figure 7.

)
resreres s

=

Figure 7. Stick diagram of an optimal cyclic gait (the two
feet are omited).

4.Commentary

Differing from other biologically inspired locomotive
robots composed of complex artificial muscles or tendons,
which were difficult to control, the one-legged robot
proposed in this paper has a straightforward construction.
Due to such a construction, the robot can initiate and stop
autonomously. Its cyclic gait (figure 7) seems simple
and graceful. Its primary disadvantage, compared with
springy legged robots, is that the collision between its

foot and ground is energy wasting. This problem may be



tackled by properly planning velocity of the foot before
collision or adding springs to the joints, which will be
considered in the future work.
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