515

Modelling Robot Architectures for Modular Robotics Systems

Gerard T McKee, J. Andrew Fryer
Department of Computer Science
The University of Reading
Reading RG6 6AY
Berkshire, UK
Gerard. McKee @reading.ac.uk

Abstract

Modularity in software and hardware offers a number of
benefits to robotics systems, including high-level design
focus and run-time reconfiguration. We have been
developing the MARS model for modelling and reasoning
about modular robot systems. In this paper we describe
the facilities within the MARS model for modelling the
data and control flows required to support a range of
robot control architectures. We discuss the role of the
model in high-level design and we use Brooks’
subsumption architecture to illustrate the application of
the model to a decentralised, reactive control architecture.

1 Introduction

Modularity offers significant benefits to robot system
designers in the form of unit modules that can be
combined in varied patterns to deliver desired
functionality. Identifying an appropriate set of modules,
ones that can be successfully reused in a range of
configurations, is a key challenge of the modular
approach. This has been addressed most successfully,
recently, in the area of physical modules for
reconfigurable modular manipulators and more complex
robotics structures [1-3]. The modular approach has also
been applied to robotics software, and has included both
component-based approaches and object-oriented
approaches to software encapsulation [4-7].

It appears obvious that modularity can support top-down
design of modular robotics systems and their control
architectures. However, can one go beyond the simple
transcription of existing architectures to a module based
approach? Can one incorporate some level of automatic
reasoning into the design process? If so, precisely what is
possible and how is it to be achieved? One of the
advantages of the modular approach would be the
possibility to focus, during design, on modules and their
configurations, rather than the detailed implementation of
the modules. In order to achieve this flexibility the
functionality of the resources must be described in a
manner which allows reasoning to be performed about

Paul S Schenker
Jet Proplusion Laboratory
California Institute of Technology
4800 Oak Grove Drive/MS 125-224
Pasadena, California 91109-8099, USA
Paul.S.Schenker@jpl.nasa.gov

their suitability for a particular task. There must exist a
means of expressing the organisation of sets of resources,
a means to reason about consequences which will arise
when resources interact, and rules for the resolution of
these consequences.

The MARS model provides mechanisms for modelling
robotic resources and methods for reasoning about the
functionality which result from their combination. MARS
models the physical, data and control aspects of modular
robot systems. In this paper we describe the second two of
these aspects, particularly as they impact on the creation
of decentralised control architectures. Previous reports can
be found in [8,9]. The remainder of the paper is structured
as follows. Section 2 and 3 describe our method for
modelling resources and for modelling data and control
relationships between resources. Section 4 describes
module interaction consequences represented in MARS
and their resolution. Section 5 describes the application of
the model to Brooks’ subsumption architecture [10].
Section 6 provides a summary and conclusions.

2 Modelling Resources

Resources, the functional subsystems and components of
a robot, may be specified and implemented in various
ways. Modularity requires standardised components,
described consistently by reference to a general model.
For this purpose, MARS defines the module, a general
device with common properties and capabilities. A
module is a model of a robotic resource. MARS divides
modules into the two broad categories, physical and non-
physical. Physical modules have a physical presence
and/or action within the robot’s environment. They
include sensors and effectors such as cameras and
manipulators respectively. Non-physical modules exist
within a computer environment. They include, for
example, image processing and path planning algorithms.
MARS uses annotations, descriptions embedded as
comments in the source code implementing the resource,
to describe the characteristics of modules. The following
two subsections describe how physical (sensor and
effectors) and non-physical (algorithm) modules are
annotated in the MARS model.

2.1 Sensor and Effector Modules

Physical modules possess a number of properties,
including location and motion capability. In MARS,
module locations are represented using reference frames
that are rigidly attached to a point on the physical module.
Effectors are devices capable of effecting motion in the
environment. Three rotation annotations, Rotn_X, Rotn_Y,
and Rotn_Z, describe rotation about the x, y and z axes
respectively, and three translations annotations, Trans_X,
Trans_Y and Trans_Z, describe translation along the same
three axes [9]. Sensors are those elements of the robot
which extract data from the environment. Sensors, similar
to effectors, have an attached reference frame. A sensor,
however, is considered to have no ability to change its
position or orientation. It derives this capability from
effectors on which it is mounted. Sensors deliver data in a
specified format to at most one client. The @Sense
annotation is used to describe the sensing functionality of
sensors. Its general form is:

@Sense <delivery modes> [<frequency>]

The delivery modes are specified as a comma delimited
list. The delivery modes include NotifyWhenReady (the
sensor delivers the data as it becomes available),
NotifyAtFrequency (the sensor delivers the data at a
specified <frequency>), NotifyOnMax, NotifyOnMin,
NotifyOnValue, and NotifyOnChange (the sensor delivers the
data only when the specified condition(s) are true), and
RequestWhenReady (the client will request the data from
the sensor when required). For example, a camera module
implemented in C++, and which delivers image data at 25
frames per second, is annotated as follows:

// @module_start

/! @module_name Camera

/I @Sense NotifyAtFrequency 25
ImageFormat grabimage (void);
// @module_end

Annotations are distinguished from general comments
with the symbol ‘@’. The module_start, module_name and
module_end directives are used to package the software as
MARS modules. These will be assumed in what follows.

2.2 Algorithm Modules

Algorithm modules represent the control and data
processing algorithms which exist within a robotic
system. Algorithm modules that output data are classified
as DataOutAlgorithms. Those which output control are
classified as ControlOutAlgorithms. Algorithm functionality
is characterised by the @DataOut or @ControlOut
annotations. The @DataOut annotation takes the following
format:

@DataOut <delivery modes> [<frequency>]

516

A SonarMap algorithm module, for example, takes raw
sonar data as input and outputs a data representation of the
sonar data as a ‘map’. It may be annotated as follows:

// @DataOut RequestWhenReady
SenarMap mapgenerator (SonarData);

The @ControlOut annotation is used to identify the
function which causes a control message to be output. It
takes no parameters. An OperatorJoystick module, for
example, outputs control signals depending on the
position of the joystick. It may be modelled as a
ControlOutAlgorithm:

/1 @ControlOut
MotionData polljoystick(void);

Control signals currently supported in MARS include the
six motion functions identified above and grasp functions
as per a two-fingered gripper [9].

3 Modelling Robot Systems

Modular robots are organised sets of modules structured
according to a physical and control architecture. This
organisation is modelled in MARS by relationships. The
MARS model identifies three types of relationship. These
are illustrated by the simple joystick-controlled mobile
camera system shown in Figure 1. Firstly, there are
physical connections between the mobile platform and the
pan-tilt head. These are modelled by physical
relationships. Secondly, operator joysticks control the
mobile platform and the pan-tilt-head. These are modelled
by control relationships. Finally, the operator’s screen
displays image data received from the camera. This is
modelled by a data relationship.

Figure 1. Joystick control of mobile camera

3.1 Physical relationships

In the MARS model, when one module is physically
connected to another, they are considered to participate in
the relationship is_mounted_on. For example, a Camera
module mounted on a PanTiltHead module is represented
by the relationship:

Camera is_mounted_on PanTiltHead

The is_mounted_on relationship is parameterised by the
geometric transformation which maps the vertex of the

mounting module to a vertex of the mounted module. The
general format of the relationship is:

<module> <vertex> is_mounted_on <module> <vertex>
<transformation>

For example, the relationship
ModuleA 0 is_mounted_on ModuleB 0 (z, 180, x, -90, 150, ,)

states that vertex 0 of ModuleA is mapped to vertex 0 of
ModuleB by first a rotation of 180" about the z-axis,
followed by a rotation of —90° about the x-axis, and finally
a translation of 150mm along the x-axis. Physical
relationships are described more fully in [9].

3.2 Control Relationships

In the MARS model, the is_controlled_by relationship
describes the control structure between two modules: one
module is exerting control, the other is accepting control.
The general format of the is_controlled_by relationship is:

<module> is_controlled_by <module> [<priority>]

The optional parameter <priority> can be used to specify
that messages from the controlling module have a certain
priority relative to messages from other modules. The
lower the number, the lower the priority of the control
message; zero defines the lowest priority. For example,
the following sequence of relationships states that
ModuleA accepts control messages from ModuleB,
ModuleC and ModuleD with ascending priority:

ModuleA is_controlled_by ModuleB 0
ModuleA is_controlled_by ModuleC 1
ModuleA is_controlled_by ModuleD 2

An equivalent shorthand notation is:
ModuleA is_controlled_by ModuleB, ModuleC, ModuleD

MARS identifies two types of control architecture, flat and
hierarchical. Priorities are used only by hierarchical
control architectures. If a flat architecture is specified (see
below) then priorities will be ignored.

3.3 Data relationships

Data flows are modelled using the uses_data_from
relationship, Its general form is:

<module> uses_data_from <module> [<delivery mode>]
[<frequency>]

where <delivery mode> indicates the delivery mode
required and <frequency> is an optional parameter
specifying the frequency of the service required. For
example, the relationship definition:

OperatorScreen uses_data_from Camera NotifyAtFrequency 10

517

states that the OperatorScreen module requires the
NotifyAtFrequency service from the Camera module at a data
rate of 10Hz (i.e. image data should be delivered at 10
frames per second).

3.4 Configuration Definitions

A modular robot is described in MARS by a configuration
definition. A configuration definition is identified by the
@configuration keyword, which can take an optional
parameter specifying the type of the architecture, flat
(default) or hierarchical. It is followed by a declaration of
the modules involved in the configuration, identified with
the @modules keyword, followed by a list of relationship
definitions of the form described above. Figure 2, for
example, shows the configuration for the joystick
controlled mobile camera of Figure 1. Figure 3 shows the
same in diagrammatic form and illustrates its relation to
source code implementation of the modules.

@configuration
@modules Camera, PanTiltHead, MobilePlatform,
Operatordoystickl, Operatordoystick2, OperatorScreen

Camera is_mounted_on PanTiltHead
PanTiltHead is_mounted_on MobilePlatform (_,_,_, , ,100)
PanTiltHead is_controlled_by OperatorJoystickl

MobilePlatform is_controlled_by OperatorJoystick2
OperatorScreen uses_data_from Camera

Figure 2. Configuration for mobile camera (Figure 1)

)
= . :
rator . \
en ‘ i @uodhie stat !
o 1/ @uodule_rame Carera H
v 1/ @Seree NotifyAfFrequency 25| [
pessipe . Moble L. I;n:gel‘bmri a%tzhmge (vaid), !
Jovstickl [iB— Platform :_,, _ Qmodd e I i
T / Source code definition of modules
imo ’r’
Operator v / Key:
Jovstick2 [*= ich —) ulf =uses_data_from
Mobile imo =is_mounted_on
Platform icb =is_controlled_by

Figure 3. Relationships for the mobile camera

4 Reasoning About Configurations

MARS identifies two stages in the realisation of a modular
robot, an analysis stage which aims to identify the
consequences of the particular modular robot
configuration, and a synthesis stage which resolves these
consequences through the introduction of additional
modules, delivering in turn a robot specification. MARS
identifies physical, data and control consequences in
module interactions.

4.1 Physical Consequences

Physical consequences include simple and similar
inherited functions, emergent functionality, module
conflict and global functionality, These are described in
[9]. In this paper we will restrict ourselves to simple
inheritance, In simple inheritance a sensor or end-effector
inherits each of its degrees of freedom from no more than
one of the modules on which it is mounted. Physical
consequences are resolved using InheritanceNodes [9].

4.2 Data Consequences

The data consequences recognised by the MARS model
include divergence consequences, dependency of service
consequences, and dependency of representation
consequences. Divergence consequences occur where a
data source is required to deliver data to two or more
target modules. Divergence consequences are resolved by
splitting the data into multiple streams using a
DataSplitterNode, which belongs to the class of
DataOutAlgorithms. On receipt of a message from the data
source, the DataSplitterNode copies the message to each of
a set of target modules. The DataSplitterNode is introduced
into a specification as a new module. For example, the
configuration in Figure 4 has a divergence consequence
for the Camera data source. The resultant specification in
Figure 5 (illustrated in Figure 6), incorporates a
DataSplitterNode between source and destination modules.

@configuration

@modules Camera, OperatorScreen, HoughTransform
OperatorSereen uses_data_from Camera
HoughTransform uses_data_from Camera

Figure 4. Data divergence consequence

@specification
@modules Camera, OperatorScreen, HoughTransform,
DataSplitterl

DataSplitterl uses_data_from Camera
OperatorScreen uses_data_from DataSplitterl
HoughTransform uses_data_from DataSplitterl

Figure 5. Resolution of divergence consequence

uses_data_{rom uses_duta_{rom

relationshps | Operator elationships Operater
o Screen PR Screen
ud LAY
,I’ [P
Camera i Camera Cd s
1 A
N\ Hough Hough
Transform Transform
DataSplitterl
Configuration Specification

Figure 6. DataSplitterNode: modules & dependencies

Dependency of service consequences occur when one
module requires a certain delivery service from the data
source. These are also resolved with DataSplitterNodes,
since these can take any of the uses_data_from delivery

518

mode parameters. Dependencies of service may also occur
with a divergence consequence.

Dependency of representation consequences occur when a
module requires data in a format not supported by the data
source. These representation consequences are resolved
using DataTransformationNodes, belonging to the class of
DataOutAlgorithms. If the required data representation is
not supplied by a module, a DataTransformationNode is
introduced to convert between the representations. Figure
7, for example, contains a dependency of representation
consequence. The output representation of Camera is raw
image data, whereas the ObjectAnalysis module requires
LineDescriptions. These data requirements are identified
from the respective module definitions. Figures 8 and 9
demonstrate the consequence’s resolution.

@configuration
@modules Camera, ObjectAnalysis
ObjectAnalysis uses_data_from Camera

Figure 7. A data dependency consequence

@specification

@modules Camera, ObjectAnalysis, DataTransformerl
DataTransformerl uses_data_from Camera
ObjectAnalysis uges_data_from DataTransformerl

Figure 8. Resolution through data transformation

uses_data_from uses_data_from

relabonship Telationships
‘\ 4 A
b / \
Camera 1, Y Object Camera | 7 \ Object
Analysis Analysis
/

DataTrans(ormer|

Configuration Specification

Figure 9. DataTransformationNode introduction

4.3 Control Consequences

Two types of control consequence are identified in the
MARS model, convergence and divergence. A
convergence consequence arises when two or more
modules control a single module. Since modules can only
accept one control message at a time, some selection for
the controlling module must be performed. Convergence
of control consequences are resolved using
ArbitrationNodes, which belong to the class of
ControlOutAlgorithms. The resolution strategy they employ
to select between the input messages depends on the
architecture selected for the configuration. MARS
currently defines the behaviour of the ArbitrationNode for a
flat control architecture to involve averaging the received
control messages over a time period. The resultant is then
sent as a message to the controlled module. Figure 10
shows a configuration for a modular robot containing a
convergence of control consequence. Figures 11 and 12
show how an ArbitrationNode resolves the consequence.

@configuration

@modulesMobilePlatform, WanderBehaviour,
AvoidObstacleBehaviour

MobilePlatform is_controlled_by WanderBehaviour

MobilePlatform is_controlled_by AvoidObstacleBehaviour

Figure 10. Convergence control consequence

@specification flat

@modules MobilePlatform, WanderBehaviour,
AvoidObstacleBehaviour, ArbitrationNede

MobilePlatform is_controlled_by ArbitrationNode

ArbitrationNode is_controlled_by WanderBehaviour

ArbitrationNode is_controlled_by AvoidObstacleBehaviour

Figure 11. ArbitrationNode introduction

is_controlled_by is_contmlled_by

Tationshi relationships
Wander :fd,mm L Wander o ! l:
Behaviour " Behaviour \{;’ N
\
/ Mobile B O._\f Mobile
J Platform /,’/ Platform
L
Obstacle / Obstacle
Avoidance Avoidance ArbitrationNode
Configuration Specification

Figure 12. ArbitrationNodes: modules & dependencies

In a hierarchical control architecture priorities are
assigned to each controlling module. The ArbitrationNode
receives messages from all the controlling modules, and
selects the one with highest priority. Figure 13 shows an
ArbitrationNode introduced to resolve the convergence of
control consequence in a hierarchical control architecture.
Figure 14 shows the corresponding dependencies and
conirol flows for the architecture.

@specification hierarchical

@modules MobilePlatform, WanderBehaviour,
AvoidObstacleBehaviour, ArhitrationNode

MobilePlatform is_controlled_by ArbitrationNode
ArbitrationNode is_controlled_by WanderBehaviour 0
ArbitrationNode is_controlled_by AvoidObstacleBehaviour 1

Figure 13. Convergence control resolution

Wander
Behaviour

Obstacle
Avoidance

is_vonolled_by
relavonships
VA

A

Wander >
2 -
Behaviour 11 ;o

; \
~ ! Mobile
/ Platform
}‘,n"
Module dependencies

Control flow

P

Muobile
Platform

Obstaclke
Avoldance

ArbuirationNode : A
ArbitrationNode

Control flow
Figure 14. Convergence control resolution

A divergence of control consequence arises when two or
more modules are controlled by a single module. It is
resolved by ControlSplitterNodes. which belong to the class
of ControlQutAlgorithms. ControlSplitterNodes duplicate their
input messages onto a number of output messages. The
configuration in Figure 15, for example, has a divergence
of control consequence. Figure 16 shows a
ControlSplitterNode used to resolve this consequence.

519

@configuration

@modules Wander, MobilePlatform1, MobilePlatform?2
MobilePlatform1 is_controlled_by Wander
MobilePlatform2 is_controlled_by Wander

Figure 15. Divergence control consequence

@specification

@modules Wander, MobilePlatform1, MobilePlatform2,
ControlSplitter1

ControlSplitterl is_controlled_by Wander

MobilePlatform1l is_controlled by ControlSplitterl

MobilePlatform2 is_controlled_by ControlSplitterl

Figure 16. ControlSplitterNode introduction

4.4 Discussion

The reasoning model described above involves the
incorporation of additional modules, referred to as nodes.
We will briefly highlight the benefits of these in the
context of high-level design and reconfiguration. The two
splitter nodes (DataSplitterNode and ControlSplitterNode)
and the data transformation node focus on the glue logic
that merges systems into functional units. MARS assumes
each module delivers data to at most one other module.
This may appear restrictive. However, if this were not the
case then the key sensor and control modules would need
to incorporate sophisticated support for multiple clients
and their data requirements, introducing significiant
programming and performance overheads. By decoupling
the data splitter and transformation functions we remove
these issues from the concern of the designer. Indeed, we
provide opportunities, for example, to distribute data
splitting and transformation functions onto different
platforms in order to maintain desired levels of service to
the client modules. The arbitration nodes, in contrast,
speak to the high-level design process directly, offering
support for a number of arbitration strategies. The key
choice point for the designer in the current version of
MARS is in the type of architecture to be realised.
However, we see considerable scope for the introduction
of a range of arbitration strategies.

5 Case Study Application of the Model

The subsumption architecture (SA) [10] is an interesting
control architecture to demonstrate in MARS as it makes
use of low-level functional modules which interact to
realise behaviours. The SA is based around increasingly
specialised levels of competence built from ‘modules’™ -
finite state machines which send messages over
connections between one another. Input to modules can be
suppressed (and replaced with another signal) by the
output of other modules. Similarly, output from modules
can be inhibited. Suppression and inhibition occur for a
given time period. Using the suppression and inhibition

mechanisms, levels are capable of subsuming the
behaviour of the levels below them.

Figure 17 shows Brooks’ Level 0 control system, an
‘avoid obstacles’ behaviour - the robot moves away from
approaching obstacles, or halts to avoid collisions. The
control system is realised as follows. Data from a sonar
sensor is passed to a Sonar module, which generates a
map, centred on the robot, containing the location of
obstacles. The map is monitored by the Feelforce module
which generates a repulsive force for each detected
obstacle and outputs the sum of these as a single resultant
force. The Runaway module transforms this force into
Turn and Forward commands which are passed on to the
Turn module, The Turn module executes the turn, and on
completion passes the forward heading onto Forward.
Turn then enters a wait state. Forward moves the robot
forward but halts if it receives an input during the motion.
Once the motion is complete, the Turn module is reset.
The Collide behaviour detects obstacles immediately
ahead of the robot. If a collision is imminent, the robot
halts, then turns away from the obstacle.

fum

I

Reset

Rorbot

I

forward

Sonar
Sensor

feelforce

Tunaway

headng

>

sonar

collide

halt

Figure 17, Level 0 control system (from [10])

It is important to note first that a direct translation of this
system to MARS is not possible. The SA relies on the reset
line, which MARS lacks, and supports only over-riding of
control messages, not of data messages. Subsumption-
style control can be demonstrated in MARS, however,
utilising hierarchical control. Figure 18 shows a
configuration which implements the level O control
system in MARS. In this architecture, priorities are
assigned to resolve control conflicts. The Sonar module is
a sensor module which produces sonar data of type
SonarData (in NotifyWhenReady mode). SonarMap is a
DataOutAlgorithm which produces a sonar map
representation — a list of polar coordinates of detected
obstacles. Feelforce, a DataOutAlgorithm, produces a
potential-field type repulsive force, calculated from the
SonarMap data. Runaway is a DataQutAlgorithm which acts
as a threshold — data from the SonarMap is output only if
it is above a certain value. Turn is a ControlQutAlgorithm
which converts an input force into a Rotn_Y motion.
Forward is a ControlOutAlgorithm which converts an input
force into a Trans_Z control. The Collide module is a
ControlOutAlgorithm which monitors for objects
immediately in front of the robot. If any are detected, a

520

*Trans_Z 0’ message (‘stop’) is sent to the Forward module.
MobilePlatform represents the robot.

@configuration hierarchical
@modules Sonar, SonarMap, MobilePlatform, FeelForce,
Collide, Runaway, Turn, Forward

Sonar 0 is_mounted_on MobilePlatform 0
SonarMap uses_data_from Sonar

FeelForce uses_data_from SonarMap
Collide uses_data_from SonarMap
Runaway uses_data_from FeelForce

Turn uses_data_from Runaway
Forward uses_data_from Runaway
MobilePlatform is_controlled_by Forward 0
MobilePlatform is_controlled_by Turn 1
MobilePlatform is_controlled_by Collide 2

Figure 18. Configuration for Level 0 control system

The configuration in gives the Forward module a priority
lower than that of Turn or Collide so that control from
either will override the Forward module, and stop the robot
from moving. Therefore, the robot will not move while
executing a turn. This architecture therefore gives the
same behaviour as the SA level 0 control system. The
control system is slightly different from that defined for
the subsumption architecture, as the output of the Runaway
module is split. This is necessary because MARS defines
headings in terms of single motions, and a module cannot
be sent a combined rotation/translation motion. Therefore,
the MARS Runaway module generates a heading which is
sent to both Tum and Forward modules. These modules
extract the turn (rotation) and forward (translation)
compenents of the heading and output the appropriate
control message. Analysis and synthesis of this
configuration produces the modular robot specification
shown schematically in Figure 19.

Forward
Sonar)
DataSpliter2
l Fecllorce [—p| Runaway
SonarMap Tum Phl:?rl::}-;ea .
DataSphuer]

Arbitrationl

p Collide

Figure 19. MARS equivalent of level () control system

DataSplitter] manages the divergence of data consequence
from the SonarMap to the Feelforce and Collide modules.
DataSplitter? resolves the divergence from the Runaway to
the Turn and Forward modules. An ArbitrationNode has
been introduced to resolve the convergence of control at
the MobilePlatform module,

Brooks [10} also defines a level 1 control system, which
adds a ‘wander’competence, as shown in Figure 20. The
Wander module generates a random heading for the robot

to follow. This is then passed to the Avoid module, which
also takes in the output of the Feelforce module. The
output of the Avoid module is a heading which points the
robot in the general direction specified by the Wander
module, perturbed to avoid any obstacles. The output of
the Avoid module then suppresses the output of the
Runaway module and replaces it with its own output.
Hence, the Avoid behaviour module subsumes the
operation of the Runaway module.

wanler

avoid
ol Level |

Level O

-
i

fuce

¥

feelforce unaway fum

heading
—>

forward

sonar

Reset

—» collde

halt

Figure 20. Level 0 and 1 control systems (from [10])

The level 1 control system specified by Brooks raises an
important issue. The SA relies on the ability of higher-
level outputs to subsume other output lines. In MARS this
is supported for control through the use of the priority
parameters of the is_controlled_by relationship. MARS does
not currently define the subsumption of data. Therefore,
the subsumption architecture as specified by Brooks to
Level 1 cannot be directly modelled in MARS. Figure 21,
however, shows an architecture which realises the same
functionality as the level 1 SA. Here, the output of the
Wander behaviour feeds directly into an ArbitrationNode
which competes with the output of the Level O control
system for the MobilePlatform.

Wander
Level |
Level0
Output from Level 0 Mobile
(to Maobile Platforin} Platform

ArbitrationNode

Figure 21. MARS equivalent of Level 1 control system

Brooks has been criticized for the subsumption
architecture which Connell [11] claims relies on a holistic
approach to a non-intuitive design process. MARS, in
contrast, offers a more rigorous approach to designing
reactive robot architectures.

6 Summary and Conclusions

In summary, we have presented two aspects of the MARS
model that are important components of robot
architectures, The MARS model aims at modelling and
reasoning about modular robot architectures. We have

i |

described the modelling of modules in terms of data and
control, and the modelling of the data and control
relationships that define interaction between modules in a
robot architecture. We have discussed the application of
the model to Brooks” subsumption architecture.

The MARS model has been implemented and tested on a
small set of case studies to evaluate the general approach.
More extensive studies are now required to evaluate it
both theoretically and practically on complex scenarios
incorporating real-time control and data/control
synchronisation. Further research is also required to
extend the model to incorporate support for high-level
task models and runtime reconfiguration. These studies
will provide the focus for future research.

References

(1] C. J. J. Paredis and P. K. Khosla, “Kinematic Design of
Serial Link Manipulators from Task Specifications,” Int. J.
Robotics Research, Vol. 12, No. 3, pp. 274-287, 1993.

Satoshi Murata, Haruhisa Kurokawa, Eiichi Yoshida,
Kohji Tomita and Shigeru Kokaji, “A 3-D Self-
Reconfigurable Structure,” Proc. 1998 IEEE Int’l Conf.
Robotics and Automation, pp. 432-439.

Keith Kotay, Daniela Rus, Marsette Vona and Craig
McGray, “The Self-reconfiguring Robotic Molecule,” Proc.
1998 IEEE Intl Conf. Robotics and Automation, pp. 424-
431.

Robert J. Anderson, “SMART: A Modular Control
Architecture for Telerobotics,” I[EEE Robotics and
Automation Magazine, September 1995, pp. 10-18.

Juan A. Fernandez and Javier Gonzalez, “NEXUS: A
Flexible, Efficient and Robust Framework for Integrating
Software Components of a Robotic System,” Proc. 1998
IEEE International Conference on Robotics & Automation,
pp- 524-529,

Sara Fleury, Matthieu Herrb, and Raja Chatila, “G"oM: A
Tool for the Specification and the Implementation of
Operating Modules in a Distributed Robot Architecture,”
Proc. IROS ‘97, pp. 842-848.

Héléne Chochon, “Object-oriented design of mobile robot
control systems,” 2nd ISER, Toulouse, France, June 1991,
pp. 317-328.

J. A, Fryer and G. T. McKee, “Resource Modelling and
Combination in Modular Robotics Systems,” Proceedings
of the 1998 IEEE International Conference on Robotics
and Automation, Leuven Belgium, May 16-20, 1998, pp.
3167-3172.

J. A, Fryer, G. T. McKee and P. 8. Schenker, Physical
Configuration Reasoning for Modular Robotics Systems, in
Proceedings of the IASTED International Conference on
Robotics and Automation 2000, Honolulu, Hawaii, pp.
248-254, 2000.

Rodney A. Brooks, “A Robust Layered Control System For
A Mobile Robot,” IEEE Journal of Robotics and
Automation, Vol. RA-2, No. 1, March 1986.

Jonathan H. Connell, Minimalist Mobile Robotics: A
Colony-style Archi-tecture for an Artificial Creature,
Perspectives in Artificial Intelligence, Vol. 5, Academic
Press, Inc, San Diego, 1990.

[4]

[5]

[6]

(7]

(9]

[10]

f11]

