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Abstract

Manipulator tasks such as assembly can be generally
divided into several motion primitives called "skills."
Skill-based motion planning is an effective way to execute
complicated tasks. When planning an assembly process,
fine motion planning such as backprojection in the
configuration space is often used. At IROS '96, we
introduced the concept of skill into the backprojection
method. General and skillful planning can be derived by
skill-based backprojection, and manipulation tasks that
approximate those performed by humans can be achieved.
Atthat time, we considered only manipulator control errors
to be planning uncertainties. In practice, however, visual
sensing errors and model ervors cannot be ignored. This
paper describes our skill-based backprojection method for
handling control, visual sensing and model errors by fine
motion planning.
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1. Introduction

In recent years, robots have been rapidly introduced
into several fields. In order to play a part in extensive
fields, manipulation robots need to perform various tasks
using special techniques. By analyzing human task
motions such as assembly and disassembly, we have
shown that movements consist of several significant
motion primitives. We called these "skills" and have
shown that most manipulator tasks can be segmented
into sequences of skills [1]-[5].

Various fine motion planning techniques have been
studied for such manipulation tasks as assembly and
disassembly. Fine motion planning in a configuration
space has been studied as a method of artificial
intelligence. In a configuration space planning is

simplified since an object is represented as a point within
the space. Lozano-Perez et al. proposed the concept of
pre-image, and their planning technique used generalized
damping while accounting for sensor and control
uncertainties [6]. Erdmann proposed the backprojection
method in which the goal region is projected in reverse
using an error cone, and this made it easier to obtain the
reachable region to the goal than by using the pre-image
[7]. Donald proposed motion planning with uncertainty,
not only in sensing and control, but also in geometric
models [8]-[9]. Latombe and Shekhar et al. extended
motion planning to a multi-step approach, using pre-
image back-chaining [10], and then analyzed goal
recognition capability in motion planning with
uncertainty [11]. Christiansen proposed an empirical
backprojection method based on a data-intensive
approach that differed from traditional analytical
techniques  [12].  More  recently, probabilistic
backprojections have been proposed [13]-[16].

We proposed a fine motion planning method based on
backprojection for various tasks that were composed of
several manipulation skills at [ROS '96 [17]. We showed
that general and skillful planning can be derived with
ease. However, we dealt then with manipulator control
errors only as an uncertainty, though sensing and
modeling errors may also impact the reliability of task
achievement.

Uncertainties in manipulation can be classified into
three kinds of errors: control errors, sensing errors and
model errors. We showed a fine motion planning method
using skill-based backprojection to handle control and
visual sensing errors at ICAR '99 [18]. However, model
errors cannot be ignored if a rough geometric model is
used or exact planning is needed. In general, planning
with model errors is complex since a large number of
model errors must be taken into account. For example,
the method of motion planning with model uncertainty
that was proposed by Donald is calculated in a
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generalized  configuration  space by  increasing
dimensions [8]. However, it is possible that planning can
be simplified by considering the process of model
matching and the adaptability of manipulation skill. We
will consider a real object as shown in Fig. 1(a) which is
in the shape of a rectangle with a hole. The model is
shown in Fig. 1(b) and is a little larger than the real
object. Fig. 1(c) shows model matching using data on the
upper-side and right-side edges of the object. Planning of
a peg-in-hole task is then simple since errors on these
two edges are not taken into account. Moreover, it can be
simplified by taking into account the tolerance brought
by manipulation skills in the task.

This paper describes our proposal for a fine motion
planning method using skill-based backprojection to
handle not only control errors but also visual sensing
errors and model errors. Our method assumes that a
hand-eye range finder set on a manipulator (Fig. 2) is
used since it is necessary to obtain range data from a
position that assures highly reliable task achievement.

The next section explains our concept of manipulation
skills, skill in the configuration space, skill-based
backprojection to handle only control errors, and
composition of the skill sequence. The backprojection
method with visual sensing errors and model errors is
explained in section 3. The processes of visual sensing,
geometric modeling and execution of a task are
explained for task and skill levels in section 4. Our
proposed method is demonstrated using an example of a
peg-in-hole task in section 5.
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Fig. 3 Move-to-touch skills
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2. Manipulation Skills

This section explains our concept of skills. See
References 1 - 5 for more details. In this section, we will
take into account only the control errors as uncertainties,

2.1, Skill Primitives

In assembly and disassembly tasks, skills in which the
contact states vary are particularly significant. We will
consider three skills which play an important part in such
tasks: move-to-touch, rotate-to-level and rotate-to-insert.
Most assembly manipulation tasks arc comprised of
these three skills. In this paper, we consider skill motions
as occurring in two-dimensional environments.

(1) Move-to-touch Skill

The move-to-touch skill is the transition from a free to
a vertex-to-face contact between a grasped object P and
another object Q in velocity control mode (Fig. 3(a)). A
similar transition of maintaining contact in a different
direction of motion is also part of this skill (Fig. 3(b)).
These two transitions are represented respectively by the
move-to-touchr skill and the move-to-touche skill.

(2) Rotate-to-level Skill

The rotate-to-level skill is the transition from a vertex-
to-face contact to an edge-to-face contact (Fig. 4). This
skill is performed with pushing force.

(3) Rotate-to-insert Skill

When the clearance is small in an insertion task, it is
generally difficult to achieve the state in Fig. 5(b)
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Fig. 7 Move-to-touch, skill with control uncertainty

directly. The state in Fig. 5(a) is achieved first using
other skills, such as the skill sequence of Fig. 3(a) and
(b). The state in Fig. 5(b) is then accomplished by
gradually raising the object while maintaining contact as
in Fig. 5(a). The rotate-to-insert skill is the motion of
rotating the object P obliquely into the hole in another
object @ to insert it accurately. In our study, we assume
that the rotate-to-insert skill also includes the pressing
motion required to achieve the goal of the insertion task
(Fig. 5(c)).

2.2. Skill Commands

We conceptually represent these skill primitives as
operation commands.

(touch_v w a). move-to-touchr skill of transition of
velocity a along the w-axis.

(touch_p w a v b): move-to-touche skill of transition
of velocity a along the w-axis with pressing force » on
the v-axis to maintain constant contact. There is also
the possibility that the actual direction of transition is
inclined due to the constraints of contact. In such a
case, we regard the w-element of the actual direction
of transition as velocity a.
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Fig. 8 Rotate-to-level skill in C-space

(rotate w ¢ v b): rotate-to-level skill of rotation of
angular velocity ¢ around the w-axis with pushing
force b on the v-axis.

finsert w ¢ v b): rotate-to-insert skill of rotation of
angular velocity ¢ around the w-axis and pressing
motion with pushing force b on the v-axis.

In these commands, w and v correspond to x, v or z. As
described in this paper, we assume that a, b and ¢
correspond to either a "+” or "-“, not a value. For
example, the commands of motion in Fig. 3(a), (b) are
represented respectively by (fouch_v z -) and (touch_c v
+ z -

2.3. Skills in Configuration Space and
Backprojection

Next, we will discuss the trajectory of skill motions in
the configuration space.

(1) Move-to-touch Skill

In the configuration space the trajectories of the object
P being manipulated with the move-to-touchr skill in Fig.
3(a) and the move-to-touche skill in Fig. 3(b) are drawn
in Fig. 6(a) and (b), respectively. CB is a C-obstacle
which represents an object {0 in C-space based on the
reference point O+ of object P. To take into account the
uncertainty of control when using the move-to-touchr
skill, we have drawn the trajectory using the control
uncertainty cone shown in Fig. 7.

(2) Rotate-to-level Skill

Assuming that reference point O4 is a vertex in prior
contact with the surface (Fig. 4), the position of O4 on
the YZ-plane in the configuration space stays constant
(Fig. 8).

(3) Rotate-to-insert Skill

The trajectory of the object in the configuration space
when manipulated with the rotate-to-insert skill is shown
in Fig. 9. The transfer motion of the vertex from Fig. 5(a)
to Fig. 5(b) happens at orientation 8= 6 in Fig. 9,
where the phase of C-obstacle CB changes.
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Fig. 10 Backprojection of move-to-touch;
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The backprojection of each skill is derived by the
reverse trajectory from each goal [7]. For example, the
backprojection of the move-to-touchr skill (Fig. 10(a)) is
drawn by projecting a similar velocity cone from the
goal edge (Fig. 10(b)).

2.4. Construction of Skill Library and
Composition of Skill Command Sequence

First, the skill library is constructed in advance. The
trajectories drawn in the configuration space are derived
for several skill primitives such as the above-mentioned
skills. A skill library consisting of skill primitives
expressed by trajectories in the configuration space is
thus constructed.

Next, a command sequence to perform a specific task
is created using skill primitives from the skill library. In
this paper, we will discuss assembly as a task, and
assume that the command sequence is arranged in
increasing number of contact points for each skill
primitive. Therefore, multi-step backprojections are
made up as the number decreases at each step, since we
take the reverse direction of time into consideration,
Furthermore, we assume that the objects in the
workspace are modeled as polygons. We exclude cases
of low probability such as a direct transition from one-
point contact to three-point contact, and omit parameters

Table 1 Variations in the number of contact points
in backprojection for each skill command

(touch_v) 1—0

2—1
(touch_p) 152
(rotate) 2—1

(insert) 3—2

(insert) (touch_p)
,—'_—.-"‘ /—'—_—\

Qs =@ @ o O
(touch_p) (rotate)

Fig.11 State diagram for the number of
contacl points in backprojection

in skill commands, Then, variations in the number of
contact points in the skill commands are shown as
follows.

(1) (touch_v}

The move-to-touchr skill, that is, a transition from the
tree state to a one-point contact (Fig. 3(a)) occurs by this
command.

(2) (touch_p)

A transition occurs from a one-point contact to a two-
point contact (Fig. 2(b)), or from a two-point contact to a
three-point contact, based on the move-to-touche skill.

(3) (rotate)

A transition from a one-point contact to a two-point
contact occurs (Fig. 3).

(4) (insert)

We consider three-point contact as a goal state of
insertion by taking actual manipulation into account.

For backprojection, these variations are revised in
reverse sequence as shown in Table 1. By putting the
number of contact points on the nodes, a state diagram
describing the variations in the backprojection (Table 1)
is derived as shown in Fig. 11. Candidate command
sequences can be obtained by applying the number of
contact points at the goal and at start of the task to Fig.
1.

The method to decide the most suitable command
sequence and most suitable initial state is shown in [17].
The most suitable sequence by which the largest region
of backprojection can be obtained and the instructed task
can actually be performed is chosen. The most suitable
initial state is chosen from the viewpoint of task
achievement reliability as shown in [17].
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3. Backprojection with Three Kinds of

Uncertainties

In this section we will explain backprojection of
manipulation skills that takes into account three kinds of
uncertainties. In section 2 we explained backprojection
using only control errors and we did not deal with the
two other uncertainties: sensing errors and model errors.
However, if planning must have high reliability, these
two uncertainties cannot be ignored.

First, we will consider backprojection that takes into
account visual sensing errors. In general, position data
obtained by a range finder will have large errors in depth
data. Thercfore, for simplicity, we consider only the
sensing errors in depth from a range finder. Uncertainty
of a point in C-space can thus be expressed by a line
segment. On the other hand, if a grasped object P is in
contact with a static object @, relative position errors
between these two objects Pand @ are not likely to occur.
Therefore, we will consider a skill in which both objects
P and Q are not in contact at the start, that is, the move-
to-touchr skill (Fig. 10). Assuming that the maximum
value of the visual sensing error ¢ in the depth is g%,
the backprojection is derived by moving the object Q
containing the (sub)goal edges within + ¢* in the
direction of the sensing and then extracting the
overlapping regions of all backprojections (Fig. 12).
When the directions of the visual sensing and
manipulation are the same, the size of the backprojection
is largest. However, it is difficult to achieve visual
sensing from this viewpoint because of collision
avoidance between the vision system and manipulator.
Therefore, visual sensing should be performed as closely
as possible from the direction of manipulation. While we
considered errors in the depth direction, if it is necessary
to take into account errors in other directions,
backprojection can be similarly derived by changing the
uncertainty of a point to an elliptical region.

Next, we will consider backprojection that takes into
account model errors. In general, a geometric model does
not perfectly express the real object. When model
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Fig. 13 Backprojection with model errors

matching is done, gaps occur between the real object and
the model. By considering surfaces, edges and vertices
used in model matching, there will be parts in which it is
not necessary to consider gaps, so the number of parts in
which it is necessary to consider gaps can be decreased.
Moreover, it is possible that the number can be decreased
by taking into account tolerance in the manipulation
skills, For simplicity, we will explain backprojection
with model errors in the move-to-touchr skill (Fig. 10).
Assuming that the upper-side and right-side edges are
used in model matching (Fig. 13(a)) and that the
maximum value of the model error & in the direction of
a gap on the upper-side edge is ¢, the backprojection is
derived by varying the gap within # & in the direction
of the edge and then extracting the overlapping regions
of all backprojections (Fig. 13(b)). While we assumed
that the angle between the upper-side and right-side
edges had no error, if the inconsistency of the angle
cannot be ignored, the backprojection can be derived by
model matching in which the upper-side edge is given
priority. Moreover, while we considered only the model
errors of the static object O, if the model errors of the
grasped object P cannot be ignored, the backprojection
can be derived by varying a C-obstacle CB with the
condition that a reference point of the object P has no
eITOr.

We will next consider backprojection that takes into
account three uncertainties: control errors, visual sensing
errors and model errors. This backprojection is derived
by moving all parameters in uncertainties and then
extracting the overlapping regions of all backprojections.

4. Process of Sensing, Modeling,

Planning and Execution

We will now describe the procedure of sensing,
modeling, planning and execution for a manipulation
task. If the models of each object are precise and range
data is obtained correctly, the environment model of the
working region of the robot can be constructed
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accurately. Thus, overall manipulation planning should
be able to be carried out only by initial visual sensing. In
reality, however, visual sensing errors and model errors
cannot be ignored. Therefore, visual sensing and
modeling should be carried out at each step just before
planning the task and skills. Figure 14 shows the
procedures of sensing, modeling, planning and execution.
In this scheme, planning of the task level is first
performed, and then executions of skill level are carried
out according to sequences derived from the task
planning.

<Step 1> Task Level

At the task level, the skill sequence comprising the task
is decided and backprojection is derived. First, visual
sensing of the working environment of the robot is
carried out using a range finder and modeling is
performed. Next, planning is done, and skill command
sequences and backprojection are derived by the method
shown in 2.4.

Measurement and modeling in this level decide the
global arrangement of the objects in the working
environment of the robot. Since global and rough data is
used, the environment model often has some uncertainty.
The backprojection derived in this level may likewise
have some uncertainty.

<Step 2> Skill Level

At the skill level, each skill in the command sequence
{Skillr, Skillz, -} is executed in order. Before the
sequence is performed, transition of the grasped object P
to the initial state is carried out. We represent the
transition as PreSkills.

(2.1) PreSkill:

First, visual sensing of the object Q including the goal
or subgoal is carried out as closely as possible from the
direction to the backprojection derived at the task level.
Second, geometric modeling of the object @ is carried
out, Third, planning occurs. Since local and precise data
is used, more precise planning can be performed. During
this re-planning, the exact backprojection taking into
account visual sensing errors and model errors is derived

unceriain 5
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Fig. 15 Peg-in-hole

by the method shown in section 3. Next, transition to the
initial state is executed.

(2.2) Skilli fi=1,2, -}

In this step, sensing, modeling and execution of each
skill in the command sequence are carried out. Sensing
and modeling are performed both for the object O
including the (sub)goeal and the grasped object P to make
sure that the grasped object P actually exists in cach start
region. To be exact, we confirm by transforming the
grasped object P to a point in C-space.

First, sensing and modeling for Skilli are carried out.
Then, visual sensing is performed from the same
direction as PreSkilli. Next, the position of the grasped
object P moved by PreSkilli is checked. Since visual
sensing errors for the grasped object P also have to be
taken into account, the backprojection becomes smaller,
This reduction of the backprojection will be explained
with an example in the next section. After the position is
confirmed, SAills is executed.

Next, the same process is carried out for each Skilli /i =
2,3, -}, However, sensing, modeling and confirmation
with respect to Skilli can be omitted if the subgoal of
Skilli-1 is included in the backprojection of Skill:.

5. Example

We will explain our method of planning using a peg-in-
hole task (Fig. 15) as an example. All parameters of both
objects Pand Q are the same as those in [17].
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<Step 1> Task level

First, visual sensing for the working environment of
the manipulation robot is performed from an arbitrary
viewpoint using a range finder and modeling is
performed. Next, the sequence of skill commands is
derived, The results of the example in [17] show that the
most suitable reverse command sequence is { (insert) —
(touch_p) — (touch_v) }. Therefore, each step comprising
the task is as follows.

PreSkilli: transition to initial state by position control

Skillr: move-to-touch skill in -z-direction

Skill2: move-to-touch skill in y-direction

Skills: rotate-to-insert skill

Furthermore, the same example [17] shows that the
most suitable initial state is an orientation 8¢ = 45.8
deg and a position (Yo, Zo) on the line segment L in Fig.
16.
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<Step 2> Skill level

(2.1) PreSkill:

First, visual sensing of the object Q is carried out using
a range finder and model matching is performed. In
general, some errors exist between a real object and the
model. We will assume that the upper-side and right-side
edges are used in model matching, as we described in
section 3. Then, the upper-side edge has no error, but the
hole has errors as shown in Fig. 17. By taking into
account tolerance of skill primitives in a peg-in-hole task,
however, only three errors &7, &2, 83 at the comers as
shown in Fig. 18 will influence the backprojection. Then,
the backprojection taking into account these errors is
derived as shown in Fig. 19. Next, the grasped object P
is transferred into the region of the backprojection by the
manipulation.

(2.2) Skilli fi=1,2, -}

(i) Skills

Sensing and modeling is carried out from the same
viewpoint as PreSkillr. Since visual sensing errors for the
grasped object P also have to be taken into account, the
backprojection becomes smaller by £* in the sensing
direction as shown in Fig. 20. If the grasped object exists
within this region, Skill1 is executed.

(ii) Skillz

Since the subgoal of Skilli is included in the
backprojection of Skillz, sensing, modeling and

confirmation of Skiflz can be omitted. Skill2 is therefore
executed following the execution of Skill1.

(iii) Skills
This is done similarly to the procedure in Skifl>.
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6. Conclusion

We have shown fine motion planning using skill-based
backprojection that takes into account uncertainties in
control, visual sensing and model. Since we extended the
skill-based backprojection method we proposed at TROS
'96 to handle visual sensing errors and model errors, our
technique can now be applied to a real-world system in
which these uncertainties cannot be ignored. The
reliability of task achievement can clearly be increased.

In the future we will study an approach to derive more
appropriate position and orientation for the visual
sensing and more suitable model matching, We must also
take into consideration a skill-based backprojection
method to handle these three kinds of uncertainties in a
three-dimensional environment for application to real-
world tasks.
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