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Abstract

In several complex applications, the use of multiple
Autonomous Robotic Systems (ARS) becomes necessary
to achieve different tasks such as foraging and transport
of heavy and large objects with less cost and more
efficiency. They have to achieve a high level of
fexibility, adaptability and efficiency in real
environments. Therefore, they must particularly have
the capability to avoid collisions among them and with
obstacles. In this paper, a Reinforcement Learning (RL)
based collision aveidance approach for multiple ARS is
suggested. Indeed, each robot must learn how to avoid
the others from its interaction with the environment
while reaching its target. This learning process allows
ARS to benefit from the experience of the others simply
by having the same score base. This approach must
provide ARS with capability to acquire the collision
avoidance behavior among several ARS from
elementary behaviors only by trial and error search.
Then, simulation results display the ability of the
suggested approach to intelligently avoid collisions
adaptively among ARS and with obstacles. Such an
approach is capable to provide these ARS with real-
time processing, more autonomy and intelligence.

Keywords: Autonomous Robotic Systems (ARS),
Navigation, Collision Avoidance Behavior, Adaptive
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1 Introduction

With increasing demands for high precision
autonomous control to achieve cooperative work by
multiple  Autonomous Robotic  Systems (ARS),
conventional control approaches are unable to

adequately deal with system complexity, nonlinearities

and uncertainty. Intelligent control that is experiential
based rather than model based is designed as a new
emerging discipline to overcome these problems [13, 3,
9]. This kind of discipline is necessary for robot control
in several development of real-time robotic applications
[4, 10] particularly the problem of collision avoidance
among scveral robots. The ARS endowed with this
behavior have the ability to move and be self-sufficient
in multi-robot environments. These ARS must be
capable of task and situation oriented behavior if they
are to react usefully to their environment. An a priori
modeling of all possible reactions to particular events is
in most cases not possible. For this reason, the
development of control systems for ARS has led to the
development of adaptive systems. These systems react to
changes in their environment, learn from errors in
behavior and can solve some unforeseen situation
classes independently [13, 5]. In fact, most of the
research conducted today for learning in autonomous
robots deals with the behavior-based paradigm [9]. This
bottom-up approach concentrates on physical systems
situated in the world and promotes simple associative
learning between sensing and acting [14]. This learning
in mobile robotics is aimed at avoiding the need (for the
human operator) to model all of the complexities,
interactions, or other influences in the real world [13,
19]. Among these adaptive approaches currently
available, Reinforcement Learning (RL) is one of the
most investigated approaches [13, 20, 19].

This paper deals with the behavior-based robotics
and intelligent control of ARS in multi-robot
environments. The aim of this work is to suggest an
adaptive collision avoidance approach for multiple ARS
capable to provide these robots with real-time
processing, more autonomy and intelligence. Therefore,
a reinforcement learning collision avoidance based
approach for multiple ARS is suggested as one of the
fundamental functions of the robots. This approach uses
an adaptive method for acquisition of the elementary



behaviors to avoid collision with other robots and
obstacles. To acquire the adaptive behavior, the RL is
introduced. It is shown that the appropriate behaviors
for collision avoidance can be successfully acquired
through the suggested learning process. Because RL is
concerned with the adaptive control of a robot through
the use of scalar rewards (for feedback) and direct trial-
and-error interaction with the environment [14, 19], it is
useful for many robot problems. Indeed, the system
based on RL improves its performance by receiving
feedback in the form of a scalar reward (or penalty) that
is commensurate with the appropriateness of its
response. Thus, this behavior-based approach must
provide robots with capability, to avoid collisions by
interaction with the environment. In this paper, current
obstacle avoidance approaches based on RL which
remedy insufficiencies of classical approaches are
discussed in Section 2. A RL approach essentially based
on the robot interaction with the environment to acquire
the obstacle avoidance behavior is suggested in Section
3. This approach uses elementary behaviors to learn
how to behave in a multi-robot environment. Section 4
summarizes the simulation results.

2 Reinforcement Based

Approaches

Learning

Designing robots that learn by themselves to perform
complex real world tasks is still an open challenge for
the field of robotics and artificial intelligence [13, 9,
20]. Indeed, several researchers have developed
approaches that are based on learning from interaction
with the environment and experience. Such type of
learning is pertinent to intelligent control since it leads
to systems that do not depend upon a priori knowledge
for decision-making. A RL as a pertinent type of this
learning maintains an explicit policy function that maps
situations directly into actions instead of using an
explicit domain model to generate a sequence of actions
which is then executed open loop as in classical
planning [14, 16, 20]. Indeed, approaches based on RL
allow a quick response to unexpected contingencies and
opportunities leading to situated and reactive systems,
which are of a great interest in robotics, and particularly
in multi-robot systems. Situatedness and reactiveness
are in fact two important properties of systems using
RL. Indeed, robots are situated since the robots
themselves must control the whole interaction with the
environment, i.e., the world must always be seen from
the perspective of the robots [12]. In other words, the
robots are situated if their control decision is based on
the current situation (as determined by sensor readings
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and possibly a limited amount of internal state).
Consequently, the robots have to be able to bring in
their own experience in dealing with the current
situation [12, 20]. While robots are reactive if they
generate actions (behaviors) at a rate that is
commensurate with the dynamics of the environment in
which they are embedded. For such robots, decision
making consists of evaluating a policy function, which
typically requires a small constant amount of time [20].
These robots characterized also by their incremental
learning adapt their policies based on experience
accumulated over time. They gradually reach the correct
answer through successive approximations even if their
models are incomplete or inaccurate leading then to
robust robots. This robustness also implies that these
models can be learned during the process of RL, which
allows then their use, by the robots themselves [14, 20].

Several works focused on control of a single robot.
Indeed, some of them are interested in improving a
collision avoidance problem based on RL through the
use of neural networks [17, 18] or by providing a
method to segment the sensor space [11], or by
introducing several algorithms using immediate reward
and delayed reinforcement [8].

In the contrary the use of RL in the collision
avoidance problem for many robots is still an opening
problem. For instance, an adaptive acquisition for
collision avoidance among multiple autonomous mobile
robots which are equipped with ‘LOcally Communicable
Infrared Sensory System (LOCISS)’ is developed in [1].
This approach is based on RL scheme where a selected
behavior is executed and is evaluated based on the
displacement of three distances. The learning process
should be executed to acquire the collision avoidance
behaviors for a specific situation. However, considering
the implementation of this approach onto the real robot
constitutes a problem. The number of possible situations
becomes extremely large beyond the capacity of
memories which can be mounted on an actual mobile
robot, because of the combinatorial explosion of the
sensory patterns exchanged by the LOCISS among
multiple robots. To reduce this number of combinations
and to realize a feasible control mechanism which can
be installed in a robot’s onboard computer system, a
multilayered RL scheme for acquisition of appropriate
collision avoidance behaviors is proposed by Fujii ef al.
[6]. It is constituted of four layers of modular controllers
corresponding to the stages of RL. Another effective
collision avoidance algorithm for two robots, suggested
in [7] is generated by a very simple learning process that
simulates a naive human trial-and-error learning
process. This approach uses only the robot’s sensor
outputs and a suitable reward function, where the exact



form of the reward function is learned autonomously by
the robots. The authors discuss also how a robot can use
its ‘experience’ gained in a simple environment to
adjust itself to a more complex environment by
automatically ~ generating a  collision  avoidance
algorithm for a three-robot situation using a reduced
state space for the case of two robots,

In this paper, an approach based on RL is suggested
to achieve a collision avoidance in multi-robot
environments. This approach allows ARS to interact
and adapt their behaviors to achieve the desired task.

3  Reinforcement Learning Based
Collision Avoidance Approach for Multiple
ARS

In this Section, the collision avoidance problem in
multi-robot environments is developed using the
suggested RL based approach by learning through
experimentation to choose actions so as to maximize
one’s productivity in these dynamic environments. In
such environments, the situations become complex
when the number of ARS increases. To achieve a
collision avoidance in such situations, it is necessary to
adopt an adaptive approach to acquire behaviors to
avoid collisions among ARS and with obstacles. The RL
paradigm based on Q-learning algorithm is introduced
in the robot learning process acquire the appropriate
behavior to navigate while avoiding collisions.

Indeed, unlike most learning algorithms that have
been studied in the field of Machine Learning,
reinforcement learning techniques allow to find optimal
action sequences in temporal decision tasks where the
external evaluation is sparse, and neither the effects of
actions, nor the temporal delay between actions and its
effects on the learner’s performance is known to the
learner beforehand [15]. The designated goal of learning
is to find an optimal policy, which is a policy for action
selection that maximizes future pay off (reward). In
order to do so, most current reinforcement learning
techniques estimate the value of actions, i.e., the future
pay off one can expect as a result of executing an action,
using recursive estimation techniques [15, &].

3.1 ARS and Sensors

Fach ARS has five infrared sensors (transmitters and
receivers) as shown in Figure 1, and is capable of
detecting the relative position of another robot within its
sensing range. By transmitting/receiving motion
information, that is, moving direction and speed, each
robot can recognize other robot’s motion easily [1].
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Figure 1: Robot Model.
3.2 Elementary Behaviors

The robot has no knowledge a priori of the
environment where it moves. Its structure must allow to
learn to behave only from interactions in the
environment. The robot uses two elementary behaviors
to act on the environment to change its state:

Forward : the robot moves towards its target,

Aveid : The robot turns when detecting an obstacle.
These behaviors conduct to the following actions which
are used in the suggested approach:

Ignore : the robot moves towards its goal ignoring the
objects around.

Follow : the robot moves towards its goal ignoring the
objects around but with a reduced velocity.

TurnL : the robot performs a movement in left
according to its orientation.

TurnR : the robot performs a movement in right
according to its orientation.

The set of actions are then : A = {[, F, TL, TR}.

3.3 System Description

In most current real world applications, there must
be the situation in which three or more robots and
objects happen to aggregate in a small area. The
objective of the learning process is to acquire the
appropriate behaviors to get to each robot’s own goal
while avoiding collision to other robots and obstacles
based on the information communicated by the sensors.

In this paper, a situation s in the environment is
defined by the state of the sensor set. This state
represents the existence or not of an ARS or an obstacle
in each ranging area of each sensor. The collision
avoidance problem in such multi-robot environment is
solved by interacting with it. Each robot acquires the
capacity to intelligently avoid collisions with other
robots and with obstacles. This collision avoidance
behavior is essentially based on a RL scheme acquired
by interaction as shown in Figure 2. The objective of the
ARS is to collect the maximum of rewards. Therefore, it



must choose the most rewarded actions and avoid the
most punished. Thus, the suggested approach must
make the robot capable to avoid robots and obstacles by
interacting with the environment.

[nteraction with
the environment

inforcement !
Remf.o ment 1 | Behaviors
learning based (actions)
collision

Chosen action
based on Q
value

avoidance

Reward or
Punishment

Figure 2: System Synopsis.

3.4 Learning by Interaction

In order to accomplish collision avoidance in multi-
robot environment where the situation becomes very
complicated, it is necessary to introduce learning
schemes. This learning lets the robot acquire adaptive
behaviors with little or no a priori knowledge of the
environment where the robot will work [11]. In fact, the
robot learns through trial and error interactions with the
environment. During the navigation, each ARS must
build an implicit internal map (i.e., obstacles and free
spaces) from sensor data, update it and use it for
intelligently controlling its collision avoidance behavior.
This behavior is acquired by learning without any
teaching signals from sensory information.

The state of the sensors defines a situation s. For

every situation s € S, the robot can take an action a
from the action set A. The action a € A for the situation
s € § causes the transition of the situation to s’ = e(s, a)
e S, where e is the given transition function which
defines the environment. The purpose of the
reinforcement learning is finding an optimal policy to
select the action a for the situation s that maximizes the
discounted sum of the reinforcement signals (s, a)
received over time. Watkins’ Q-learning algorithm [19]
gives us an efficient solution to this problem.
Learning Procedure. The adaptive acquisition process
based on Q-learning is then conducted for a specific
situation recognized by the sensory system according to
the procedure shown in Figure 3. The score base which
is the value table (i.e., Q matrix) of Watkins [19] is a
series of scores allowing selection of behaviors.

An ARS learns a given behavior by being told how
well or how badly it is performing as it acts in each
given situation. As feedback, it receives a single
information item from the environment. By successive
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trials and/or errors, the robot determines a mapping
function which is adapted through the learning phase as
shown in Figure 3. This learning procedure uses a
single common value table shared and updated by all the
ARS. Therefore the learning is shared within the group
and the ARS learn more quickly because they take
advantage of the other robot’s experiences.

Perception of the
environment state s
via the sensors.

Selection of an action
AXa QIS, A’] and

!

Execution of the
selected action.

[ ]

Evaluation of the
action (close to the
goal, far from the goal
or collision).

!

Learning by reward :
Updating of the
behavior values :
QIS.A)=Q(S,Al+ ofr+YMAX,
QIS.A'1+QIS.A]l

Base of
values (Q
matrix)

Figure 3, Learning Procedure.

Reinforcement function. The values of the reinforcement
signal are usually hand-tuned and emerge after lots of
experiments. These values must inform the robot if the
action accomplished is good or bad. Indeed in RL, the
behavior is synthesized using, as a unique source of
information, a scalar, the so-called reinforcement value,
which evaluates behavior actions: the robot receives
either positive or negative reinforcements according to
the utility (i.e., desirability) of the obtained situation as
a consequence of the performed action,
In this paper, the ARS receives
reinforcement signals during learning:
+2 if a robot reaches its target,

the following



-0.1 If a robot moves away from the target,
-5 if a collision occurs.

4  Simulation Results

To reflect the collision avoidance behavior of ARS
based on the suggested approach, the ARS navigation is
simulated in different environments and the used
parameters in the learning algorithm are summarized in

table 1.
Table 1: Q-learning Parameters.

Parameters Values
Learning rate o 0.4
Discounting factor y 0.9
Exploration ratio 12.5%

The simulation results presented in Figures 4, 5, and
6 illustrate the robot learning of the collision avoidance
behavior by interaction with the environment. Indeed, in
Figure 4, an ARS tries to find its way to reach its target.
The ARS takes two different ways as shown in Figure 4
(a) and (b). In Figure 4 (b), the passageway between the
two obstacles is so confined than the robot could not
pass. Therefore, it tried another way by trial and error
until finding the new path conducting to its target (see
Figure 4 (b)). This is made possible by the learning from
interaction and particularly to the exploration capability
of RL approach with its self-learning control.

(b)

Figure 4: Collision Avoidance Between an ARS and
Obstacles.
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In Figures 5 and 6, several ARS intersect without
collisions among them and with obstacles while
reaching their goals.

&

Figure 6: Collision Avoidance Among Multiple ARS in
a Dynamic Environment.

These simulation results display the capability of the
suggested approach to endow each ARS with an
adaptive behavior acquired from interaction with the
environment to achieve a desired task with restricted or
no knowledge a priori.

5 Discussion and Conclusion

To solve the collision avoidance behavior problem of
multiple ARS in multi-robot environments, a RL based
collision avoidance approach is suggested. In such
environments, it is difficult to prepare a teaching signal
or to collect the sample necessary for the training.
Indeed, RL allows, at least in principle, to bypass the
problems of building an explicit model of the behavior
to be synthesized or needing a meaningful learning base
for supervised learning. With this adaptive learning
approach, the robot is only guided by reinforcements ted
back by the environment and is done incrementally and
progressively since its parameters are updated at each



step and then are sensitive to all changes in the
environment especially the value table. This table,
which gives an evaluation of the selected behavior,
allows learning by interaction with the environment.
This learning is shared within the group by updating the
same value table and the ARS learn more quickly
because they take advantage of the other robot’s
experiences. The ARS endowed with the suggested
approach succeed in their navigation without collision
in an environment a priori unknown. Thus, this
approach allows a real-time navigation based on a
continual learning in a dynamic environment. This
approach based on Q-learning scheme allows to learn by
interaction how to avoid other ARS or obstacles even in
presence of uncertainties. Indeed, in the real world
applications, there must be unpredictable random noises
and the answers to the complicated collision avoidance
problems cannot be derived easily by human designers.
It is, then, favorable that the answers to the problems
can be automatically acquired through the learning
process in real or simulated world (from experience).

The simulation results display the ability of the
suggested approach to provide ARS with capability to
intelligently avoid collisions among them and with
obstacles, in unvisited environments, illustrating the
robustness and adaptation capabilities of this approach.

An interesting alternative for future research is the
use of this collision avoidance approach to achieve more
complex tasks such as the transport of heavy and large
objects with different shapes by multiple ARS
navigating in formation.
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