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Abstract

A method for aperiodic rough surfaces classification
1s proposed with the use of FFT images from an ul-
trasound continuous transmission frequency modulated
(CTFM) sensor. A mathematical model for the FFT
image of the CTFM ultrasound sensor scattering from
an aperiodic rough surface is derived with the help of
the extended Kirchhoff Approzimation Method (KAM)
used by Bozma and Kuc [1]. The objective of this paper
will be the discrimination of different kinds of rough
surfaces, typical of a mobile robot pathway, using the
attributes and the parameters of the above mathemati-
cal model for feature extraction and the help of neural
networks for classification.

1 Introduction

During the past few years a number of researchers
have tried to classify different kind of objects and sur-
faces using ultrasound sensors. Most of these efforts
were based on the use of neural networks for feature
extraction from the echo representation in time, fre-
quency and time - frequency domain. In Dror et al.,
1995 [2] several pre-processing transformations of the
echo were examined, including power spectrum, wave-
form, spectrogram and cross-correlation for a three-
dimensional target recognition task. The recognition
of faces and the speed of a moving target using time-
frequency representation were explored in Dror et al.,
1996 [3]. In Harper and McKerrow [4], the classifica-
tion of various plants was studied using the Fourier
transform of the demodulated echo as input to a neu-
ral network. However the use of neural networks for
feature extraction proves to be inefficient as the neural
network manages to learn only one or two of the major
features of the data. Politis and Probert [5], suggested

that greater efficiency can be achieved by extracting
somne of the underlying features of the sonar images as
pre-processing hefore the classifier.

In this paper the above idea of pre-processing the
sonar images before the classifier, is adopted. A math-
ematical model for CTFM sonar scattering from rough
surfaces is derived and the parameters of the model
are used as features. The performance of K-Nearest-
Neighbour algorithm, Radial Basis Functions and the
Multi-Layer-Perceptron were tested during a classifi-
cation task of different kinds of rough surfaces. Sam-
ples were taken from various kinds of rough surfaces,
including grass and gravel terrain, asphalt pavement,
plastic floor and a carpet, with the help of a CTFM
sonar. This type of sonar transmits a linearly fre-
quency modulated chirp and detects range in the fre-
quency domain by comparing the instantaneous fre-
quencies of the transmitted and received signals. The
beam characteristics are similar to Polaroid sensor. Fi-
nally useful conclusions for the implementation and
the robustness of each classification algorithm are ex-
tracted.

2 Rough surfaces modelling using CTFM
sonar

According to Bozma and Kuc [1] the scattering of
the incident wave on to a rough surface is described
by the Kirchhoff approximation method. However the
application of the Helmholtz-Kirchhoff integral differs
from the usual treatment of approximating the inci-
dent and scattered waves by plane waves. KAM is ex-
tended to include spherically diverging waves from the
scattering surface. Assuming that the surface height
is described by the function {{z,y), which follows the
Gaussian distribution with zero mean and standard
deviation o and has correlation length T, Politis and



Figure 1: A reflection at a point of a circle on the surface

Probert [5] have reached a formula for direct estima-
tion of the backscattering coefficient P, which depends
on the triplet (R,o,T), where R is the absorption co-
efficient of the surface.

According to them when a rough surface is exam-
ined, the amplitude of the image at a specific distance
will be the sum of all scattered rays of the circle on
the surface plane with centre the projection point of
the T/R on the surface. For all these rays, the sig-
nal attenuation in the air o and the directivity of the
CTFM ultrasound sensor D are independent in terms
of time and r. As it can be seen from figure 1 angle
f, which is defined as the angle between the perpen-
dicular range and the line-of-sight, is constant on the
integration line and the backscattering coefficient P(r)
for a rough surface corresponds to all the rays emit-
ted from T, scattered around the circle of integration
and ended to R. Consequently the following equation
holds for the sonar image

A2
dw T

where 7 is the transmitter sensitivity, angle 7 is re-
lated to angles # and ¢, and is given in [5].

So far a method has been developed for a CTFM
ultrasound sensor image approximation from a rough
surface. The problem of the above method is that the
Thorsos criterion [6] has to be satisfied for the Kirch-
hoff approximation method (KAM), which already has
been used in the previous algorithm, to be valid. At-
tempting to overcome the Thorsos criterion problem
and explain the experimental results, a new statisti-
cal approach to the previous model is suggested, by
splitting the rough surface into k elementary surfaces
which are much smoother than the original rough sur-
face. Each elementary surface is n,, wavelengths long,
where n,, > 1 to avoid any conflicts with the Rayleigh

Salr) = 2 afr)yP(r) /0 T Dydsa (1)
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Figure 2: Modelling a rough surface using multiple reflectors

criterion, whose value decided by the simulation re-
sults to be 3, with height distributed with a Gaussian
pdf of the original surface and the standard deviation
depending on the roughness of the surface. The ori-
entation of each elementary surface is random again,
following a Ganssian distribution with the mean value
to be 0 and the standard deviation to depend on sur-
face roughness. The next step is to estimate the sonar
image for each one of the elementary surfaces of figure
2.

At first the number n of the multiple reflectors is
decided, introducing a Poisson distribution with a pa-
rameter of q. The q parameter depends on the rough-
ness of the surface and accordingly on the fraction
#. Every reflector or elementary surface is n,, wave-
lengths long. If k is the number of multiple reflec-
tors for a specific kind of rough surface and X', Y are
the random variables that describe the positioning and
the orientation of each reflector respectively, then for
each reflector denoted by i the backscattering coeffi-
cient P;(r) can be estimated [5], with r, € [( — 1) -
N, 1N A], 7 = V(R + &3)2 + 7., 8 = arccos % +Vi,
and i=1...k. The rough component of the sonar image
is the sum of all the reflection that are coming back
from all the elementary surfaces. Therefore equation
1, for the sonar image becomes

2
0

A2 L
Sa(r):ma(r);ﬂ(r) / D(n)dés  (2)

where $°¥_ Pi(r) is the summation of every P;, that is
being produced by the i-th elementary surface. Equa-
tion 2 stands for the ‘rough component’ of the sonar
image, while equation 1 for the ‘smooth component’.
A representation of the above components can be seen
in figure 3. The total response from a rough surface is
the combination of the two equations given by
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Figure 3: The ‘rough’ and the ‘smooth’ component of the
sonar FI'T image taken experimentally from a gravel path. The
range of the x-axis corresponds to ro of figure 1
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where Prougn(r) = Zle P;.

Theoretically the above equation is valid for every
type of rough surface, because we have overcome the
problem of the Thorsos criterion. Simulation results
from different kinds of rough surfaces for different an-
gles have been validated with experimental results.

3 Pattern recognition of aperiodic and
periodic rough surfaces

In the previous section a mathematical model was
derived. In this section the objective is practical: the
discrimination of different kinds of rough surfaces based
on the attributes and the parameters of the above
mathematical model. As a result the focus will be
on extracting the features that will provide the max-
imum separability among the different kinds of rough
surfaces and define a class for each kind. Therefore
the feature selection process will be based on the dif-
ferent scattering attributes that every rough surface
has. Different cases of classification algorithms, like
the Multi-Layer-Perceptron, the Radial Basis Func-
tions and the K-nearest neighbour algorithm will be
examined.

3.1 Feature selection for rough aperiodic

surfaces

It is well established in the pattern recognition lit-
erature that a preprocessing stage of the initial data
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is always necessary to achieve a better performance of
a classification algorithm. For the case of the CTFM
ultrasound sensor scattering from rough surfaces echo
preprocessing plays a crucial role in the process of clas-
sification as it turns out to be nearly impossible to
train any kind of neural networks to learn the FFT
and then proceed to feature extraction from the FFT
image.

The task of feature extraction for the ultrasound
CTEM sensor will be based on the physical evidences
which can be found not only in the scattering FFT
images of the CTFM sensor but within the coefficients
and the attributes of the mathematical model as well.

In figure 3 the overall FFT of the scattered signal
is described as the combination of two components
a smooth’ Pspeorn and a ‘rough’ one Proygn, which
corresponds to the physical evidence of having a re-
flection compounent at the perpendicular direction of
the scattering and one at the line of sight (figure 3).
Formulating the physical and the mathematical evi-
dence into well established features we define E, o0
and E,,ugn as following:

cos ¢y

Esmooth :/ (X(?')d'."
R
Em“ghzfa Sa(r)dr (4)

cos ¢

where S, (r) is the FFT image amplitude at a distance
r, R is the perpendicular distance from the target sur-
face and angles ¢ and ¢ are dependent on the radi-
ation pattern and the orientation of the sensor.

Another feature that is going to be proved extremely
useful for the pattern recognition process is the range
over which reflections are detected in the FFT image.
This is related to the roughness of a surface and as
it has already been discussed in section 2, it appears
to be a relationship between the number of multiple
targets and the roughness of a surface.

3.2 Classification of different kinds of rough
surfaces

A small number of rough surfaces have been cho-
sen for discrimination including a medium height grass
terrain, a gravel, an asphalt pavement, a plastic floor
and a thin corridor carpet. The selection of the above
rough surfaces has been made on the basis of using
the most usual surfaces that someone can find under
his feet walking around the city of Oxford not only
outdoors, but indoors as well. Accordingly it is very
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Figure 4: Class separation of gravel(cross), grass(circle), as-
phalt(asterisk), plastic(x-mark) and carpet(square) floor using
a three dimension set of features
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Figure 5: Class separation of gravel{crosses) and grass(circles)
using a different perspective.

common to find plastic floor and carpets inside build-
ings, gravel and grass terrain crossing one of the many
parks of the city and asphalt pavements if you walk
by the side of the road.

Thirty samples were taken for each kind of the
above rough surfaces. The distance and the angle from
the rough surfaces were constant at 77cm and 30 de-
grees correspondingly. Consequently the variable val-
ues of formulae 4 can be defined as follows, R = 0.77m,
¢y ~ 17deg and ¢2 =~ 50 deg. Although the definition
of R is precise and straightforward angles ¢; and ¢
(see figure 3)are determined by a heuristic approxima-
tion. Apart from the features Esnoorn and Epgygn the
range excursion over which reflections are detected in
the FF'T image is going to be used as well. The use
of the range excursion enhances the class separation
and therefore increases the robustness of the classifi-
cation algorithms. The separated classes are depicted
in figures 4-6.

In figure 4 a three dimensional feature space has
been used to separate the classes, where feature 1 is
the range over which reflections are detected in the
FFT image, feature 2 is the Fgpnooin and feature 3 is
the E,ugn. As it can be observed figure 4 shows three
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Figure 6: Class separation of asphalt(asterisks), plastic{x-
marks) and carpet floor(squares) using a different perspective.

separable groups: gravel (crosses), grass (circles) and
a third (x-marks, asterisks, squares), consisting of as-
phalt, plastic and carpet Hoor. If a different perspec-
tive is chosen and the third group is magnified then the
classes within that group can be separated too (figure
6).

For every class a training set consisting of twenty
points and a test set consisting of ten points has been
chosen. Most of the training points have been cho-
sen to be close at the boundaries of the classes to
enhance the performance of all the classification algo-
rithms that are going to be used and the generalisation
process.

3.3 KNN algorithm, RBF and MLP for
rough surface classification

One of the most well known and easy to implement
classification algorithms is the K nearest neighbour
algorithm. The number of neighbours K, acts as a
smoothing parameter of the algorithm and it has a
value for which the performance of the algorithm is
optimal. One disadvantage of the above algorithm
is that all the training data points must be retained.
This might led to problems of computer storage and
can require large amounts of processing to evaluate
the density for new input values.

For the case of rough surface classification twenty
training and ten test data points were used for each of
the five classes. The results of the classification algo-
rithm are depicted in figure 7, where the percentage
of correct classification is plotted against the number
K. As it can be seen from figure 7 the probability of
correct classifications is significantly high for the val-
ues of K between 1 and 12 but it declines rapidly for
values greater than 13.

Another well established algorithm in pattern recog-
nition and classification uses the radial basis functions.



Ta E3 £} 3 = T e 5 To

K value’

Figure 7: The correct classification probability against various
values of parameter K

For the above case of rough surface discrimination we
choose to train a RBF network consisting of 9 hidden
nodes or centres using an activation function that has
the form r? log(r) and is known as the thin plate spline
function, while the output layer is defined to be lin-
ear. The training process of the above RBF network
follows two steps. During the first step the position of
the centres of each radial basis function is decided with
the use of the EM ( expectation - maximisation) algo-
rithm, while during the second step the hidden to out-
put weights are determined using the pseudo-inverse
method. The RBF network is trained to learn five out-
put functions each of which corresponds to one of the
five classes and takes the value 1, when data points
that belong to the corresponding class are present at
the input of the RBF network and 0 when they do not.

The results of the RBF training process are de-
picted in figure 8. The test set consists of ten data
points for each one of the five classes, making a total
of fifty data points. The first ten data points cor-
respond to the first class (gravel), the second ten to
the second class (grass) and so on. Therefore it is
expected the first output function denoted by crosses
in figure 8 to take the value 1 for the first 10 points
and 0 elsewhere, the second output function denoted
by circles to take the value 1 for the second 10 points
and 0 elsewhere, etc. Although the output functions
fail to follow the exact training values, they manage
to take the greater value when a data point belongs to
the class that they correspond. Consequently a 100%
correct classification rate can be acquired, if a post-
processing function that classifies each data point ac-
cording to the function that takes the greater value is
employed.

Finally the Multi Layer Perceptron is examined. A
two layer perceptron was used with three inputs cor-
responding to the three dimensional feature space and
five outputs, corresponding to the five different classes
of the rough surfaces. The number of hidden nodes is
four and they are activated by the logistic sigmoid
function [7]. The output values of the above network
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Figure 8: Output functions of the trained RBF network for
the test set. The function that corresponds to the gravel test
data points is denoted with crosses, [or the grass with circles,
for the asphalt with asterisks, for the plastic loor with squares
and for the carpet with diamonds

are to be interpreted as probabilities, therefore they
must lie in the range (0,1), and they must sum to
unity. This can be achieved by using a generalisa-
tion of the logistic sigmoid activation function as the
activation function for the output layer, also known
as the normalised exponential, or soft-max activation
function [7]. The term soft-max is used because this
activation function represents a smooth version of the
winner-takes-all activation model in which the unit
with the largest input has output +1 while all other
units have output 0.

The MLP network is trained using the scaled con-
jugate gradient [8] algorithm which was proved to be
more robust and less computationally intensive com-
pared with the simple optimisation method of gradient
descent. The above MLP network is trained in 6780
steps using repetitively, a twenty data point train set
for each of the five classes which are depicted in fig-
ures 4-6. The target values for the five output func-
tions is 1 when a data point belongs to the class of
the corresponding function and 0 when it does not,
as in case of the RBF network. The overall error of
the estimated output while the MLP network is being
trained, converges to zero. Finally the MLP network
is tested using the 50 data points test set, which has
already been employed for the RBF network testing,.
Again, the first output function is expected to be 1 for
the first ten points and 0 elsewhere, the second out-
put function to be 1 for the second ten points and 0
elsewhere etc. As we can see in figure 9 the correct
classification rate is 100 %.

4 Summary and Conclusions
One disadvantage of the K-nearest-neighbour tech-

nique is that the resulting estimate is not a true prob-
ability density since its integral over all feature space
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Figure 9: The five output probability functions corresponding
to each one of the five classes for the rough surfaces

diverges. Another disadvantage of the above method
is that all the training data points must be retained.
This might lead to problems of computer storage and
can require large amounts of processing to evaluate the
density for new values of the input vector. Although
this is not the case for the problem of rough surface
classification as we have only 20 training data points
for each one of the five classes, the computer storage
and the processing time increases considerably as the
number of clagses and data points increases. For the
case of rough surface classification the KNN algorithm
fails to reach the 100% rate of correct classification al-
though for a number of K values has a rate above 95%.

RBF and MLP networks play very similar role in
that they both provide techniques for approximating
arbitrary non-linear functional mappings between mul-
tidimensional spaces. However the particular struec-
tures of the two networks are very different. They
have advantages and disadvantages which depend not,
only on their internal differences, but on the nature of
the classification problem that they are applied to, as
well.

For the task of rongh surface classification the MLP
network provides better results and better estimation
of the output functions. The disadvantage was that
it is computationally intensive as it needed 6780 steps
to be trained compared with the 15 steps for the RBF
network. In addition during the generalisation process
the RBF network has a considerable error trying to
estimate the output functions especially for the four-
teenth point of the test set. That is because the RBF
network has a linear output layer which degrades its
performance for the given output functions and be-
cause the RBF network has defined a hyperellipsoid
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to describe the class of grass and the fourteenth point
happens to be outside the boundaries. Apart from
the fact of poor estimation of the output functions the
RBF network manage to have a 100% correct classi-
fication rate if each data point of the test set is clas-
sified, based on the largest output value between the
five output functions.

Finally the conclusion is that the MLP network for
the rough surface classification is the best choice be-
cause of the nature of the classification problem that
has to do with the definition of hyper-plane bound-
aries between the classes, and because of the inherent
capability that the second non-linear layer provides to
MLP, which is the probability estimation of any input
vector to belong to a specific class. On the other hand
if the computationally intensive methods are costly
and if the probability estimation of an input vector to
belong to a specific class is out of interest then the
RBF network can be selected as it provides a very
good classification rate.
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