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Abstract

The paper introduces the Active Observer (AOB) concept
in the framework of stochastic theory. The overall AOB con-
trol structure is discussed on a conceptual level, enabling its
implementation in any control system, coming or not from
the robotics fleld. The AOB concept was initially discussed in
(3]. The paper extends the analysis of the AQB with respect
to the active state. Simulation results comparing the force
tracking capabilities of the AOB and the Classical Kalman
Filter (CKF) are presented, showing the importance of the
active state.

1 Introduction

In robotic control systems, unknown disturbances, higher
order dynamics, nonlinearities and noise are always present.
Particularly, if the robot is doing compliant motion tasks that
require contact with unknown environments, "rigid” model-
based approaches are seldom efficient, and the robustness of
the task execution can be seriously deteriorated if unmodeled
disturbances are not handled in a proper way. Recently, sev-
eral methods have been presented to deal with disturbances.
In (8], an extended deterministic observer is constructed to
estimate the motion parameters of a moving object in a force
control task. In [1], model uncertainties, nonlinearities, and
external disturbances are merged to one term, and then com-
pensated with a non-linear disturbance observer, based on the
variable structure system (VSS) theory. Several drawbacks
of previous methods, like the approximate differentiator and
the He, type formulations are also pointed out in (1]. In [5],
a neural network approach is used as a compensator to can-
cel out all the uncertainties occurred in force control, such as
robot model mismatches, unknown environment stiffuess and
location. A manipulator control method using a disturbance
observer with no inverse dynamics is addressed in [7).

The proposed AOB structure uses a self-adjusting discrete
probabilistic approach to estimate disturbances. The method
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has a systematic formulation, is mathematically elegant, and
uses the Kalman theory with new interpretations to optimise
its performance function of system and measurement noises.

2 AOB Concept

Given a linear system represented in state-space form by
Ty =Bz, _; + Tup_1, (1)

any linear controller can be achieved with state feedback (op-
timal control, adaptive control, deadbeat control, "pure” pole
placement control, etc.). In practice, the main problem of
this approach is that the model of the system in Equation
(1) does not represent exactly the real system. In fact, higher
order dynamics, noise, unknown disturbances, etc., are not
addressed in the plant model. Therefore, it is necessary to
develop a control structure that can deal with unmodeled
terms, so that the overall system has the desired closed-loop
dynamics. The AOB state-space control design satisfies these
requirements. The main goal of the AOB is to impose
to the overall system a desired closed-loop behaviour,
regardless the imperfect model of the plant. An active
state py (extra-state) is introduced to compensate unmod-
eled terms, providing a feedforward compensation action. A
stochastic equation is used to describe the active state,

P = Dr—1 = wg. (2)

Equation (2) only says that the discrete derivative of pr s
randomly distributed. It gives no explicit information about
the py characteristics. Hence, arbitrary disturbances can be
estimated (model-free equation). In fact, the general form of
Equation (2) is

i

; Rl R
=) (1P ———p .+ Wy, (3)
J.; JUR =P
where fwy, describes the R*t derivative of the process to es-
timate [2]. From Equation (2), the disturbance Pr—1 can go
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Figure 1: Active Observer. Emphasis in the active state i
that compensates the error ey referred to the system input.
L, =1, and L are the state feedback gains.

to any value at time k with a certain probability of occur-
rence. It is based on the stochastic properties of wy that this
probability is computed. In the AOB context, only the
variance of wy is needed to estimate the active state

Pk-

2.1 AOB Structure

Figure 1 shows a generic control system with the AOB in
the loop. The error ey can be seen as an additional
system input that needs to be compensated. An extra
state variable is necessary to perform the compensation of eg.
However, the Classical Observer structure cannot "see” e.
The observer receives the input to the system u given by

ug = r — Lay + pr, (4)

where the disturbance referred to the system input is pp =
Leg. Hence, the Classical Observer cannot distinguish py
from r,. To overcome this difficulty, the observer ought to
know the reference r; instead of u;. The real system should
have the behaviour

or = ®xp_y + L(re—1 — Laog—1). (8)

Defining the closed-loop matrix ., = & — I'L, Equation (5)
is written as
o =P,z +DTres. (6)

Thus, the observer equation should only reflect these
changes. This approach can only be generalised when the
closed-loop system is observable. There are some cases, where
the state feedback is used to eliminate the influence of an un-
desired state in all the others, originating a non-observable
closed-loop system. This is precisely what happens with Ac-
tive Observers. The active state p, estimates the error ey
referred to the system input, permitting the overall system
to have the ideal behaviour. The closed-loop system is clearly
non-observable, because the influence of this state is canceled
at the system input. To get off this difficulty, the observer
desipn considers that the system is in open loop. Then, in
the state estimate &, Equation (6) is used. More details of
the AOB algorithm are given in [3], [4].
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2.2 The AOB Algorithm

The AOB algorithm is described in this section. Detailed
analysis can be seen in [4] and (3].
The a priori state estimate & is
&y = Pucfp_y + Irpey. (7)
Giving the measure yi, the a priori estimation error e, is
e, =y —CE. (8)
Finally, the corrected estimation,
&y =2 + Krep, (9)

where K} is the Kalman gain,

Ky =P CT[C P CT + R, (10)

and
Pio= 3, Py 3T + Qy, (11)

with
Py = Py — Ky C P (12)

@, is the system noise matrix, and its interpretation is
discussed in Sections 3.2 and 3.3. Rj is the measurement
noise matrix and is function of the measurement noise 7,
R = E{nm{}. The open loop and the closed-loop system
matrices are given by @, and $,. = ($, — T'L) respectively,
and include already the active state, i.e.

(& Ty To 0 0]
0 0 1 -~ 00
Pyl 8 & & B R , 13
*lo o o 1 S
0 0 0 01
Lo 0 o 0 1]
[ @ I, Iy 0 0]
0 0 1 0 0
By = 5 o (19)
o 0o 0 1 0
—L]_ —Lg '—Lg e '_Ln.v-l 0
0 0 0 - 0 1]
T
r=[0 0 o1o]”. (15)

The non-augmented open-loop @, and command [, matri-
ces are

o I, I‘Q <+ 0
0 o 1 -+ 0
(bar . ) (16)
0 0 0 1
0 0 0 0
and
L= [ 0 0o 1]" (17)



The L components are obtained by Ackermann's formula for
the non-augmented system, given a desired closed-loop be-
haviour. The state xy, is
/ T

e =[x, g Up-2 U~ Pk | (18)
where IL is the state of the system considering no dead-time.
Uk are the delayed command efforts, and Pk is the active
State.

The CKF can be obtained from the AOB with small
changes. Only the active state is eliminated from the esti-
mation, i.e. fx = 0, and its corresponding value in the Qr
matrix is set to zero. Re-designing the Q) matrix is needed
in some cases. The explanation is beyond the scope of this
paper.

3 Active State: A Probabilistic Approach

To cope with parameter variations, unmodeled nonlinear
terms and unpredicted disturbances, lumped in the py, vari-
able, an active state py. is created. Several possibilities can be
considered. For a Deterministic Active Observer, a model for
the error dynamics of py, is needed. The simplest case is for a
constant error, giving a state equation of the form py = pj_;.
For a time varying error, the state equation changes. Clearly
there are obvious limitations in the deterministic approach.
It becomes natural to use stochastic concepts to quantify dis-
turbances, enabling a wide class of signals to be described
with the same equation. A stochastic model was developed
to deal with unknown disturbances [2]. Looking to Equation
(2}, the stochastic process {w;} can be seen as the first order
active state evolution. Let’s define wg as one realisation of
the process at time k. All the random variables wg have a
Gaussian distribution with zero mean and variance 0%, Wk
represents the evolution (change) in py from time & — 1 to
time k. Defining the estimation strategy as:

The probability of the py evolution (in module)
be greater than its previous evolution (in module),
should be equal to a,

the variance of wy, is computed in a straightforward way. The
value oy can change on-line as a function of the task state.
Qualitatively, if o is big, it means that py is able to follow
high frequency signals. On the other hand, if ay is low, only
low frequency signals are estimated. In formal terms,

w ~ N (0,02, ). (19)

The strategy is

Plwe| > [wi_,]) = g, with 0< ey < 1. (20)
Defining a new random variable
xx ~ N(0,1), (21)
Equation (20) is written as
Plxel > | %L = o, (2)
-

81

which has a well known solution. Defining the function G as

Y R Y
G(J:)—’/; \/Q_ﬁ_e TdN, (23)

the solution of Equation (22) is given by

B — |wg_i|
N CWEIN
where G' is the inverse function of G. The function G(z)

cannot be obtained explicitly, but many software libraries
provide a related function, the error function erf , defined as

(24)

2 ® .
f(z) = — o dt.
er(z) = — /ﬂ e (25)
Hence,
1-—
G(:z:) = 4—61’2(_2:/_\/52, (26)
and Equation (24) can be written as
O, = Iwk_l' (27)

V2erf (1 - ag)’

The variance of wy, or?m., is computed from Equation (27),
which is in the Kalman notation the Qx value for the ac-
tive state. Thus, the p, estimation is done in the framework
of probabilistic estimation. If wy, is a narrow-band process,
good results are achieved for a constant ay. However, for
wide-band processes, a dynamic assignment of ¢y, is needed.
When w) — 0, a minimum o, should be imposed, so that
the py estimation is able to follow abrupt changes, with an
acceptable time-lag. The price payed for this, is that around
low frequency values, the noise sensitivity is increased.

3.1 Computation of qy for the Desired Mini-
mum oy,

H 2 3 I3 -
The function e=* can be written in Taylor Series around
Zero, giving

e g it
e =1-¢ +i—§i+ ) (28)
and,
B 23 g5 7
B = = 9
foe It aTa &)
From Equations (25) and (29),
; 2z
i}ﬂ} erf(z) = - (30)
Using Equation (30), straightforward analysis gives,
E_"].
i & (b2) bﬁ, (31)
z—0 T 2

Looking to Equations (27) and (31), a minimum value of Ty s
1, » is achieved for very wealk py evolutions, |wi_,| < 1, only

if
V2T
<)

ap=1- [wi_y|. (32)



3.2 Qualitative Meaning of the Qi Matrix for
the Active State py

The Q) matrix is written as

Qr =0y, (33)

and its interpretation is qualitatively defined by the estima-
tion strategy, i.e. the value of o, at each time step. It is the
responsibility of the control designer to input proper values of
ey, in order to have good performance in the p; estimation.
For a given @y value, Equation (27) says that the strategy is
— i ]

ap =1~ erf( o ). (34)
It can be inferred from Equation (34), that even for a constant
Q. value, the strategy changes at each time step, lying in the
framework of stochastic adaptive estimation. To keep always
the same strategy, it is necessary that

Qr= —Iwg*llz

where ¢ is a constant, giving then
(a4
ar =1 —erf(—). 36

Figure 2 presents a schematic overview of the estimation
strategy for the active state. The variance o2, is computed
at each time step, function of @y and |wk_1|. Using this
information, the p; estimate is computed. The stochastic
process {uy,} is represented in Figure 2.a. At each time step,
there is a random variable wk, with a Gaussian distribution
of zero mean and variance o2, . One realization of the process
{wy} is shown in Figure 2. b obtained from the p, estima-
tion, displayed in Figure 2.c. Of course, other strategies can
be defined, giving different meanings for the ¢ values. This
is one of the rich characteristics of stochastic analysis. The
Q4 values can be interpreted according to some context. The
designer should define the strategy in an intuitive way for
a given problem in order to input proper numerical values.
Another strategy is defined for the other state variables in
Section 3.3, with some interesting ”symmetric” properties.

3.3 Qualitative Meaning of the Qi Matrix for
the State x

A generic system represented in state-space form is given
by

o = P gy +Tug-1 + &, (37)

where 11;_ is the command input, and & is a random vector
(sometimes called system noise vector) associated with the
state z. Equation (37) says that z; has a deterministic
term function of zg and uy—y, and a random term function
of the statistical properties of &. This section analyses only
the role of the random term in ;. Then, since the system is
linear, the superposition theorem can be applied to get the
full solution of Equation (37). For the random term,

o = Puwpy + & (38)
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Figure 2: Representation of the stochastic adaptive estima-
tion for the active state p,. (a) The stochastic process
{wn}. Qu,(z) represents the probability density function
(pdf) of w,. At each time step, the variance of w,, i.e.
the @n value, is computed function of the present strat-
egy an, and of the previous active state evolution |wnﬂ1|
(b) One realisation of the process {wy}. The value
|wi—s| = IPe—3 = px—sl, and [w}_,| = |Pk-2 — pe—1|- The
active state evolution at time % is function of ay, i.e. a big-
ger o allows bigger pr evolutions. (¢) Time plot of the
active state py.

If the process {£} is a zero mean white Gaussian sequence
independent of the initial condition zg, then given zy_1, Ty
depends only on £, which is independent of the previous
states. Hence, the process {z,} is a Gauss-Markov process
(GMP), The probability density functions of zx can be calcu-
lated according to the GMP properties. The inverse function
of Equation (38) is

€ =3 — P opy. (39)
The Jacobian determinant is one, and assuming that,
T = [v1, T2, -+, zn,]7, and (40)
ek = [613. 'SE;. Ty éN;.]Ta
the conditional probability density function is,
p'-n,,.:C:,_,.--°,$N;,kmh—1($1& 1 T2 " TN | TR—1)
= Peu, 2y eerbvy lznm1 (FLy — B1Tk—1, (41)
T2, — E-[)'.‘.zk—l: BN, T (szk—l)-
where ®; is the 4" line of matrix ®. In other words,
Pz lmn- 1 xlk lxk 1)
=] 1 TSy O (- (42)

—® g1, T2, — Pazpy,

XN, — ‘PNinN;,_l) . tl:rde:.!;N_lk siaes ,d:l.‘gb.



In most of real applications, the &, (i =1, -- , V) variables
are not correlated (they are orthogonal). Equation (42) be-
comes,

pmmlmk—l(;ﬂ‘.k iwk—l) = Pe, (Iik —‘Pi‘zk—l)> with i =1,--- N

(43)
For a Gaussian distribution of &;,, Equation (43) is
1 (2; .-‘;;,.‘:;,(1)2

iy . {44)

P i) =~
2@y,

The expected value for z;, given zy_; is Dz, ie. the
"noise-free” situation. The variance around this value is given
by Qi,. If @i, — 0, Equation (44) becomes a Dirac delta
function centered around z;, = ®;z_;, which is the deter-
ministic case. The bigger Qy is, the bigger the uncertainty
around the expected value is. Defining now the strategy as:
Given Xy, the probability of the deviation (in mod-
ule) of x;, around the expected value o, = Pixy—1
be greater than v, should be equal to 5,
ie.

Pzi fmu— (lzi;, . nuwihl > 'Yi;,) = Biys (45)

the value Oz, = /Wi, can be calculated in a straightforward
way, and is given by,
o Yix
e VZ et (1 - By,)

Equation (46) should be compared with Equation (27). There
are multiple solutions for the same strategy f; .- An interest-
ing one is obtained when ~;, = O;, , Biving then

Bi = 1-erf (vV212),

ie. Bi, = 0.3173. Therefore, the probability of the signal
deviation around the expected value be greater than o, is
about thirty per cent. This procedure is also valid for the
active state (¢ = 1), giving another interpretation for the
Qx value. All these interpretations provide useful guidelines
to design the Q) matrix for a given application. However, it
should be noted that for the Kalman AOB, the Q, matrix by
itself does not describe the system. The measurement noise
matrix Ry has a key role in the estimation process. The bal-
ance between model uncertainties given by Q; and measure
uncertainties given by R, defines the steady-state Kalman
gains, that influence the convergence rate of the estimates.

(46)

(47)

4 AOB vs. CKF: Force Tracking Capabili-
ties

An application of the AQOB /CKF in a robotic force track-
ing task is analysed in this section. In a multi-dimensional
compliant motion task, there are couplings between motion
and force. Figure 3 illustrates an example where a movement
in y direction disturbs the force controller in z direction, since
the surface geometry in x changes with time. The velocity
disturbance ;g is given by

Ty —Tg

A'l. o i 48
Loist =10 Vy (48)

&3

where o, 21, yo, 11 are geometric coordinates, an uy is the
velocity in y. 2y, enters in the system with negative sign
(Figure 4). If 24, has a negative derivative, the velocity
disturbance referred to the system input is positive, creat-
ing a AF in the force response, if no compensation action
is performed. This AF creates a barrier to the maximum
vy. In many tasks, velocity scaling is necessary, to prevent
high AF. In the simulations, each degree of freedom of the

the position controlled robot represented in Figure 4 has the
transfer function

e—-Tgs

1
Cr(8) = 575
p

; (49)
that is equal to one in steady state. K is the system stiff-
ness. In this way, for a disturbance Tdist, the feedforward
velocity should be equal to 4g4,. Several possibilities can
be applied to compensate geometric changes by adding posi-
tion or velocity feedforward information to the system. The
feedforward action can be generated [6]: 1) from a priors in-
formation, 2) by external geometric sensing, 3) from position
and force measurements, and 4) from the output of a skill
map, trained from human demonstration data. However, if
the AOB is used in the controller, the active state estimates
the position disturbance, providing a proper compensation
action. On the other hand, if the controller has an observer
without active state, like the CKF, the force error is function
of the Kalman gains. Simulation tools showed that the force
error is

AFy, ~ 0.6839 K,i,, (50)

where K is the system stiffness and %, is the feedforward
compensation error of the velocity. Figure 5 shows the per-
formance of the force controller with AOB and CKF when ge-
ometric changes occur during the task. The surface changes
at 8 [s] with a negative slop. The active state performs the
feedforward compensation action, that converges to the sur-
face derivative (Figures 5.b and 5.d). In this simulation the
system stiffness K = 3. For the CKF there is no external
feedforward action, therefore, the error &, is equal to —Eyjgs-
Using Equation (50), AF,, ~ 4.1034. When the AOB is used,
the steady state error disappears, and the transient AF is
reduced (Figures 5.a and 5.c). The strategy for the active
state is an adaptive one: Q4 = 1075, and «y is computed
from Equation (34), that is function of the on-line data. For
the other states, i = 107!2, and fj; is given by Equation
(47).  In our robotic application, the AQOB alporithm de-
scribed in Section 2.2 was applied with the following values:
d =35, ki = K;/T,, p, = 1T}, the feedback gains L were
obtained for a critically damped system with a time constant
7 = 10/T,. Finally,

1 L—e~PLh
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Figure 3: Coupling between constrained and unconstrained
directions. #, and D, are the stiffness and damping in the =
direction, respectively, The damping is not considered in the
force control simulations.
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Figure 4: Feedforward compensation due to surface changes
during the task execution. If the AOB is used in the control
loop, the feedfoward term is automatically generated by the
active state. If output feedback, or the CKF is used, the
feedforward velocity should be given by an external source.
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Figure 5: Force tracking capabilities when the contact sur-
face changes with time. (a) AOB vs. CKF, (b) The contact
surface, (c) Detailed view of (a), and (d) Active state vs.
contact surface derivative.
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5 Conclusions

The paper introduces the AOB concept, and analyses the
active state in the framework of stochastic theory. The AOB
algorithm is described. The CKF can be obtained from the
AOB with minimal changes. Several strategies can be fol-
lowed, to input adequate values in the AOB design. This
procedure is also extended to the other state variables of the
system. The comparison between AOB and CKF is done in
a force control application.
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