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Abstract

In this paper we propose, while using the SYCLOP
sensor model (Conical SYstem for LOcalization and
Perception), an original method of localization in an
artificial indoor environment with a very precise 3D
map. Until  now, localization wusing  conical
omnidirectional vision sensor use radial segment from
vertical beacon of the environment. The main motivation
of the work presented in this paper is to show that it is
possible to use conical vision with primitives other than
radial straight lines. This is why we have chosen to
develop a localization method based on the use of points
in the image and their 3D correspondents. After shortly
reminding the SYCLOP sensor geometry, we explain
how, with the help of an adapted pattern calibration, we
calibrate our sensor with a method coming from
classical hard calibration techniques. This calibration
allow us to know, with high accuracy, the formation
process of SYCLOP's omnidirectional images. The last
part of this paper presents the localization method and
results obtained during an experimenting phase.

1 Introduction

Classical applications in mobile robotics based on
vision system use in large majority pinhole type matrix
cameras that limit, according to lenses, the field of view.
While sophisticating vision systems, it is nevertheless
possible to get fields of view larger by using several
cameras in different directions, Ishiguros and al in 1993
[9]. Other applications use only one camera, with a
rotation motion, in order to sweep a large space. In these
two cases, algorithms of matching in successive pictures
are imperative to rebuild a panoramic picture. It exists
another possibility to get wide-angle pictures: systems
with omnidirectional vision. Although this notion has
existed for numerous years, it was necessary to wait

until the beginning of the 90’s to see their use
intensifying in robotic applications [13] [14] [15]. If he
wishes, the reader will be able to get more explanations
in generality on omnidirectional vision by referring
himself to the article of Shree K. Nayar [11].
These types of sensors represent acquired stages
observed on 360°. This approach can be very interesting
in applications such as:

e telemonitoring,
telepresence,
teleconference,
telesurveillance
acquirement of environment model for the
evaluation (assessment) of displacements
of an autonomous vehicle,
e tracking,

There are two big classes of omnidirectional vision
systems. The first one uses a mirror and a camera, it is
called 'catadioptric system' (see applications in [1] [7]
[12] [13] [14] [15] ). The second one is composed by a
classical camera surmounted by a fish-eye lens, and
called ' dioptric system' (see Cao in 1986 [10]).

We focus on the first class of these sensors.

The first patent for a system using a catadioptric
mechanism was registered in 1970 by D.W. Rees [12].
In spite of this first patent, these systems remained a
long time in the shade and it was only at the beginning
of the 90’s that these sensors really emerged with
utilization in robotic applications with Y. Yagi [1] [13].
More recently these systems have known a very large
expansion in multimedia applications with the explosion
of ‘internet’, as well as teleconference applications. In
our laboratory, we have developed applications using
omnidirectional sensors for robotics applications since
the beginning of the 90°s [7] [14]. Our system, named
SYCLOP (" Conic SYstem for LOcalization and



Perception "), is constituted of an oriented vertical
camera, surmounted by a conical mirror.

These types of mirror have the advantage of providing
omnidirectional picture of an environment essentially
showing the shape of radial projections of vertical
beacons. The majority of authors using omnidirectional
vision with this type of mirror use solely these radial
beacons to make localization, segmentation, etc. It is
due to the fact that straight lines other than vertical, in
environments do not project themselves following a
simple mathematics model, and that the initial vocation
of these sensors is not to detect beacons other than
vertical ones,

Besides these systems present, according to Nayar, the
major inconvenience of not possessing a single view
point. In fact, they possess a circle of view point so, they
generate blur pictures [15].

In this paper, we present, in section 2, an original
solution for the determination of a mathematical model
created for the SYCLOP sensor. This model is based on
the virtual point notion. We consider that punctually, the
conical mirror work like a planar mirror. Then, the
projection of a real point of the environment from a
conical reflection is equivalent to the projection of a
virtual point on the image plan while using a pinhole
camera. Then, we show that it is necessary to take into
account distortions to get a more accurate model of
SYCLOP [7].

In section 3 we will show the protocol of calibration
used to calibrate the system in its entirety. This protocol
answers efficiently to constraints of markup, positioning
and motives extraction of 3D calibration points. Later
we will show the SYCLOP simulator developed with
the defined model. In section 4 we will explain the
localization method and show results obtained during an
experimental phase.

We conclude our subject by a discussion on perspectives
offered by this new method,

Conical mirror

Glass
Support

CCD camera

Micrometric
Table
(x-y displacement)

Figure 1: SYCLOP sensor
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2 SYCLOP Model

2.1 Problem description

Our sensor, as the one used by Yagi in [1], is made
of a conical mirror and a CCD camera with a 8.5 mm
lens (see Figure 1). Nowadays, panoramic vision only
allows us to detect all the vertical elements on a 2n
radian domain because they generate a set of radial
straight lines converging at the center of the cone
through a 2D projection. To extend the detection to
other lines, we have to calibrate this sensor. First, we
have to determine a mathematical model of the
transformation. An object of the world will be reflected
onto the conical mirror and projected onto the image
plane. Figure 2 shows the sensor geometry.
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Figure 2 : SYCLOP geometry.

The transformation contains a conical reflection that
we compute with a virtual point notion. As shown in
Figure 3, to determine the point V we project the point P
on the shape reflector perpendicularly according to the
straight-line A,. Then the point V will be projected on
the CCD matrix camera.

Coni e
omic: o

Mirror

Ok

& [1 plane

Figure 3 : The virtual point V (cutting out according to the IT plane).

For more details about the method of calculation, the
reader will be able to refer to [7).



To camera model we chose is a pinhole one. Generally
speaking, observed pixel locations are not equal to
locations resulting from a simple projection onto the
image plan. Because of acquisition, spatial digitization
noises, point extraction and different kinds of
deformations, the image is distorted. As a result of
several types of imperfections in the design and
assembly of the lenses composing the camera optical
system, geometrical distortion concerns the position of
image points in the image plane. There are two kinds of
distortions: radial and tangential [2]. For each kind of
distortion, an infinite series is required. To determine
the type of distortion as well as the number of distortion
coefficient to take in counts we led a similar survey to
the one made by Flourou and Mohr [6]. As Tsai [3] and
Beyer [4] in the case of the calibration of a monocular
camera, we noted that using only one coefficient of
radial distortion is sufficient.

2.2 The complete model

The calculated model is based on:
techniques of classic calibration (hard
calibration) [3] [4] [5] for the intrinsic and
extrinsic camera parameters determination,
the notion of virtual point for the determination
of points reflected on the conical mirror.
The different stages of transformation from a real point
P to its projected point P’ consists of:
a change from the world coordinate system to
the cone coordinate system,
a conic reflection,
a change from the cone coordinate system to the
camera coordinate,
a perspective projection (with only one
distortion coefficient).

Final results of our models are given by the following
equations system:
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Py =1 Py, + 1, Py 15 Py +1y
and — g ' . ' 1
Py =ry Py, + 1 By + 193 P, + iy (1)

Py =13 Py, 15 Py + 15 Py H 1

u=(u-uy), v=(v—-v,) and r=vu’+v?,

R is the radius of the conical reflector and H his height.

3 Calibration
3.1 The calibration pattern

In order to determine the set of parameters
characterizing the model, we achieved an adapted
calibration sighting, positioned directly on the SYCLOP
sensor. This sighting is a hollow cube on which the 4
interior vertical faces are provided of a pattern with the
repetitive square motives. (Figure 4).

l Pattern calibration
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Figure 4: The new calibration system.

The created geometric motives are on the interior sides
of the cube. To detect the orentation of the pattern
calibration in the image, one of the sides of the pattern
calibration has a special motive (see the reference mark
on Figure 5).

Reference
mark




3.2 Parameters determination

Figure 5 constitutes the picture of reference for the
continuation of our work. Only the central part is used
for calculation.

In this image, we apply a Canny-Derich edges detector

followed by a simplified Hough transform. In this way,

we can easily estimate all lradial straight lines (Figure 6).
b 4 .

!
!
1
{

Pl
Figure 6: All radial straight lines,

Then, all points belonging to the radial straight lines are
eliminated. They characterize all vertical straight lines
of the pattern calibration. All other points are preserved
(Figure 7).
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Figure 7: The binarised image after the radial straight lines
extraction.

They characterize all horizontal straight lines of the
pattern calibration, projecting themselves in the picture
as curved shapes. Next, we approximate all these curves
by elliptic function. As follows :

(xi—cx)2 4 ()H‘Cy)z _

Rx’ Ry’

2)
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x; and y; represent the set of pixels which compose the
ellipsis portion. ¢, and c, are the center coordinates, and
R, and R, are radius of the ellipsis.

A Teast mean square solution permits to solve
the system easily. The Figure 8 shows all ellipsis extract
from the image.

Figure 8; All the ellipsis extracted from the image.

Then, we calculate intersections between radial straight
lines and ellipsis (Figure 9) and we get the set of 2D
calibration points with a sub-pixel accuracy (Figure 10).

Figure 9: Radial straight lines and ellipsis composing the pattern
calibration.

Figure 10: The calibration points set descended from the
intersections.



The set of 2D and 3D calibration points gives an
overdeterminated system. To solve this system, we use
Levenberg-Marquardt method of non linear resolution

[8]. Results obtained during a calibration are
summarized in the following table:
ay o, Uy Vo Ky
1020.79 1016.43 384.56 | 287.18 | -2.31e-7
o B £ ' ', 'z,
-0.221 | 2.060 | 0.000 | 0.715 | 0.021 214.67
oy ﬁ2 Y2 tx, ty, tz,
0.396 | -0.556 | 5.644 | 1.218 | 0.160 | -2.417

Table 1: Parameters value of Figure 5

We have acquired a multitude of images from
the pattern calibration placed at the top (the base) of the
conical mirror, in order to calculate the mean of each
parameter set, in accordance with Puget and Skordas in
[5]. Results obtained in this part are summarized in
Table 2.

o, a, i, vy k,
1015.75 | 1011.16 | 384.06 | 287.79 | -2.292 &-7
a | B | no| k| f,
0.200 | 0.503 | 0.000 | 1.814 | -0.866 | 210.88

Table 2: Means results.
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Table 3: Comparison between real and synthetic images.
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3.3 The simulator

With the mathematical model of our sensor
SYCLOP, and with the result obtained with the
calibration (table 2), we have implemented (in C) a
SYCLOP simulator. With the help of a 3D environment
map, the simulator is able to compute synthetics
omnidirectionals images close to real ones. Table 3
shows some examples done in an indoor environment.
The matching between real and synthetic images is
really interesting.

4 Localization

In few words, the localization method we propose
consist in establishing a correspondence between twelve
safe points extracted in the image and their 3D
correspondents. Then, it's possible to estimate the sensor
3D position (and so the mobile robot position) in its
environment.

4.1 The environment

Our simulator is able to compute synthetics images

in “flat” model (no texture possibility). Consequently,
we chose to create an artificial environment comprising
a lot of polygons (which act as texture).
The environment of work (below) has for
measurements: 2m by 3mbS5. It is composed of 5 blocks
of 1m25 height and different widths. Every block is
covered of a set of motive permitting a strong contour
detection.
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Figure 11: a 3D representation of our artificial environment.

As you can note on Figure 11, we have covered each
block with different motives. These motives are black
on a white background in such a way that contour
extraction can be easily done.

First of all, we wanted to assure us that the 3D map was
sufficiently accurate. Thus, we made an acquisition in



the environment, while taking big care to record the
precise position of the robot.

With the simulator we calculated a picture at this
position. We superimposed the synthetic picture to the
real one. The result is more that convincing. As you can
note on Figure 12, the projection of the 3D map is very
close to the real picture. Therefore, we can pass to the
following stage, to tempt to localize in an absolute
manner the sensor in its environment.

o
Figure 12: zoom on a part of the picture,

4.2 The method

The aim of the method is to localize with only twelve
known points. Several stages are necessary:

4.2.1 Stage 1: The image base

So, the first stage consist in calibrating the sensor to
obtain an accuracy projection model on the image plan.
In this way, with the calibrated model and a 3D
environment map, we are able to build, offline, an image
base of the twelve localization points. We have choose
to use twelve points in order to get a system a bit over-
dimensioned. In theory, only six points are necessary.
These points have been chosen for there extraction
facilities. For each position, seven hundred twenty
pictures are calculated. Therefore, it gives us an
evaluation all '/, degrees in orientation.

4.2.2 Stage 2: The matching

Then, after having done a picture acquirement, the
twelve localization points are extracted. Next, we search
in the image base the best matching. This research is
done by using the Hausdorff distance as criteria to
minimize [16]. The Hausdorff distance measures the
extent to which each point of a “model” set lies near
some point of an “image” set and vice versa. Thus this
distance can be used to determine the degree of
resemblance between two objects that are superimposed
on one another.
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Given two finite sets 4={a,, ..., a,} and B={b,, ..., bals
the Hausdorff distance is defined as

H(A, B) = max(h(A, B), h(B, A)) 3)

where

h(A,B)= r{x;mea/)‘( Teizrfl”fl . b"

4

and ““ is some underlying norm of the points of 4 and

B (e.g., the L, or Euclidean norm).

The function h(A,B) is called the directed Hausdorff
distance from A4 to B. It identifies the point @ € A that is
the farthest from any point of B8, and measures the
distance from a to its neighbor in B (using the given
norm ||" ). That is, (A4, B) in effect ranks each points of
4 based on its distance to the nearest point of B, and
then uses the largest ranked such point as the distance
(the most mismatched point of A). Intuitively, if
h(A,B)=d, then each point of 4 must be within the
distance d of some point of B, and there also is some

point of 4 that is exactly distance ¢ from the nearest
point of B (the most mismatched point).

The Hausdorff distance, H (A4, B), is the maximum of
h(4,B) and h(B,A). Thus it measures the degree of

mismatch between two sets, by measuring the distance
of the point A that is the farthest from any point of 8 and
vice versa. Intuitively, if the Hausdorff distance is d,
then every point of 4 must be within a distance d of
some point of B and vice versa. Thus the notion of
resemblance encoded by this distance is that each
member of 4 be near some member of B and vice versa.
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Figure 13: The Hausdorff distance between a picture and the
image base.



Let's consider that A is the set of points of the model,
and B the set of points of the picture. Since 4 and B
have the same number of points (twelve), this stage also
goes to permit us to know correspondences between 2D
and 3D points.

We looked at the evolution of the Hausdorff distance
with all pictures of the base (Figure 13). We could note
that the solution (the best matching) is in the bottom of a
hollow. Therefore, we decided to start with cutting up
the environment by windows of 50cm of sides.

This stage finished, we have an evaluation of the
position and the orientation of the sensor in its
environment. These values will be used during the stage
of refinement.

4.2.3 Stage 3: The refinement

Now, we know the correspondence between 2D and 3D
points. Moreover, we have an estimation of the sensor
position. So, during this stage, we will refine the
estimation of the position by minimizing the model (1)
by only estimating the rotation around the cone axis. As
you can note it on Figure 13, locally, we can consider
that the Hausdorff distance is linear. Thus, we are going
to be able to do the refinement of dichotomous manner.
We start with defining a window of 100mm of side
around the estimated position. Then, we sample the
window with a step of 25mm. Around the best matching
we define a window of 50mm of side. Then we sample
with a step of 12,5mm. The best correspondence give
the estimation of position (7%, 7,) and orientation (R,) of
the sensor,

4.2.4 Stage 4: The spatial localization

This fourth and last stage is going to permit us to
localize the SYCLOP sensor spatially in its
environment. The final values of the third stage are
going to act as initialization for the minimization of the
model (1). Of this way we are going to be able to
estimate the rigid motion existing between the world
(the environment) and the sensor (the robot). This
minimization is done with the help of the algorithm of
Levenberg-Marquardt [8].

4.3 Experimentation

For this experimentation we chose twelve points located
on three different blocks (four on each). The order of the
robot was to browse a distance of 1 meter along a
straight line, and to do an acquirement every Scm. In
this way we acquired 21 pictures of the environment.
Results obtained during this experimentation are
summarized in the Table 4.
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Theoretical Computed values
values

Nl L | I, | o | &, | L [RR | R

(mm} (mm) {mm) {mm) (mm) | (depree) | (degree) | (degree)
1 [ 953,50 | 901,37 || 966,00 | 909,63 [ 513,93 | -0,13 | -0,31 [106.23
2 |1001,18| 916,44 [ 1012,22| 922,31 | 513,30 | -0,08 | -0,31 |106,20
3 |1048,86| 931,50 || 1056,68| 946,06 | 512,98 | -0,26 | -0,27 |106,29
4 11096,53| 946,57 | 1109,13| 954,28 | 512,89 | -0,18 | -0,21 |106,18
5 [1144,21] 961,64 §1152,62| 968,71 | 513,44 | -0,09 | -0,10 | 106,22
6 [1191,88) 976,71 [1198,89| 969,71 | 512,77 | 0,00 | 0,00 [106,30
7 11239,56| 991,78 [1247,37] 995,53 | 513,68 | 0,00 | -0,04 106,27
8 |1287,24(1006,85(1299,29]1011,00| 512,78 | -0,10 | -0,05 [106,17
9 11334,91[1021,91]1341,02]1024,86| 512,07 | -0,02 | -0,05 |106,11
10 |1382,59|1036,98 [ 1389,99 | 1040,63 | 512,32 | 0,02 | -0,12 |106,02
11 [1430,26 [1052,05]1431,74{1051,99| 512,35 -0,03 | -0,05 {106,08
12 [1477,94{1067,12 | 1469,02 | 1064,08 | 512,46 | 0,15 | -0,05 |105,88
13 11525,61|1082,19(1515,1211074,48| 511,92 0,22 | -0,12 |105,99
14 [1573,29|1097,26] 1566,37 | 1096,09] 510,98 | 0,08 | -0,17 |105,94
1511620,96[1112,3311615,8411108,20| 510,75] 0,19 | -0,23 |105,83
16 [1668,64|1127,3911662,74|1128,07| 510,87 | -0,04 | -0,17 |105,84
17 |1716,31]1142,46]1708,42|1138,84| 510,10 | -0,02 | -0,17 |106,03
18 [1763,99|1157,53[1760,09|1152,72| 510,34 | 0,02 | -0,28 |105,85
19 |1811,671172,601799,82| 1164,13| 509,39 | -0,07 | -0,22 |105,83
20 [1859,34 | 1187,67]1856,98|1180,32| 509,20 | -0,07 | -0,24 [106,15
21 [1907,02[1202,741906,93 | 1193,61] 509,15 | 0,02 | -0,12 (105,92

Table 4: Spatial localization results (millimeters and degrees).
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Figure 14: 2D projection of the localization results.
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The gotten results are very interesting since the
maximum error with the theoretical position is only
about 17mm (acquirement n°3 on Figure 14). Moreover,
the orientation is very well estimated too since it reaches
a maximum of 0.3° with the theoretical orientation of
106°.

An interesting remark about the Tz value can be
expressed. During its trajectory of 1 meter of length, the
robot descended of nearly 5mm. In other words, the
floor of the environment descends relatively to blocks.



5 Conclusions and perspectives

In this paper, we have presented an original method
of spatial localization based on the use of an
omnidirectional vision sensor.

After having recalled the mathematical model
characterizing to best the phenomenon of picture
formation gotten with our omnidirectional vision sensor,
we showed that the use of a suitable pattern calibration
permits to calibrate easily, quickly and accurately this
sensor. Thus, having a mathematical model and a set of
values characterizing the SYCLOP sensor, we have
developed a simulator of omnidirectional pictures.
Images computed with this simulator are very close to
real ones. With these images, we build an image base
that allow us to estimate the position of the sensor in its
environment. Finally, we estimate the rigid motion
between the environment coordinate system and the
sensor coordinate system. Thus, we obtain a spatial
localization of the robot. Results obtained are very
interesting and accurate in position as well as
orientation.

Future works should be the extension of the image
base. Indeed, we think using a cylindrical projection of
omnidirectional images in order to get panoramic
images. In this way, we hope to still estimate the robot
position and then, automatically extract the set of
calibration points usable at this position.
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