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Abstract

A solution to the problem of real time collision
detection during simulation and execution of telerobotic
process is suggested in this paper. The solution allows to
deal with dynamics and prediction of collisions between
rigid and deformable polyhedral objects. The method
finds its essence in combining graphics hardware
capabilities and simplified geometric representation
(Oriented Bounding Box) in order to precisely extrapolate
the swept volume generated by the tool during its motion
and to dynamically estimate the collisions between the
tool and the environment. During virtual or real
teleoperation, collision detection aims at providing the
operator with real time sensorial information feedbacks
that improve immersion in the virtual scene.

1. Introduction

This paper deals with a real time dynamic predictive
collision detection between rigid and deformable
polyhedral objects for telerobotic process simulation and
execution. Telerobotic process requires to provide the
operator with a realistic virtual environment for preparing,
simulating and executing his task [1]. Within this
environment, the operator must have facilities to interact
in a real way with virtual bodies so as to improve his
feeling of telepresence [2]. As we consider tasks that
include contact phases between the robot and objects of
the workspace and deformations, simulation and modeling
of physical phenomena resulting from these interactions
play a crucial role. They principally contribute to the
synthesis of sensorial information feedbacks (visual,
sound, tactile} which increase the operator immersion. An
interaction model, able to take into account physical
phenomena associated with geometric interference, is
being established. Collision detection is the first step of
interaction model. The other two stages are computation
of the force collision, based on the interpenetration
distance between the bodies, and of the deformations of
the elastic object submitted to this force [1].

The problem of collision detection between two objects
is one among the fundamental topics in dynamic
simulation and robotics [3]. Collision detection aims at
automatically reporting a geometric interference between

two or more objects in a virtual scene, before or when the
contact occurs. However collision detection is considered
as the major bottleneck of real time dynamic simulations.
Studies have shown that 90% of the computation time of a
deformable bodies simulation is spent by the collision
detection routines [4]. This paper only focuses on
collision detection that has already motivated a number of
studies in different areas. The next subsection underlines
other works with efficient techniques.

1.1. Previous works

Basic collision detection method performs static
interference tests at discrete time instants near enough for
collisions not to be missed [5]. Interference among
polyhedral objects is detected by testing all combinations
of face and edge couples. The average time complexity for
such a test can be computationally expensive as the
objects complexity increases. Thus most efficient methods
first perform an acceleration of the detection and then a
fine detection [6].

The aim of collision detection acceleration techniques
is to eliminate couples of objects that could not be in
contact. They consist of possible non contacts detection,
and allow the acceleration of the collision detection by
performing rejection tests of geometric entities. Three
kinds of techniques [4] are generally used: bounding
volumes hierarchies, spatial subdivisions and geometric
coherence.

Bounding volumes hierarchies consist in approximating
objects with various resolution levels of bounding
volumes. These volumes can either be boxes [4][7][8] or
spheres [9]. Their advantages in collision detection are the
use of simplified geometric representations instead of the
original objects and the definition of various resolution
levels to fit the object geometry. In [10], another strategy
based on bounding volumes is described. It consists in
adding a temporal dimension in order to create a space
time bound structure which allows the estimation of the
nearest collision time. These methods are particularly well
fitted for rigid bodies which have a fixed topology.
However when applied to deformable objects, the update



of bounding volumes hierarchies at each time step can be
time consurning.

The spatial subdivisions are computed thanks to regular
divisions, voxels [L1] or octrees [5][6] techniques. Two
volumes located in different zones cannot interpenetrate
each other. These methods present two limitations: the
course of the subdivisions set and the accuracy of the
subdivision hardly adaptable to the geometry of
deformable objects.

Acceleration techniques using geometric coherence
exploit the information of the last time step for solving the
current collision detection problem. In [12][13], authors
consider that geometric relations between objects do not
change in a considerable way between two time steps.

The acceleration phase must be followed by a fine
collision detection which aims at finding the accurate
parameters of the geometric contact. Most of past works
are based on the distance computation between two
convex polygonal objects [13][14].

The GJK algorithm [14][15] is an iterative method of
distance computation between convex hull of two points
sets. Its goal is to calculate the Euclidean distance
between two objects from the nearest points of their
convex hulls. The algorithm returns either this distance
when the hulls are separated, or an approximation of the
negative distance.

The Lin-Canny algorithm [13] consists in finding the
two nearest characteristics (faces, edges or vertices)
between two moving convex polyhedra. It relies on the
fundamental concept of Voronof regions. Given these two
characteristics, the distance between two polyhedra is
computed with simple geometric formulas. The Lin-
Canny algorithm gives the nearest points of two rigid
convex polyhedra in linear time when they are separated.

The above algorithms can be extended to cater for non-
convex polytopes by using hierarchies of convex
components [16]. Although this technique works well for
slightly non-convex objects, it becomes very inefficient as
the level of non-convexity increases [6]. To overcome this
drawback, implicit surfaces [17][18] are commonly used
to model deformable objects. Their advantages are to find
and maintain the precise contact zone over time. However
polygonal approximation methods are still too slow for
real time performances.

1.2. Problem requirements

The focus is principally put on telerobotic process
involving a rigid tool and static deformable workpieces.
For example, in drilling operation, the operator
manipulates in a three dimensional environment the tool
in order to perform his task. This operation first consists
in positioning the tool extremity upon the workpiece and
then in applying a normal force to the surface. Movements
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of the tool are non predetermined and can be both rotation
and translation. In such simulation, requirements for
collision detection have not yet been all met by any of the
methods surveyed in last subsection. These requirements
are the ability to achieve real time performances, to handle
deformable and concave objects, and to perform dynamic
and predictive detection.

A system runs in real time if it is able to absorb all
input information while they have interest, and to react
quickly enough so that this reaction makes sense. This
definition is right but not sufficient because in dynamic
simulation, real time performances are often related to the
operator immersion. Indeed depending on the information
feedback, the operator does not have to feel
discontinuities in the related sense. Consequently our
collision detection method must provide at least a 15
frames per second rate to allow a visual real time
simulation.

In robotic process simulation, it is very important to be
able to perform collision detection for deformable objects
that can either be convex or concave. As the association of
auxiliary data structures (bounding boxes, octrees, etc.)
for each object requires computationally expensive
updates, our collision detection technique does not
achieve any special processing of deformable objects.
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Figure 1. Dynamiic and predictive collision detection.

It is common to distinguish between three kinds of
collision detection: static, pseudo-dynamic and dynamic
[19]. The first two can lead to critical situations when
geometric interference are not detected because they
consider the objects only at discrete times. The method

" introduced in this paper takes into account the volume

swept by the whole tool (not only its extremity) between
two consecutive instants to achieve a dynamic detection
(cf. Figure 1). The assumption that the tool follows a
straight line displacement between two positions is made.
Indeed most of teleoperation applications require a limited
displacement speed of the tool for safety reasons. The
displacements undergone by the tool between two
successive times are thus short length and defines small
swept volumes, considering that system sample frequency
is high.




Another characteristic of this method is its prediction
aspect. The aim of prediction is not related to the
computation of the nearest collision time [10] but to the
operator response time — 1Hz for considered acts and
10Hz for reflex actions. Indeed, when a collision occurs,
the operator must be able to react quickly and in a good
way. Thus a collision which happens at time r must be
predicted so that the operator have assimilated this
information at time ¢. Figure 2 illustrates this principle.
Suppose that the system sample time is smaller than the
operator response time Az and that a collision occurs at
time ¢. Without a predictive detection, the operator is
informed of the collision at time ¢ and reacts at time 44t
while the system is running during this interval. In the
other case, the collision is predicted at time #-Af so that the
operator reacts to the collision when it happens (cf. Figure
2.). The predictive collision detection consists in
achieving several tests with extrapolated tool positions at
each discrete time instant (cf. Figure 1).
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a truncated pyramid and a box, defined by six parameters.
The user can also specify up to six additional clipping
planes to further restrict the viewing volume, and define
the camera position and orientation thanks to the function
gluLookAl().

While most graphics software are content with drawing
static objects in a simple way, OpenGL allows the user to
identify objects that appear on the screen. This procedure
cannot be easily performed because of the multiple three
dimensional transformations undergone by the objects.
OpenGL provides two mechanisms for identifying the
objects drawn in a specified region of the scene. These
two modes, select and feedback, that do not necessarily
require to update the display, substitute for the usual
rendering mode, GL_RENDER, thanks to the function
glRenderMode(), which takes the arguments GL_SELECT
and GL_FEEDBACK. Typically, when using the select
mechanism and displaying the scene, OpenGL returns the
list of primitives that are located in the viewing volume
(function glSelectBuffer()), do well as their number
(function glRenderMode()).

Figure 2. Predictive collision detection.

The remainder of the paper is organized as follows.
Section 2 focuses on the OpenGL functions which allow
the development of the method. Sections 3 describes the
main features of the collision detection technique. Section
4 both presents simulation results and method's validation.

2. A graphics library: OpenGL

OpenGL (Open Graphics Library) [20] is a software
interface to graphics hardware. This interface consists of
about 120 distinct commands which allow the
specification of objects and operations, needed to produce
interactive three dimensional applications. The method
takes benefit of its graphics capabilities by associating the
visualization process with the collision detection [21].

Besides the objects positioning and orientation in the
virtual scene, OpenGL offers facilities to define a viewing
volume (objects outside are clipped out) and to specify the
way objects are projected on the screen. There are two
kinds of projection: perspective and orthographic (cf.
Figure 3). The perspective projection is similar to our
vision mode: the further an object is, the smaller it
appears, and two parallel straight lines seem to converge
in the distance. The orthographic projection draws object
without affecting their relative size. In both cases, viewing
volumes (in gray on Figure 3) are hexahedra, respectively

X near clipping near clipping

F
I r-\‘-_
T
R
K - Qj z
\ B
¥
far clipping

Viewing
Volumes plane

far clipping
plane

Figure 3. Perspective and orthographic cameras.

3. Collision detection

3.1. Dynamic detection

The main feature of the approach is to perform dynamic
rather than static collision detection. The volume swept by
the whole tool between two instants is taken into account
instead of the tool shape at discrete time instant. The
virtual tool manipulated by the operator is considered as a
rigid cylinder undergoing non predetermined motions. Its
positions and orientations at discretized times are the only
known data.

The basic idea of this technique consists in associating
the test of geometric interference with the OpenGL
visualization process. At each time step the mapping is
established between the viewing volume and the volume
swept by the tool between two instants. On the one hand,
if the OpenGL select mechanism does not detect the
presence of objects, no contact is said to have occurred.
On the other hand, if part of the deformable object is
present in the viewing volume, a collision is detected
between the tool and this object. The main mapping
constraint is to minimize differences between the two
volumes in order to avoid unlikely collisions detection.
The solution chosen consists in computing a tight




bounding box (Oriented Bounding Box or OBB) of the
volume swept by the tool between two consecutive
positions at times ¢-1 and . Then an orthographic camera
(cf. Figure 3} is associated with the parallelepipedic OBB,
and so to the swept volume,

The principle of OBB is to approximate an object,
considered as a collection of polygons, with a box of
similar dimensions and orientation. The OBB computation
algorithm presented in [7] makes use of first and second
order statistics summarizing the vertex coordinates. They
are the mean, g, and the covariance matrix, C. If the
vertices of the /th triangle are the points p’, ¢’ and r
defined in the reference frame, then the mean and
covariance matrix can be expressed in vector notation as:
1R i o i
3}1;(_0 +q +r’)

i n b B il B el -
Cjk=§;l-2(pj!pk[+qjiqk£+rj[rkt), IS‘],kS3
i=0
where 71 is the number of triangles, and p', g°, 7' are

the vectors defined by p'=p'—u, g'=¢' - u and

Fi=r —u . Cy are the elements of the 3x3 covariance

matrix.

The eigenvectors of the C symmetric matrix are
mutually orthogonal, and after normalizing them, they are
use as the basis of the OBB. The extreme vertices along
each axis of this basis define the size of the bounding box.

Considering that the collection of polygons consists of
the triangles that define the tool at times #-1 and ¢, the
minimal box bounding the volume swept by the tool is
built. The OBB basis vectors orientation are turned so that
axis Z corresponds to its length, axis Y with its width and
axis X with its height (cf. Figure 4). This is an arbitrary
choice which allows a homogeneous reasoning. Then the
reference frame of the camera is mapped on the OBB
basis vectors.
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The setting of the OBB enables to define the viewing
volume dimensions thanks to the function glOrtho(). The
camera is positioned at point E and its direction is defined
by the vector EC thanks to the function gluLookAx().
However Figure 4 shows that the volumic approximation
carried out using the OBB is not tight enough to
approximate the swept volume. It can be improved by
using extra clipping planes.

These planes restrict the viewing volume by refining
the convex hull defined by the OBB, The determination of
the clipping planes is based on a geometrical reasoning
into the plane (Y,Z) (cf. Figure 5). This plane is defined by
the two greatest directions of the OBB which are usually
associated with the largest differences of the volumes
mapping. Four additional clipping planes can be defined
in this plane: two side and two frontal.

Both side clipping planes (SCP1 and SCP2) are defined
by two points (¥ a3 and Yyaeq OF ¥ iy and ¥,2) and by
the X axis of the camera frame. These points are obtained
after the computation along the ¥ axis of the two min-max
values of the vertices lying into each face of the tools (rear
and front) (cf. Figure 5).

To compute the two frontal clipping planes (FCP1 and
FCP2), the following steps are taken. For FCP2, the two
front faces of the tools are considered. For each front face,
the min-max values are computed along the ¥ axis, and
two points are obtained for each face: (¥arsy Yuins) and
(Ymax3s Yminz). Then the aim is to find the straight line
which contains two points (Y,q; and Y3 on Figure 5),
and which satisfies the following property: the two other
points belong to the left (resp. right for FCP1) halfspace
created by the straight line. This straight line associated
with the X axis of the camera frame defines a frontal
clipping plane.

Figure 5 shows that the use of clipping planes leads to a
new tight viewing volume (hatched zone).
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Figure 4. OBB representation and camera specification.
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Figure 5. Side (SCP) and frontal (FCP) clipping planes.




The collision detection algorithm returns the number of
primitives located in the specified viewing volume thanks
to the select mechanism of OpenGL. If this number is
equal to zero, there is no collision. Otherwise, there is a
geometric interference and the triangles of the deformable
object in contact with the tool can be identified.

3.2. Predictive detection

Collision detection’s prediction aims at reporting to the
operator a collision (warning light, highlighted contact
zone) before its occurs. To take into account his response
time, the operator must be informed sufficiently early to
have time to assimilate the future situation and to
consequently modify the tool’s behavior. Collisions do not
have to be processed when they are predicted but when
the contact really happens.

The method consists in computing extrapolated tool’s
position-orientation couples at each discrete time instant;
these couples are then used to perform dynamic
interference tests. Studied system is composed of 6 state
variables g; associated with the 6 degrees of freedom of
the tool (i.e. 3 translations and 3 rotations). Although
some variables can be constrained by the process, they are
considered mutually independent. The computation of
extrapolated tool’s position-orientation couples relies on
two main steps: interpolation of the movement and
determination of tool’s estimated future configurations.

The first step consists in interpolating each of the non-
constrained state variables with a polynomial function
defined by the operator. Identification of the function
parameters is performed thanks to a recursive least
squares method on an observation period composed of
tool’s position-orientation samples.
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the reflex interval and the considered interval (cf. Figure
6). The reflex interval corresponds to the operator’s reflex
response time (i.e. 0.1 sec), and the considered interval
matches to the difference between this last interval and
operator’s considered response time (i.e. 0.1 sec to I sec).
Indeed, the temporal interval between two predictions
relies on the degree of interest puts on the current
prediction period. Information related to the reflex interval
takes an important part because it deals with what happens
very soon and because it is associated with a reflex act.
Thus prediction’s sample time step Az, associated with the
reflex interval has to be small in order to provide the
operator with numerous information. For the considered
interval, the prediction’s sample time step At,. is greater
because operator needs less information and has more
time to react. Finally, prediction’s samples number is
limited by the computation time of prediction and
collision detection. Predictive collision detection does not
have to reduce the simulation system’s sample frequency
under 15Hz (i.e. visual real time).

4. Results and validation

A series of tests to bench the collision detection method
have been performed. The experimental platform is a 866
MHz Pentium IIT workstation running under Windows NT
and using an ELSA Gloria II Pro graphics card. The
programming environment is developed with Microsoft
Visual C++. The operator manipulates a cylindrical tool
thanks to a 6 d.o.f. Space Mouse in a 3D virtual
workspace composed of a deformable hull (cf. Figure 7).
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Figure 7. Visualization of the tool trajectory with
Oriented Bounding Boxes.

Figure 6. Predictive collision detection’s principle.

Prediction is then performed computing future tool’s
configurations with the interpolated movement in the
prediction’s temporal interval 7,. During prediction
period, the tool’s behavior does not have to be modified;
thus prediction’s temporal interval must be smaller than
operator’s response time for considered acts (i.e. 1 sec).
Furthermore, the system must inform the operator of a
predicted collision so that he have assimilated the
information when the collision occurs. Thus 7, is set equal
to 1 sec. The prediction period is divided in two interval:

.

o

.

Figure 8, Predictive collision detection.




Table 1 shows results of simulations without prediction
done with various geometric resolutions of the deformable
objects, using only OBB or both OBB and clipping
planes.
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400 triangles | 1600 triangles
OBB + clipping planes |  0.85 ms 221 ms
OBB alone 0.61 ms 1.48 ms

Table 1. Computation times for collision detection.

The collision detection method provides impressive
results. Use of extra clipping planes damages the
efficiency of the algorithm in a quite reasonable way.

Thanks to these efficient computation times, high
sampling frequency of the operator inputs is defined.
Consequently both mapping of the viewing volume with
the volume swept by the tool and assumption of straight
line displacements of the tool between two consecutive
instants are validated.

Efficient computation times allow the realization of
predictive collision detection. Several interference tests
can be performed at each discrete time instant with
extrapolated tool’s configuration (cf. Figure 8).

5. Conclusion and future works

This paper has presented an efficient collision detection
between rigid and deformable objects for a drilling
telerobotic process. This technique is based on OpenGL
graphics hardware and on oriented bounding boxes to
perform a dynamic detection taking into account the
volume swept by the tool between two successive times.
Real time performances lead to achieve a predictive
collision detection with extrapolated tool’s position and
orientation with respect to the operator response times.
The method has been validated through simulations
providing good real time performances. Unlike other
techniques, since no pre-computation is required this
method ideally fits dynamic simulation of elastic bodies.

This method can be extended to handle other telerobotic
processes characterized by more complex tool shape. The
technique consists in associating a hierarchy of oriented
bounding boxes (i.e. OBBTree [7]) with the volume swept
by the tool between two consecutive times. The collision
detection method can also be used as an acceleration
phase before a fine collision detection. The technique
described in this paper can also be applied to the crucial
issue of swept volume computation (cf. Figure 7).

The next step of our work is the collision processing
which consists in computing the force collision thanks to
the interpenetration volume between the objects. This
force is then used to determinate the deformations of the
elastic object according to the bar model described in [1].
Soon an haptic device will be interfaced with the system
in order to provide force feedbacks to the operator.
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