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Abstract

In this paper, two optimization methods on the design of a
spatial 3 DOF parallel manipulator and a 6 DOF Stewart
plaiform are performed. The objective function of the first
method maximizes the total volume of manipulator workspace.
The second method optimizes the total volume of well-
conditioned workspace by maximizing a global condition index.
The global condition index is a performance index to show the
manipulator is how far from singularity. The results of both
methods are compared to show which one is the better design.
Monte Carlo method is used to perform integration numerically
Sor both optimization methods.

1. Introduction

Parallel manipulators have been under increasing
developments over the last few years from theoretical
point of view and practical applications,
Optimal design of parallel manipulators, which is one of
the important issue in designing paralle] manipulators,
means to obtain the geometry of the manipulator such that
it fulfills a set of constraints. These constraints are a
specified workspace, best accuracy over the workspace,
minimum joint speeds and joint forces for a given
Cartesian space, having maximum stiffness in all
directions in the specified workspace, isotropic design and
static balancing of the manipulator, and having the largest
possible workspace for the manipulator. There are few
investigators who have addressed the optimal design of
parallel manipulators. Most of them have been considered
only one or two of these constraints. Merlet[1][2] has
determined the minimum joint speeds and joint forces
for a given Cartesian space for a classical Gough type
parallel manipulator with 6-DOF, Gosselin et. al[3][4]
have studied the spherical 3-DOF parallel manipulator for
determining  the maximal workspace with the
consideration of singularities, Rastegar and Perel[5],
Alciatore and Ng[6] and Stamper et al,[7] applied the
Monte Carlo method to determine the maximum
workspace volume. Park and Brockett[8] and Gosselin
and Angeles[9] performed the global performance index
to determine the best accuracy over the workspace. This
method is based on the integration of the reciprocal of the
condition number over the entire workspace volume.
In this paper, two optimization approaches are performed
for two types of parallel manipulators, i.e., a spatial 3DOF
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introduced in [10] and a 6DOF Stewart platform
introduced in [I1]. The first approach is based on having
the largest possible workspace volume for the
manipulators and the second approach is based on having
the best accuracy over the well-conditioned workspace by
maximizing the global condition index. Both methods are
compared with each other to show which one is a better
optimal design.

2. Description of the parallel

manipulators
The two types of parallel manipulators are used in this
paper. The first one is a 3 DOF parallel manipulator as it
is shown in Fig, 1.

Fig. 1. 3 DOF manipulator

Three legs connect the moving platform to the base
platform. Each leg consists of two parts, where connected
to each other by a prismatic joint. The lower part and the
base platform are connected by three universal joints at

B, and the upper parts of legs and the moving platform

are connected by three spherical joints at P, . A reference

frame (XYZ) is attached to the fixed base at point O,
located at the center of the circumferential circle of fixed
platform. For each leg, another coordinate system (uvw);

is attached to the fixed base at B.

i?

such that u;isin
direction of b; and at an angle @; from the X-axisas

shown in Fig. 1. The angle @, for " leg defines the
relative angular position of the legs. A moving frame
(xyz) is attached to the moving platform atpoint O,
located at the center of the circumferential circle of the



moving platform. The same as the relative angular
position of the base, the angle between a; and x-axis is
defined ¢;. Here, we assume ¢@;=¢;. A vertical leg

connects moving platform to base platform at their center
of circumferential circles and is connected to the moving
platform by a universal joint and to the base platform by a
prismatic joint. The central leg enables moving platform
to have a translational motion along the Z-axis, i.e., heave
and two orientations, i.e., roll about the x-axis and pitch

The second one is a 6 DOF parallel manipulator, as it is
depicted in Fig. 2.

Fig. 2. 6 DOF manipulator
Six legs connect the moving platform to
platform. Each leg consists of two parts, where connected
to each other by a prismatic joint. The lower part and the
base platform are connected by six universal joints at

the base

B, and the upper parts of legs and the moving platform

are connected by six spherical joints at P;. A reference

frame (XYZ) is attached to the fixed base at point O,
located at the center of the circumferential circle of fixed
platform. For each leg, another coordinate system (uvw),

is attached to the fixed base at Bi , such that u;isin
direction of b; and at an angle ¢, from the X-axis as

shown in Fig. 2. The angle @; for i" leg defines the
relative angular position of the legs. A moving frame
(xyz) is attached to the moving platform at point O,

located at the center of the circumferential circle of the
moving platform, The same as the relative angular
position of the base, the angle between a; and x-axis is
defined ¢ . We assume ¢; and ¢@; as

Py =@ +tA; 0, =035+A; , Q5 =5+

PI=0, 02 =0 Ay, 03 =0;

=05+, 05 =05, 05 =05 + A,

A, and A, are two variables that determine the

differences between @; and ¢;,, as well as @ and ¢},

i=1, 3, 5, respectively that will
variables.

This manipulator has 6 DOF, three transitional motion
along x, y and z axes and three orientations about x, y and
z axes, i.e.,, roll @, pitch y , and yaw &, respectively.

consider as design

646

3. Manipulators inverse kinematics

The inverse kinematics solution will be used during the
determination of the workspace volume. The objective of
the inverse kinematics is to determine length of legs and
angles o; and B; for each leg.

As shown in Fig. 3, ¢; is the angle between projection of

«th
lr

+ th
I

leg on u;-v; plane and u; and J; is the angle between

Note that {=12,3for 3 DOF
manipulator and { = 1,2,...,6 for 6 DOF manipulator.

leg and w;

Fig. 3. i closed loop of both parallel manipulators
It can be readily shown From Fig. 3:
b;+1l;,-a;,-p, =0 (1
where all vectors are expressed in reference frame as
follows:

b; = [rcos @, rsing; o (2)
1, =R;1; 3)
a; = Ra] @)
Here,
a) =[ccosg! csing] Of (5)
I{ =[g;sinP;cosa; q;sinfisiney g cosf; i 6)
cos@; -—sing; 0
R; =|sing; cosg; O (7
0 0 1

in which, r and c are the radii of circumferential circles of
the base and moving platform, respectively. Moreover, g;
is the length of i o leg and R is the rotation matrix of the
moving platform with respect to base platform and can be
written for 3 DOF manipulator and 6 DOF manipulator as
R= Rrafl R pitch (8)
R=R rofl R pitch -R yaw (9)

where



1 0 0
R,,; =10 cosg -—sing (10)
0 sing cosp
cosy O siny |
Royw=| O 1 0 (11)
—siny 0 cosy |
cos® -sin@ O]
R, =|sm@ cos& O (12)
0 0 1]

while, P, . the position vector of point O .is written for 3
[0 0 A['and for

manipulator as [x ¥ z]T.The vector 1; can be written

DOF manipulator as 6 DOF

fromeq. (1) as

l,=p,+a; b, (13)
The length of i™ leg is written as
2 T
g’ =L =n", (14)
and the angle B; is derived as
1,(3
B, = arcco D (15)
q;

where I;(3) is the third component of vector I;.
It may be noted that there is no need to compute angle o;
since the problem does not force any limitation on it.

4. Workspace volume of the

manipulators

The manipulator workspace volume, W, is numerically
approximated using Monte Carlo method, as outlined by
the following steps:
Step 1: A large number of points, 1., , are selected
randomly in possible workspace. Possible workspace for 3
DOF is:
—-TSQ<m,—w<y<n, H  <h<H_
And for 6 DOF is:
—TSQSA,—ASYST,w<0<mn

S S WS S PSR e S TS

min max

Where #,=min(r, ¢) where rand c are as defined in eqgs,
(2) and (5).

Step 2: Each point of n points is considered to

total
determine ¢;,3; and s; =b, +1,. Also to check if it falls
within the manipulator workspace. This is accomplished
by solving inverse kinematics problem for each legas
described by equations (13), (I4), (15) in which if
Gimin =47 S G and 0° < f; £90°, the point is
within the manipulator workspace,

Step 3: The workspace volume for 3DOF manipulator is

defined as
nA

W =72 (Brgy — P ) - — (16)
Miotat
and for 6 DOF manipulator is written as
n:
W =7 ax : (Praax = Penin )+ s (17)
n'roml

where n; is the number of points that fall within the

workspace obtained from step 2. Auuc , Ay and r,,, are

defined by the following procedure

hmax = max[max(s;(3))] , Amin = min[min(s;(3))]
))

ymax = maxumax(si (2)]] , ymin= min[min(st- (2))]

xmax = maxﬂmax(sj(l)}] . Xmin= min[min(sf (1

rnm:max[xmax |xmin| ymax |ymin|] (18)

where s; is the position vector of p, with respect to O that

is shown in Fig. 3. Note that, we define manipulator
workspace as a space that contains three points of moving
platform. These points are P, P,, P; for 3 DOF
manipulator and Py, P;, Ps for 6 DOF manipulator.
Therefore, i=1,2,3 for 3 DOF manipulator and i=1,3,5 for
6 DOF manipulator for the above mentioned procedure. It
may be noted that having 3 points of vertices of the
moving platform of 6 DOF manipulator, the other 3 points
can be readily obtained.

S. Workspace volume optimization
method

The objective of total workspace optimization is to
determine the manipulator design variables such that
results the largest total manipulator workspace. The
design variables considered are r, ¢, ¢,, @4 for 3 DOF
s, A, A, for 6 DOF
manipulator. Where leg no. 1 is assumed to align with the
X-axis so ¢, =0 for both 3 and 6 DOF manipulators.

In order to bound the solution and to ensure a practical
realization, the objective function is subject to the
following constraints:

e  All variables must be positive.

e rand cis not exceed one.

e Each leg must have an angular separation of

manipulator and 1, ¢, @,

at least 5° from the other legs.
Here, we assume:
Hpax =2 H i =1, @max =24 quin =1
Tmax = L, Zmin =1 (19)
Given this problem formulation, the optimization is
computed using the Matlab optimization toolbox and
performed the following results:
a. For 3 DOF manipulator = .1, c=1,0,=5" and
@ =355"
b. For 6 DOF manipulator =1, c=1,0:=10", ¢5=350,
=57, As=5.
Plots of the manipulator workspace with these design



variables are shown for 3 DOF manipulator and 6 DOF
manipulator in Fig. 4 and Fig. 5, respectively. Note that
the optimization routine drove a value at the edge of the
allowable design variables.

These solution results are theoretically acceptable for 3
DOF manipulator. However, with these results we can not
connect vertical leg to base and moving platforms. For
providing this constraint, we apply following constraints
on design variables:

180° < @5 <180° + ¢,

5° <p, <175°

The above constraints provide at least, the center of
circumnferential circle of moving platform to be located on
one side of moving platform triangle.

Optimization routine produce the following results
r=.1,c=1,0:=5, 0;=180 or ¢,=5,0;=185" or ¢,=175",
Py=355".

A plot of the manipulator workspace with these new
design variables is shown in Fig, 6 (for ¢=175, 93=355").

o5

Fig. 4 Workspace of 3 DOF manipulator for max.
workspace study

Fig. 5. Workspace of 6 DOF manipulator for max.
workspace study

-as

a1

Fig. 6. Workspace of 3 DOF manipulator for max.
workspace study with new parameters
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6. Well-conditioned workspace

volume optimization method

The global condition index over the entire workspace is

defined for the manipulator as
1

= W k o
where k is the condition number of the Jacobian of the
manipulator at a given position in the workspace. The
condition number of the Jacobian is defined as:

(20)

O max_
ijn
where On and Oy, are the maximum and minimum
singular value of the Jacobian[12]. The kinematics
condition number, k, is varied between 0 and = and thus

k= 1)

we use E in our study to limit its variations between 0

and 1. The Jacobian matrix maps the output velocity, i.e.,
the moving platform velocity to input velocity, ie.,
actuated joint velocities. The Jacobian matrix for the
manipulators at hand can be determined by time
differentiating eq. (14) as

Bi=At=q=BTAt=J=B"'A
where A and B are defined for 3 DOF manipulator as

(22)

g 0 0 a4y a3
B=|0 g, O|,A=|ay apn axn
0 0 g; az; 4z ds3
¢ 4,
t=|y|.a=|4, 3)
h qs

where the elements of A, i.e., a;; can be written as

a;=-r¢ sin(@;)cos(q)cos(@)sin{y)+rc sin(@)-

Ic cosz((pi)sin((p)-t—hc cos(@;)sin(@)sin(y)+hc sin(g;)cos(p)
ap=rc cos’(@;) sin(y)-rc sin(g;)cos(@))sin(@)cos(y)-
he cos(;)cos(p)cos(y)

a;=h-c cos(@;)sin(y)cos()+c sin(@;)sin(@)

where, i=1,2,3 in above equations.

and A and B can be defined for 6 DOF manipulator as

B =diag(q,.q2.43.94,4959¢)

(24)

[(a,x1)7 1,7
(a; x15)T lzT
T
i = (a3xl3); 13T
(agxly)” 14
(35><15)T lST
L(agx1g)T g

r

tzL’)T beT]

a=lg, ¢ & a4 a5 4l (25)

here, ® is angular velocity of moving platform of the



manipulator.

Upon  computing the Jacobian matrix for both
manipulators and substitution the results that obtained into
eq. (20), the global condition index determined. However,
analytical computation of eq. (20} is too cumbersome and
thus we perform a numerical solution method such as
Monte Carlo as follows:

the global condition index,7], is determined for 3 DOF

manipulator as

KCT
1= (rinay — i) (26)
Ryptar
and for 6 DOF manipulator as
KCI
n= J"";"'mu)cz (hmnx _hmin ) (27)
Riorar

where KCI is the kinematics condition index which is the
sum of the reciprocal of the condition number of the each

point that falls within workspace, i.e.,
i= i
where n; is the number of points that fall within the
workspace. All other parameter are as defined in egs. (16)
and (17). The global condition index is a performance
index to show the manipulator is how far from singularity.
Therefore, the objective of this section is to determine a
well-conditioned workspace volume, which has the
highest global condition index.
New design variable, L, is added to the same set of design
variables that were used during the total workspace
optimization and this new set is used for the well-
conditioned  workspace optimization. L is the
characteristic length of the manipulator that is used to
homogenize the elements of Jacobian matrix to have a
same dimension, because the condition number should
have no dimension.
The objective function is also subjected to the constraints
as were used during the total workspace optimization. The
well-conditioned workspace optimization produced the
following results:
a. 1=0.1, c¢=0.7, ¢,=120", @;=240" L=.5 for 3 DOF
manipulator
b. =1, c=0.5, g:=120", s=240", ,;=115", A,=5", L=.5 or
=3, A=115 for 6 DOF manipulator
When 100,000 points were used for Monte Carlo method.
Plots of the manipulator workspaces with these design
variables are shown for 3 DOF manipulator in Fig. 7 and
for 6 DOF manipulator in Fig. 8.

7. Discussion on results

As it is shown for 3 DOF manipulator in Fig. 4 and 7
and for 6 DOF manipulator in Fig. 5 and 8, workspace
volume is reduced when we optimize manipulators for
global condition index.
Also, when we used first method, maximum workspace,
to optimize the manipulator the condition number is
reduced very much over the entire workspace and so the
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workspace become ill-conditioned, as it is depicted for 3
DOF manipulator in Fig 9 and 10 and for 6 DOF in Fig.
11 and 12. It can be concluded from the results that the
second optimization method, ie., a well-conditioned
workspace volume that has the highest global condition
index is a better optimal design.

X

Fig. 7. Workspace of 3 DOF manipulator for well-
cond. workspace study

Fig. 8. Workspace of 6 DOF manipulator for well-
cond. workspace study

200

a 50

¢
Fig. 9. (1/k) of 3DOF manipulator for max. workspace
study in y=0 plane

1 00 -0 -100 50



150 200
' 200 150 100 -50 a 50 100

Fig. 10. (1/k) of 3DOF manipulator for well-cond.
workspace study in y=0 plane
x 10"

5\

Fig. 11. (1/k) of 6DOF manipulator for max.
workspace study in y=0, 6=0, x=0, y=0 plane

1

— 015

Fig. 12. (1/k) of 6DOF manipulator for well-cond.
workspace study in y=0, 6=0, x=0, y=0 plane

8. Conclusion

Two optimization methods on the design of two kinds of
parallel manipulators were performed. The first method
was based on maximizing the total volume of manipulator
workspace. While the second method optimized the total
volume of well- conditioned workspace by maximizing a
global condition index. The results of optimizations of
both methods were shown graphically. It can be concluded
from the results that second method is better for optimal
design of manipulators.
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