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Cascades in Infrastructure Networks 

2 



Vulnerability of Transportation Systems	  
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 “The	   Transportation	   Sector‘s	   components	   are	   susceptible	   to	   the	  
consequences	   of	   natural	   disasters	   and	   can	   also	   make	   attractive	  
terrorist	   targets.	   The	   sector's	   size,	   its	   physically	   dispersed	   and	  
decentralized	  nature,	   the	  many	  public	  and	  private	  entities	   involved	   in	  
its	   operations,	   the	   critical	   importance	   of	   cost	   considerations,	   and	   the	  
inherent	   requirement	   of	   convenient	   accessibility	   to	   its	   services	   by	   all	  
users	   -‐	   these	   aspects	   combine	   to	   make	   transportation	   vulnerable	   to	  
security	  threats.”	  

- Volpe National Transportation Systems Center Report ‘03 



Disturbances in Urban Transportation Networks 

•  Accidents, road closures, inclement weather, etc. 
•  Load balancing related to adaptive road choice behavior of drivers 
•  Cascade effects can magnify the effect of disturbance 
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Typical Monday at 6:30 p.m. Monday November 7, 2011, 6:30 p.m. 
(Courtesy: Google Maps) 

disturbance 



Urban Transportation Network 
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[A traffic jam in China] 
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Objective:  Develop a dynamical model for transportation  
and derive metrics for their resilience  



Outline  
• Dynamical network flow formulation 
 
• Stability of equilibria 

• Margins of resilience 
 
• Cascade effects 

• Conclusions 
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Transportation as Network Flow 

•  Directed acyclic graph with single O/D pair 

•  Constant arrival rate       at the origin  

•  Driver route choice decisions + traffic physics determine  
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Static Network Flow 
•  Link flow capacity: 

•                            feasible    : 
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•  Max flow min cut theorem: 

 

 
•  Static perspective: link outflow always equals inflow  
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Wardrop Equilibrium 
•     : distribution of driver 

population by route preference 
•      induces static 
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Wardrop equilibrium: 
 
•  delay      on any used path is no greater than the delay on any other path 
 
•  globally stable under best response dynamics if 
 
•                                    evolves as per global best response  strategy by drivers  
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Transportation physics 

• Congestion dynamics 

 
•  Flow conservation 
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  : density on link  

fig26

(f)

λin < min-cut capacity

ρi

fig26

(f)

λin < min-cut capacity

ρi i
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Flow function 
•  Outflow on a link depends on the traffic density on that link:   
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Outflow is not necessarily 
equal to inflow on a link 

  : density on link  
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Multi-scale driver decision model  

 

•  Drivers take decision at every node 

•  Node-wise decisions influenced by: 
•  global information available infrequently    

•  real-time node-specific information 
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Local route choice decisions 
•  At node    ,   

•  Locally responsive routing policy       : 
•  Consistency: 

•  if local observations match expectation, then follow suit 
 

•  Sensitivity: 
•  locally prefer links with less congestion   
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Example: i-logit 

 
 
•  Myopia prevents passiveness; inertia prevents aggressiveness 

15 

fig26

i.e., utilityi = ρπ
i − ρi� �� �
myopia

+
log fπ

i

β� �� �
inertia

+noise(β)

λin < min-cut capacity

ρi i

G : ρ����
local info

× π����
(old) global info

→ prob. vector

fig26

i.e., utilityi = ρπ
i − ρi� �� �
myopia

+
log fπ

i

β� �� �
inertia

+noise(β)

λin < min-cut capacity

G∗
i (ρ) ∝ fπ

i exp (−β(ρi − ρπ
i )) , β ≥ 0

G : ρ����
local info

× π����
(old) global info

→ prob. vector



Dynamical network flow 

•  Congestion dynamics (fast scale) 
 

 

•  Global decision dynamics (slow scale) 
 

•  Flow conservation 
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Illustration of Network Flow Dynamics 
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Stability of Wardrop equilibrium 
  

Theorem: If 

•             min-cut capacity 
• Drivers do not update their global decisions sufficiently 

fast w.r.t. traffic dynamics (small     ) 

•   Then Wardrop equilibrium is globally stable. 
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Perturbations: infinite density capacity 
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Network Response to Small Perturbation 
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Network Response to Large Perturbation 
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Transferring Property 
•  The perturbed network is fully transferring w.r.t. eqm        (not  

necessarily Wardrop)  under       if : 
     with initial condition 

 
 
 
 
 

•  Margin of resilience for a given     and           
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Upper Bound on Margin of Resilience 

                                                                   

•       , margin of resilience ≤ min cut residual capacity   
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A Tighter Upper Bound 

 
 
 

•       , margin of resilience ≤ min node cut residual capacity                                                       
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Sufficiency for Margin of Resilience 
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Possible loss of resilience due to:   

§  Passive routing 

§   Aggressive routing  



Optimality of Locally Responsive Routing 
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•        creates the perfect balance between passive and aggressive routing 

•   For       , margin of resilience =    
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Perturbations: finite density capacity 
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Finite density capacity constraints cause upstream cascades 



Upstream Cascades  
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Upstream Cascades can Increase 
Resilience 
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Unbounded density capacity Upstream cascades due to 
bounded density capacity 

Upstream cascades compensate for lack of downstream information 



Upper Bound on Margin of Resilience 
•  Backward recursion algorithm: 

•       b: min downstream perturbation needed to shut down node   
•              : min perturbation to remove capacity       from link   

•  Margin of resilience           
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Backward Recursion Algorithm

dv: minimum downstream disturbance to shut down node v

ci(xi): minimum disturbance to remove capacity xi from link i

ci(xi) = min{xi, dτ(i)}

fig23

0

τ(i)

ni

Let dn := +∞. For v = n− 1, . . . , 1, 0, iteratively let dv be the solution to

minimize
�

i∈E+
v

ci(xi)

subj. to
�

i∈E+
v

xi =
�

i∈E+
v

(fmax
i − f eq

i ),

xi ∈ [0, fmax
i ] ∀i ∈ E+

v

Ketan Savla (LIDS, MIT) Robust Distributed Routing April 6, 2012 12 / 16

Backward Recursion Algorithm

dv: minimum downstream disturbance to shut down node v

ci(xi): minimum disturbance to remove capacity xi from link i

ci(xi) = min{xi, dτ(i)}

fig23

0

τ(i)

ni

Let dn := +∞. For v = n− 1, . . . , 1, 0, iteratively let dv be the solution to

minimize
�

i∈E+
v

ci(xi)

subj. to
�

i∈E+
v

xi =
�

i∈E+
v

(fmax
i − f eq

i ),

xi ∈ [0, fmax
i ] ∀i ∈ E+

v

Ketan Savla (LIDS, MIT) Robust Distributed Routing April 6, 2012 12 / 16

Backward Recursion Algorithm

dv: minimum downstream disturbance to shut down node v

ci(xi): minimum disturbance to remove capacity xi from link i

ci(xi) = min{xi, dτ(i)}

fig23

0

τ(i)

ni

Let dn := +∞. For v = n− 1, . . . , 1, 0, iteratively let dv be the solution to

minimize
�

i∈E+
v

ci(xi)

subj. to
�

i∈E+
v

xi =
�

i∈E+
v

(fmax
i − f eq

i ),

xi ∈ [0, fmax
i ] ∀i ∈ E+

v

Ketan Savla (LIDS, MIT) Robust Distributed Routing April 6, 2012 12 / 16



Implications for Intelligent Transportation 
Systems 
• Green light control 

•  to influence routing G 

• Congestion pricing 
•  to influence equilibrium 

 
• Automated driving 

•  to influence the flow function 
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Conclusions 
• Dynamical model for transportation networks 

• Stability of equilibria under multiscale driver decisions 

• Robust route choice behavior 

• Characterization of margins of resilience 

• Effect of cascades on the margins 
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Future Work 
• Multiple origins and destinations 
 
 
• Micro foundations: spatial queuing networks  

 
 

• Control and mechanism design: green light control, 
dynamic tolls 
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