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* Global automotive industry leader
based in Dearborn, MI.
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Six continents.

* 300,000 employees & 108 plants
worldwide

* Ford Motor Company celebrated its
100th anniversary on June 16, 2003.
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Generic Plant Information Infrastructure
(Automotive Assembly Plant)

e, PR .,

FIS Gateway
Server  (Body)

Level #3

Level #2

Level #1

Fobots, CNC, Conveyor Drives, Weld Guns, Bells & Reciprocators, Pumps, Lifts, eWorkcells, etc.

Generic Plant Informatics Applications

« ActivPlant

+ Ford, Toyota, DCX, CocaCola,
Bosch, Gillette
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« Low, PLC level: local control algorithms (ladder logic, PID control)

« Intermediate level: information sharing and process performance enhancement

« Upper, FIS level: machine operating attributes for Overall Equipment Efficiency (OEE)
assessment & limited set of process data

* Opportunities: hine health itoring, process modeling, supervisory control,
adaptive control, p ptimizatic ne agents, etc.

Applied Intelligent Control: Control of
Automotive Paint Process

—
% Robotic Applicators

Multiple Inputs and Outputs

* Nonlinear Behavior / 0

« Strong Interactions e Clear Coat
* Multiple Operating Modes _ Base Coat
.

PSS & Coat

Legacy Controls
Substrate




System Decomposition:
Independent Subsystems
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Intelligent Adaptive Control
Supervisory Control Architecture

RBIC
Reinitialization
Default Control|

On-Line Model Learning
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US Patents: 6 528 109, 6 502 059, 6 701 193, 6 484 121, 5 959 211

Example: Application of the Intelligent
Control Algorithm
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Impact of Integrated Paint Quality Control
on Material Cost

Material Cost Reduction
while IPQCS on:
¢ Toreador — 10.3%
* Twilight — 12.4%

{

Basecoat Usage by Month at Wayne Assembly
« > IPQCS on

Cost per Unit by Month at Wayne Assembly
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Supervisory Control Architecture: Weld
Control (pilot)

Supervisory

Process Control * Legacy local controls

* Computerized sensors

* Monitoring & SPC
Charts

« Improved conventional
control solution at

Model Learning

Optimization

- LVQ minimal risk
SQL Nugget *Wide range of
Database Quality application in

tf ing

Challenges: Manufacturing is Dominated by
Manual Strategies for Process Improvement

Objective: Quality /
Capacity / Availability / Cost

Process
Inputs /
Outputs
> ===l Process Targets
> Updated
S
PLC Time Delay
Controls Subjectivity
Complexity

Conventional Overall Equipment Efficiency (OEE) Scheme




Vision : “Lights Out” (Autonomous)
Process Optimization

RT (Evolving)
Process Model

Constraint
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Updated

Real Time Overall Equipment Efficiency (OEE) Optimization
Scheme

Predictive Maintenance (PdM): Impact &
Opportunities

Current Status

* Machine health monitoring is

+Reactive > 50-60% 4= Fail &Fix

« Preventive > 40-50% 4= Routine maintenance in its early stage

. Predictive < 5% - b . - .
Predictive < 5% Zdsedi] « Conventional diagnostics

T methods & systems are cost
prohibitive
"60% = « Lack of reliable fault
of all planned maintenance . ..
1 onnecessory* prognostics algorithms
ety e * Great research
— opportunity with

“More than $1 trillion is spent each year to replace . e .
perfectly good equipment because no reliable and cost- sngmficant pOtentlal

effective method is available to predict the equipment’s impact
remaining life”. (scLean & Wolfe, Sensor Magazine Ontine, June, 2002)
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PdM Systems — one of the main drivers for autonomous D & P

Machine Health Monitoring:
Diagnostics & Prognostics of Faults

Normal -
Operation Incipient
Ll Drastic
Fault .
Dlaonotics Prognostics Failure

Remaining Useful Life Safety Margin

Diagnostics - detect and classify fault conditions in real time
Prognostics - provide early detection of the precursor to a failure condition

Modern Machine Health Monitoring:
Synergy between FIS and Autonomous D& P

Plant

Maintenance
Personnel

Early Warning

FIS: Continuous Machine Health Monitoring
Jfor PdM

_- ‘/_/.% * Continuous monitoring of
RIS machine health attributes
HI‘IWM” e (vibration, lubricant
T temperature, etc.) — enabler
i

I I i for novelty detection based
mo i (AR | (R fevltprognostics
i = Reduced installation and

_ maintenance cost

&

Entek, CIAB

* Enabler for integration

Operating Data
with sensor networks

Process Data




Basic Elements of Autonomous Diagnostics
& Prognostics Systems

Diagnostics
——— | ouTPlTS:
Novelty Detection Fau't dassification
| Failtoondifon
Health State Faultinolation
/ Estimation
S'ensor ——> Feature i <
Signal(s) \ l
Sensor Fusion Prognostic Models & OUTPUTS: -
Data Acquistion Time Domain Algorithms Reaining UsatilL e
Preprocessing Frequency Domain g :
Networking Joint TimeFreq. Forecasting Engine N M
Data Storage Domain momoomonmoimomoumcomovmomeoumooncont G

Shor-Tem Fourer Transform Failure Definition Recommended Acton

Wavelets

Empirical Mode Decomposition Prognostics

The Novelty Detection Challenge

* How to recognize (and compare numerically) the
difference between the different machine operations?
* How identify the difference between a normal machine

operation and an anomaly?

Hydraulic Excavator of Shin-

F(';i L)D " Caterpillar Mitsubishi
op | K Code | Label OperatiorDescription
Uy R 2 1 F1 | Fuel Spray Nozzle deactivated
°F ‘ = 2 F2 | TurbeCharger Deterioration
% 02 04 06 ogpp <
Q 3 F3 | Valve Clearance Changed
" § 4 | F4 |Ar Filter Obstruction (High)
0p ‘ J 2 5 F5 | Air Filter Obstruction (Low)
02 04 06 087 2z 6 NH | Normal Operation (High Load)
P1: Engine Speed § 7 NM | Normal Operation (Medium L.)
b P2: Engine Boost Pressure (3 8 NL | Normal Operation (Light Load)

Novelty Detection Model >

Feature Vector

root mean square,
skewness, crest
factor, autoregressive
model parameters);

Operating
Modes (OM)
Clusters

Frequency / Energy
(peaks of Fourier
transform, power
spectrum, frequency
band energy, overall
energy)

Mixed Domain
(wavelet coefficients)

Time Domain (kurtosis,

Oper;ting
Y Conditions (OC)
Fault Type II (Drastic): Rapid Clusters

N generation of new OM clusters.
Fault Type I (Incipient): OC

cluster centers approaching the
boundary of an OM cluster

Learning OM Clusters to Approximate
Equipment Operating Modes

If {Feature vector is within the closest OM cluster}
@-¥)' S -¥) <Xpa

Then {Update cluster parameters & transformation mapping}
5K = a y;* (k1) + (1- ) ¥(K)
Si1(k) := Q(k)
Q(k) = &' (Q(k-1)-Q;(k-Dy(k) (e +y'(K)Q;(k-1)y (k) y'(k)Q;(k-1))

Ty Qi = Ti(U) Qi(S) Ti(V)'
Else {Start a new OM cluster}
YF=y® §
SM = Qi(o) Hea:l:g F:d':lcr
Population
(normalized)

Controlling the Number of OM Clusters

OM Clusters

O(tw) = (6)) 5,7 Otw) =¥(8)) < X3 5

Y

Ti=1/ ﬁ (lly(;) — Yy Mountain Potential (Mountain Clustering)
1=1

5= 5 (600 -3 (6(5) - ¥(1) 1= 1705, )=l 1]
I=1

Learning Inter OM Dynamics

OM Clusters

Evolving Models (eTS) approximate local OM dynaﬁpics

vitk) = filyi(k-1), yi(k-2), ..., yik-q)), i=[1

i = [(k+T-1) 5(k+T-2) 5k+T-3)]", i=[1,2] —— 3'(k;-T)




Real Time Diagnostics

. Dla%IIOStICS is carried out based on three independent

methods of analysis
— Diagnostics based on classification (PC space)
-1 P 2
(k) - ;%) 87" (W(k) - y;*)" < X3 re
— Diagnostics based on feature/signal enveloping (feature
space)
IY(k)—Yj ISCO'j R

— Diagnostics based on velocity threshold

(v(k+1) = y(k))" (y(k+1)—y(k)) <v* 1,

* Above three results are combined through a weighted
voting rule to come up with a severity rating

Sp =W W, L W T,

Summarized Machine Health Report

Up-to-Date Summary Status

Prediction of Type 1 (Incipient) Equipment
Faults

New OM Cluster

Predicted Feature
Vector

H=AP

Feature Vector
Approximation

1= arg min ; (d(3(k+T) =) 57 (3(+T) = 3%)°), j=I 1, m].
G+T) =y 57" G+T) = 3% < 23 5

Failure Modes Type |: OM feature models approaching the
boundary of an OM cluster with a low health factor

Real Time Prognostics: eTS Model
Based Prediction

¢ Fuzzily blended sub-models:
98" IF (x;is X|)AND ... AND (x,is X, )
THEN (y= *7') i=[1 R]

¢ Pseudo-linear universal approximators

¢ Approximate non-linear dynamics

¢ Multiple operating modes

y=Zvx) yi(x)

¢ Parameter and structure learning

» NN-like computational efficiency (ANFIS)

Prediction of Type 2 (Drastic) Equipment
Faults

OM Clusters

Dramatic increase of the
number of created clusters
with low health factors

(T#*o(K) - To(k))*/ V¥o(k) <9

T#o(k+1) = @ T*o(k) + (1 - @) To(k)
Vot 1) = @ VoK) + (1 - @) (To(k) - T*o(K))*

Summarized Status of Monitored
Equipment: A Step Towards Immune
Systems

Up-to-Date Summary Status




Validation: Accelerated Testing of
Bearings under Severe Conditions

* 6309 DGBB bearing
SKF Condition Local Monitoring
Unit (LMU).
¢ Bearing life
— Normal Condition: Several years
assuming 24 hours/day operation
— Accelerated testing conditions
(increasing load from 2.6 KN to
18 KN)
* Sensor: An accelerometer in
the vertical axis
* Sampling: 213 points snapshot
at 5 kHz at 15 min interval

Example: Data and Features

Data: C 1ated signal its 4 coefficients of AR(4) model
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Example: Incipient & Drastic Fault Warnings
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Semple Count

Example: Zoomed-In View of Incipient Fault
Prediction

Evolving (eTS) Prediction of PC
Vector Coordinates

uul "

Example: Single Feature (Current Monitoring of VFD
Controlled Electric Motors)

Current / Filtered Current

T
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Incipient Fault Warning: Significant Motor Current Increase
Average current is projected to reach 4.3 in the next 2.4 hrs

Efficient FIS / PdM Integration: Local
Sensor Networks

Operating Data : )
s T — |

DeviceNet/ RIO

Entek

Entek DIH:I

Gearbox

= i Air Supply
%- | House Powslex
| VFD
L | Remote Motor And
i | b
-l i

* Wiring cost & limited flexibility

0o Oppurtumty for wireless sensor nets
— machine health features are non-
-=- critical




Efficient FIS / PdM Integration: Local
Wireless Sensor Networks

: EtherNet
e GO
B 5
I~ H
Operating Data -
Entek
Process Data !
Machine Health Data | Entek [th
| AirSupply
PowerFlex VFD
Remote Motor And Gearbox

Cost — Wired vs. Wireless
Accelerometers:

$100 / sensor = $600 - $1000 (installed)
$400 / wireless sensor = $450 (installed)

Flexibility
Access to locations and devices that would be

expensive to wire (air supply houses, cranes,
turntables, etc.)

Vision: Agent Based OEE Optimization
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* Autonomous CA & RP agents increase FIS effectiveness through automating some of
the main tasks in constraint analysis and equipment reliability assessment & prediction

i i
_’ﬁHﬁJ@?ﬁ eee iR

* Autonomous PdM agent identifies potential drastic or incipient faults and generates
warnings before faulty state occurrence; PdM agent is based on Ford patented
unsupervised learning algorithm requiring minimal spec information during setup

Vision: Transfer Learning Approach

FAMILY: AC Motors

.
J

——— - W
45 HP. 100 HP, 220 V 45 HP,

History: 9 Yrs
Transfel H rning?

AC Current Output

EWAC CurrentiOutput i
Temperature
RPM
Vibration

FAMILY: DC Motors

z

tory: 6 Yrs

s
B
2

AC Current In
Viation
 Jeaton

300 KW AT
History: Not Available
FAMILY: AC Generators

Vision: Transfer Learning & Collective
Intelligence

100 HP. a5 HP.
History: 5 Yrs History: 10 Yrs

FAMILY: DC Motors

viraton ~
@ o - »

- Vibration
100HP, 220V 45 HP, 220V
History:0 Yrs History: 6 Vrs

FAMILY: AC Motors

i (G L y——

o Temperawre |
Temperature

RPM
.

FAMILY TYPE: Rotating Electro-mechanical Devices

Vibration

FAMILY: AC Generators

CL / TL Strategy for Diagnosing & Prognosing Rotating Devices

300 KW AC Generator
History: Not Available
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Evolving Systems

Conventional On-Line
Learning

Evolving System Concept

Single KF / EKF KF / EKF Ensembles

- Systems that autonomously develop their structure and parameters
based on data.

« Adaptive systems with memory & multiple model structure




Fuzzy Systems That Can Evolve

|

Takagi-Sugeno (TS) Models

9" IF (xyis X;)AND ... AND (x, is X,)
THEN y'= f(x) i=[l, R]

+ Real time parameter and structure learning

+ Fuzzily blended local sub-models Applications:
+ Open multimodel structure « Soft Sensors

+ Universal approximators  Prognostics

* Multiple operating modes

+ NN-like computational efficiency * Control

Alternative Interpretations of TS

Ji':IF (x;is X;)AND ... AND (x, is X,)
THEN (y= X7') i=[I R]

¥ =Zv(x) yi(x) ViT§

Jj=1 Raibman et al.

.. Hammerstein model

Input Output
— Static Linear

_______ nonlinearity system

Model #m

—

Flexible TS: Geometric Interpretation

90’ IF (x;is X!) AND ... AND (x, is X,)
THENy = f(x); i=[I, R]

* Fuzzy partitioning of the input space

* Rules are granules (bundles, clusters) in the input —output
space

* Fuzzy model structure identification problem can be
transformed to clustering (similarly to RBF NN

* Granular structure im]ilies system decomposition and
simpler subsystem models

eTS: On-Line Learning Model Structure
Using Incremental Mountain Clustering

1. IF the potential of z(k) is significantly different
than all cluster centers potentials
THEN
IF the new data input x(k) is close to the

existing antecedent centers x;*
THEN x(k) replaces this center x;*

ELSE a new rule with center x*,; , is

1 op° THEN the new data point z(k) is assigned to the

closest center and model is updated

S & ogo ggogo created
° 31 O q: bl 2. 1IF the potential of z(k) is within the range of
p 8008000 cluster centers potentials
| o
XX

Evolving Modeling Paradigm

* Structure Learning through
Incremental Clustering the
Input-Output Space (K-NN,
SOM, K-NN-M, Evolving

( Mountain/Subtractive)

U \ * Input-Output Cluster

Y2

Covariance Defines the
— Consequent Subsystem
) Structure

%" X" * Parameter Learning (RLS,
IF x is close to x,* THEN y is y,* LMS, BP, EKF, Clustering)

IF x is close to x,* THEN y = a, + a, X

eTS: Recursive Least Square (RLS, KF / EKF /
EKF+) Model Learning

- T T T 4T T T T T
y/_[ﬂ'lx ’ﬂ'zx ""’ﬂ'Nx ) gk:[ﬂ-l(kfl)’ﬂ-ﬂkfl)"“’”R(kfl)’ﬂ-tRH)k]l

Parameter Learning (No New Rule)

4 =0
) O =0 HC W (0 w6 0
& =Yk Ok
G G =
C,=C_- A -k=[1,TD] G =
1+¥ Gy,
Structure Learning (New Rule Added): 7
PSPy O 0 R ﬁ
ool PR TRetk = lﬁ”m—/
Sy —
C, =| PSran -+ PSrsry O 0 =
‘ 0 0 0 0 bi-sif
.0 ,
0 o 0 0. Q el




eTS: Summary

Test Results: Box-Jenkins Data Set

simpleTS-salid, real-dotted; Rule-base evalution: o-new, >-madified; * -final)
2

Qutput value

02

0 50 60 50 20 250 300
Sample

 Data samples that originate new rule (circles)

« Data samples that replace existing centers (triangles)

« Final position of the focal point (asterisk)

RT update of P
P
1
{
Inputs ! - Outputs
Rule Base e
lodel
Model Model
Real Time Diagnostics, Prognostics, &
Process Modeling: Industrial Perspective
Drivers
* Advances in information technology, sensor develop and
communications

« Network architectures, sensor nets, industrial web

« Exponentially increasing amount of information

Challenges

* Need for real time autonomous algorithms for diagnostics,
prognostic, process control & optimization to increase

« Fast, and cost effective development process
* Robustness

« Performance self-assessment capability

* Low cost of ownership and maintenance

Reference Material

Adaptive Control Strategy
On-Line Model Learning

- L JU+D =J k) + w(k)
y@® =Su()): Sy(k) = J (k) du(k) + v(k)

<

Adaptive Control Strategy
On-Line Control (Constrained Optimization)

min ((y(k) - y,)" (y(k) - y,))
u u<u

'min < max

LMS (Widrow-Hoff) Model Learning
J(k) =J(k-1) +
o (8y(k)- J(k-1) Su(k)) du’(k)/( du’(k) du(k))

RLS (Kalman Filter) Model Learning
JT (k)= J T (k-1) + Ly(k-1) (By,(k) - J(k-1) Su(k))
L;(k-1) = P(k-1) du(k) (R; + du’(k) P(k-1) Su(k))!
P(k-1) = L(k-1) du’(k) P/(k-1) + Q;

Levenberg-Marquardt (LM) Control Update
u(k+1) =u(k) + Kk) (yq - y(k))
K(k) =J (k) G (pT1+J(k) J(k))!
u(k+1) = sat(u(k) + J*(k) (y4 - y(k)))

Constrained Optimization Control Update
u(k) = argmin (lly, - y)I? + o llu(k) - u(k-1)IP)
s.t.
y(&) = yk-1) + J(u(k) — u(k-1))

<




<
Stability of IPQC Control Algorithm

Ay(k) = J(k) Au(k)

Ji(k+1) =Jj(k) + wi(k)
ayj (k) = au(k) Jj ) + vj (k)
IPQC Control Laws:
* Levenberg-Marquardt Control Update
* LQR Control Update

 Constraint Optimization Control Update

<|

* LQR Control Update

u(k+1) =u(k) + K&) (yqa — yk)

KO=J"OPF jo+R)'j'®wF

yk+1) = yk) + J (k) Au(k+1)

T= 3 (a =y Qg = y(k) +Au’ (k + DRAu(k +1)
]

Q=PJ(J"Pj+R )P
® Closed Loop Dynamics: LQR Control Update
YOk +1)=y(k)+ J(k +1)Au(k +1)
= @-JCk+ DA OPT) + R I OP)yk) +
AT ROPIHR) + R (k) Py,

Al=A-Jk+DATWOPIK+R)TIT (0)P)

<

Stability Condition
 Closed Loop Dynamics: LM Control Update
A=1-J(+D) J ) G (pI+ (k) JT (k)"

 Closed Loop Dynamics: LOR Control Update
A= (I-J(k+DAT OPIE+R) T (0OP)

Stability Condition

Je+D=Jk) = AT IAK <I

<

Intelligent Control Strategy
The Rule-Base of Initial Conditions

ER= 3 60~y 60 -0

1

Update the RBIC with the
current operating point & model

IF x(k) is close to x;*
THEN T (k) is J;* ; § = u;*

To=3 wI* /(3 )
i=1

0= v /(S w
i=1 i=1

Infer a new initial condition
from the RBIC

Synergy Between Conventional & Intelligent Control

The Rule-Base of Initial Conditions (RBIC <

=
IF x(k) is close to x;" THEN J (k)is J;" and i is u;*

x(k) = (u"(k), yT(k)) current operating point
* *T #T T N . N
X; =@’y ) prototypical operating point

t, =exp(~(x(k )=x; ) (x(k)-x; )/ &%), i=[1, m]

Implementation of Intelligent Process Control
Systems
Supervisory Control Architecture: Integration with Legacy Controls

«|

Intelligent
Process
Control

Sensors
Film, QMS
Air -Flow

‘_" Paint Booth ‘

Bell/ Recip .

1| comstraint
PLCS Controls

: Optimization | “ I

! b
-

10



Novelty Detection: Inspired from Process
Monitoring
E Statistical Process Control Charts

+ Statistical process control (SPC) involves using statistical techniques
to measure and analyze the variation in processes

B Pattern Recognition Approach

+ Conventional classification methods require enough examples for all
classes; problem — limited fault data

= Novelty detection is the process of learning the normality of a
system by fitting a model to the set of normal examples

Puppp—
[TV e A LR 72
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- H‘.’,f:‘;'i.',":“‘l’ W M
= N e g L Aan \ll —-_———
TE A TR
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ly-y1<30, - S, @ -x) < U2,

Novelty Detection Paradigm: Main <«
Problem #1

The Problem: How to recognize (and compare numerically)
the difference between the different machine operations?
Once this problem is solved, we would be able to discover
the slow (often: invisible) tendency of performance
deterioration of the machine/system.

P Operation 6|
of ia T Code | Label OperatiorDescription
Z 2 2 1 F1 |Fuel Spray Nozzle deactivated
== g 2 F2 |TurboCharger Deterioration
% 02 04 060 =
ol Q 3 F3 |Valve Clearance Changed
% 4 F4 | Air Filter Obstruction (High)
F«'f ] 5 F5 | Air Filter Obstruction (Low)
0 i p 04 06 08pql z 6 NH | Normal Operation (High Load)
2: § 7 NM | Normal Operation (Medium L.)
D 02 o ® emy Ll 8 NL | Normal Operation (Light Load)

Novelty Detection Paradigm: Main <
Problem #2

Example: VFD Control of Electric Motors
VFD Control:
® =V/f=const

Major Reasons for High Current:
1. Load increase

2. Voltage drop

Time

3. Friction increase (jam, brake, gearbox /
bearing failures)

“ ﬁ" - VFD Time Rated Heat Factor Window:
UM D AL MU b
B L

HF =P T =(1.51,)2 180

HF Range:

1=[102% - 250% I,]; T = [1000s — 40s]

Preprocessing & Transformation of
Feature Space

PCA

Standard Transfor

ization mation
Nd 2d PCA
Feature Space
Space

Recursive Standardization

Y(k) = (Y(k) = Y ) (diag(§ )"’

Y (k)= aY (k) + (1 - aYR(k+1))

S (k1) =08 (k) + (1 - o) (Yr(k+1)-Y (k+1))' (YX(k+1)-Y (k+1))
Recursive PCA Transformation

S(k+1)=aS (k) + (I - a)Y(k+1)" Y(k+1)

S=T*S,*T

y(k)=Y(k )T

Constraint Analysis and Reliability &l

Prediction Agents
Cycle Time Block Time [
Down Time Starve Time FIS Database
[
I ]
v v

-l Update MTBF / MTBR Distributions « Update Survival Function Models E
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EKF* Learning of Nonlinear Systems

Consider a static nonlinear system with unknown parameters:

d, =nh(x,)

If the analytical form (not the parameters) of the nonlinear input/output mapping
his known then assuming slow changing parameters the learning problem can
be viewed as estimation of the state of the dynamic nonlinear system:

“/n a1 “Vu

d, =h(x,)
The result of this assumption is the EKF learning rule:

K,=RH(R +HPH)"

K= i TEd -E )]
Ba= B-KHA + 0O,
where H] = o))

In a more realistic setting the nonlinear input/output mapping h is not
known. In this case we can use another Kalman filter (conventional) to
learn the Jacobian H of the unknown mapping h:

= Sh(x)
" &x

To learn H we assume a linear system with a state vector formed by the elements
of H:

H (k+1) = H(k) + w(k)
8d(k) = H (k) Sh(k) + v(k)

Then the conventional (linear) Kalman filter:
H(k)= H(k-1) + L(k-1) (od(k) - H(k-1) ox(k))
L(k-1) = S(k-1) ox(k) (R + Ox(k) S(k-1) ox(k))!
S(k-1) = L(k-1) &"(k) S(k-1)

Provides the real time estimation of H that is substituted in the EKF learning
rule.
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