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Motivation

• The research on Dynamic Modeling is one of the 
most ancient topics in Robotics.

• There is now a consensus for using Recursive 
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• There is now a consensus for using Recursive 
Newton-Euler for serial manipulators: Efficiency and 
facility of implementation 

• The aim of this presentation is to show the 
generalization of these techniques for other systems. 



Outline

• Recall of the MDH description

• The inverse and direct dynamic models of different 
robotics systems will be presented. 

• We start by rigid tree structure robots. 

3

• We start by rigid tree structure robots. 

• These algorithms will be generalized for closed loop robots, 
parallel robots, and robots with lumped elasticity. 

• At the end the case of robots with moving base will be 
treated.



2- Description of The Kinematics Of Robots

• The kinematics will be described using the Modified 
Denavit and Hartenberg Method (Khalil and 
Kleinfinger, 1986). 

• Different advantages wrt classical DH method:
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• Different advantages wrt classical DH method:

- Extension to tree and closed loop robots,

- Calculation of base inertial parameters using closed 
loop rules,

- More logical choices,

- No reasons to continue to use classical notations 



2.1 Geometric description of tree structure 
robots

• n+1 links (link 0 is the bas), n joints (Rot-Prismatic), 

• frame j fixed with link j,

• Link j is articulated on joint j,

• a(j) indicates the link antecedent to j, a(j) = j-1 in serial 
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• a(j) indicates the link antecedent to j, a(j) = j-1 in serial 
robot.
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Definition of frame i
• zi is along the axis of joint i; 

• xi is taken along the common normal between zi and 
one of the succeeding joint axes (zi+1in serial robots).
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iT j = Rot(z, �j) Tran (z, bj) Rot(x, �j) Tran (x, dj) Rot(z, θj) Tran (z, rj)

The serial structure is a special case of a tree structure 
where a(j) = j-1, γj = 0, and bj =0.



2.2 Description of closed loop structure

• The system is composed of L joints and n + 1 links, 
• The number of independent closed loops is equal to: 

B =  L – n
• The joints are either active (motorized) or passive. 

• To determine the geometric parameters:
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• To determine the geometric parameters:
a) Construct an equivalent tree structure having n joints by 
virtually cutting each closed chain at one of its passive joints. 
b) number the cut joint as: n+1,…,L
c) For each cut joint k define two supplementary frames (k and 
k+B) on one of the links connected by this joint. The 
transformation matrix defining k wrt a(k) is defined in terms of 
qk where as the definition of frame k+B wrt its antecedent is 
constant.
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Constraint Equations:

k+BT j ... iTk = I 4

0 0
k k+B

k k+Bb1 b2J q J q

V V

q

====
====& && && && &

TT T
j j j

 =  V ωV

Frames around a cut joint:



3 Dynamic Modeling of Tree Structure 
Robots

Definitions 

• Inverse Dynamic Model (IDyM)

• Direct Dynamic Model (DDyM)  =  ( , , ) q f q q&& &ΓΓΓΓ

= ( , , ) f q q q& &&ΓΓΓΓ
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• Direct Dynamic Model (DDyM)

• Lagrange Equations

• IDyM , DDyM

d
 

dt

   ∂ ∂= −   ∂ ∂   q q&

T T
L LΓΓΓΓ

 =  ( , , ) q f q q&& &ΓΓΓΓ

= ( )  + ( , ) A q q H q q&& &ΓΓΓΓ ( ) ( )1−= −q A Γ - H&&



• Newton-Euler equations: giving the external forces 
and moments on a link j about the origin of frame j 
are written as:
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• Mj, MSj and Jj are the mass, the first moments, and 
the inertia matrix about the origin of link j.
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3.2 Calculation of the Inverse dynamics 
using recursive NE algorithm

• The algorithm (Luh, Walker and Paul, 1980)consists 
of two recursive computations: forward and backward 
The forward, from link 1 to link n, computes the link 
velocities and accelerations and the dynamic wrench 
on each link. 
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on each link. 
• The backward equations, from link n to the base, 

provide the reaction wrenches on the links and 
consequently the joint torques.

• It provides: e e= ( , , , , ) NE q q q f m& &&ΓΓΓΓ



• The forward equations(for j=1,…,n):
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Eqs.16- 23 in the proceeding.
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The backward equations(for j= n,…,1):
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Where a(k) = j, 

j T j
j j j j j j j j j+ Ia q + Fs sign(q )+ Fv qΓ = && & &a f

Eqs.26-31 in the proceeding.



3.3 Computation of the direct dynamic 
model

• The DyDMcan be calculated from Lagrange model:

• Two methods based on Newton-Euler methods can be used:

- the first is based on calculating theA and H matrices using Newton-
Eulerinversedynamicmodel(procedureWalkerandOrin)

( ) ( )1−= −q A Γ - H&&
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Eulerinversedynamicmodel(procedureWalkerandOrin)

- the second method (due toFeatherstone) is based on a recursive
Newton-Euler algorithm that does not explicitly calculatethe matrixA
and has a computational cost that varies linearly with the number of
degrees of freedom of the robot.

• For tree structure robots, the second method is more efficient, but the
first method can be used for closed loop robots and some othersystems.



3.3.1 Using the inverse dynamic model to 
calculate the direct dynamic model

• By comparing (Walker and Orin 1982):

i)                          is equal toΓ Γ Γ Γ if = 0, 

e e e e= NE( , , , , ) , = ( )  + ( , , , ) q q q f m A q q H q q f m& && && &Γ ΓΓ ΓΓ ΓΓ Γ

( , ) H q q& q&&
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ii) the ith column of A is equal to ΓΓΓΓ if:

= ui, = 0,             , g = 0, fe = 0, me = 0  
whereui is the (n×1) unit vector whose ith element is equal 
to 1, and the other elements are zeros. 

q&& =q 0&



3.3.2 Recursive NE computation of the direct 
dynamic model

Three recursive calculations:

i- Forward: As the first recursive of IDyM, when joint acc =0
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ii- Backward: Calculation of some inertial matrices, giving joint acc. and forces on link j in 
terms of the link accelerations of link a(j).

•

iii- Forward: since the acceleration of link 0 is known “-g”, then we can calculate the link 
acceleration for links 1,…, n, and the corresponding joint accelerations.

( )j j j 



Second recursive equations:
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4 Inverse Dynamic Modeling of Closed Loop 
Robots

• To calculate the Inverse dynamic model of closed loop robots: 

i) calculate the inverse dynamic model of the equivalent tree structure 
robot, in which the joint variables satisfy the constraints of the loop.

ii)  closed loop torques of the active joints ����c are obtained by projecting the 
tree structure torques ���� on the motorized joints using the transpose of the 
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tree structure torques ����tr on the motorized joints using the transpose of the 
Jacobian matrix of the tree structure variables (or velocities) in terms of the 
active joint variables (or velocities).

����c=  GT ����tr

where: 
∂ ∂=
∂ ∂

tr tr

a a

q q
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q q
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= +
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q
Γ Γ ΓΓ Γ ΓΓ Γ ΓΓ Γ Γ
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Direct dynamic model of closed loop robots:

• There is no recursive method to obtain it. It can be
computed using the inverse dynamic model using
(Walker and Orin)procedure in order to obtain the
matricesA andH of thefollowing relation:
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matricesAc andHc of thefollowing relation:

c c tr a c tr tr= ( )  + ( , ) A q q H q q&& &ΓΓΓΓ



5. Inverse Dynamic Modeling of Parallel 
Robots

• The robot is composed of a fixed base and a mobile platform. 
They are connected by m parallel legs. It is a system with 
multiple closed loops.

• The Equivalent Tree structure (platform attached to a leg)
 

P latform 
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B ase   

The dynamic model will be obtained in terms of the joint
variales. The joints connection the platformto the leg must be
obtained too.

PF



Second solution

• The system is decomposed into 2 subsystems: the platfor and 
the legs:  

Platform 
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Base   

The platform dynamics      is calculated as a function of the 
Cartesian variables, whereas the dynamics of the legs ����i are 
calculated as a function of the joint variables of the legs.

PF



• is calculated by the Newton-Euler equation of the platform, Γi is the 
inverse dynamic model of leg i.

• Thus the dynamic model of the parallel structure is given by the 
following equation:

• is the (6�n) kinematic Jacobian matrix of the robot,

PF
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• is the (6�n) kinematic Jacobian matrix of the robot,

• is calculated by the following relation, which exploits the 
parallel structure of the robot:

• The inverse dynamic model 

∂ ∂ ∂ ∂= =
∂ ∂ ∂ ∂

-1i i i P
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6. Inverse Dynamic Modeling Of Robots With 
Elastic Joints

• The description of the system can be done by MDH ,
just note that the joint torque will be �j = - �qj K j

��qi =  qi – q0i , Ki is the joint stifness.

m M

kM
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• The general form of the dynamic model is written as:

• Where r means rigid and f means flexible. 
• The direct dynamic modelDDyM can be obtained from this model by

inverting the inertia matrixA. The recursive algorithm of rigid bodies can
be used after taking into account the torques of flexible joints.

11 12
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• To solve the IDyM from this general model we cannot specify the elastic 
accelerations. They must be calculated using the second row of the 
previous equation.

Then the joint torques are calculated from the first row.
The Newton-Euler method can be adapted with three recursive steps.  

T
12 22

 
 Γ = +  

 

q
A A H

q

&&

&&

r
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f



Inverse dynamics of systems with flexible joints 

This algorithm consists of three recursive steps.

i) The first forward iteration is exactly the same as that of the 
direct dynamic model of rigid system: calculation of elements 
in terms of q and 

ii) The second backward recursive equations calculate the 

q&
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ii) The second backward recursive equations calculate the 
matrices giving the elastic accelerations and jff j as a function of 
the acceleration of link a(j). They can be calculated for j =n, 
...,1, as follows:



Second (backward) recursive equations:
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• The third recursive step calculates (for j = 1, ..., n) the 
acceleration of elastic joints and the joint torques for 
the rigid joints using the following equations:
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7. Dynamic Modeling of Robots With Moving 
Base

• Examples: cars, mobile robots, mobile manipulators, 
walking robots, Humanoid robots, eel like robots, 
snakes like robots, flying robots, spatial vehicle, etc.

• The difference between these systems will be in the 
calculation of the interaction forces with the 
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calculation of the interaction forces with the 
environment. 

• In the previous sections the base is fixed thus the 
acceleration of the base is equal to zero, whereas in 
the case of a mobile base system the acceleration of 
the base must be determined in both direct and 
inverse dynamic models. 



• 7.1 General form of the dynamic models

• Where A is the inertia matrix of the robot, H contains the Centrifugal, 
Coriolis gravity and contact forces,

• The inverse dynamic model is solved as follows:

0
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• The direct dynamic model is solved as follows:

( ) ( )10 T
0 11 1 12 12 0 22 2, then

−= − Γ = + +A H + A q A A q H& &&& &&V V
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• The calculation of A and H can be done by Lagrange method. 
They can also be calculated using the inverse dynamic model 
of tree structure and using the procedure of (Walker and Orin).
The base can be taken into account by either of the following 
methods:

- The velocity and acceleration of the base will be the initial 
conditions for the forward recursive calculation. The backward 
recursive calculation must continue to j=0, where this new 
iteration will provide the 6 equations of Newton-Euler 
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iteration will provide the 6 equations of Newton-Euler 
equations of the base.  

- We suppose link 0 is a virtual link whose inertial parameters 
are equal to zero but has the velocity and acceleration of the 
base which is taken as Link 1. The six equations of the base 
will be those of  



7.2  Recursive NE calculation of the inverse 
dynamic model of robots with mobile base 

• The inverse dynamic algorithm consists of three recursive 
equations (a forward, then a backward, then a forward).

• i) Forward recursive calculation (for j=1,…,n):
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In this step we calculate the screw transformation matrices, 
link velocities, and the elements of the accelerations and 
external wrenches on the links, which are independent of the 
acceleration of the robot base.



• . 
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ii) Backward recursive equations:

• In this step we obtain the base acceleration using the 
inertial parameters of the composite link 0, where the 
composite link 0 consists of all the links articulated 
on link 0.

j j

j j c j j c
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β&f J V
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• iii) Forward recursive equations (j= 1,…, n)

After calculating the acceleration of the base, the wrench and 
the joint torques are obtained as:
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It is to be noted that the inverse dynamic model can be used in 
the dynamic simulation of the mobile robot when the objective 
is to study the effect of the joint motions on the base. In this 
case the joint positions, velocities and accelerations 
trajectories are given. 
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7.3 Recursive direct Dynamic model 

• The direct dynamic model consists of three recursive 
calculations (forward, backward and forward):  

i) Forward recursive equations:

We calculate the link Cartesian velocities and the 
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We calculate the link Cartesian velocities and the 
terms of Cartesian accelerations and equilibrium 
equations of the links that are independent of the 
accelerations of the base and of the joints. 
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• iii) Forward recursive equations:

• At first, the base acceleration is calculated by the 
following relation:
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Conclusion

• Other systems modeled with the same techniques:

- Flexible links robots,

- Non holonomic robots,

- micro-continu robots,
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- micro-continu robots,

- Hybrid structure, where the robot is composed

parallel modules, which are connected in serie.


