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systems: a challenge for automation 

science and engineering 

 

Jean-Marc Faure 

 

with contributions from Jean-Jacques Lesage and other 

colleagues and PhD students of the Automation 

Engineering team of LURPA 

http://www.lurpa.ens-cachan.fr/isa/ 



Dependable Control of Discrete event 

Systems 
• Dependability 

• Dependability is the trustworthiness of a system which allows 
reliance to be justifiably placed on the service it delivers 

• Dependability attributes: safety, security, availability, reliability, 
maintainability 

• Objective of our works: to develop methods, models 
and tools that improve design, implementation and 
operation of mainly discrete control systems, so as 
to increase the overall dependability. 
 

• Targets: from basic embedded logic controller to 
networked automation systems 

• Application fields: critical systems (energy, 
transport, healthcare, complex mechatronic 
systems) 

• Industrial partners: Alstom, Dassault Systems, EDF, 
… 



Dependable Control of DES: the quest for 

the Holy Grail  On-line approaches (during operation) 

• FDI, Diagnosis, Prognosis, … 

• Dynamic reconfiguration, … 

Off-line approaches (during specification, design, implementation 

and validation) 

• Fault Prevention (Synthesis, …) 

• Fault Forecasting (Fault Tree Analysis, …) 

• Fault Tolerance (Physically or functionally redundant solutions, …) 

• Fault Removal (Verification, Test, …) 
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Some recent PhD works  
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Algebraic Analysis of 

Dynamic Fault Trees  

Model-Based 

Conformance Test 

Model-Based Diagnosis 

Evaluation of Time 

Performances of 

Networked Systems 

Algebraic synthesis 

of logical controllers 
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Algebraic modeling and analysis of 

Dynamic Fault Trees 

Guillaume MERLE 

Jean-Marc ROUSSEL, Jean-Jacques LESAGE 
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n ignition source m gas concentration 

e f 

flame 

d p leak 

a c b 

burner leak tap leak tube leak 

AND 

GATE 

t domestic gas 

explosion 

top fault 

basic fault 

basic fault 

spark seclusion OR 

GATE 

intermediate 

fault 

Fault Tree syntax 



Fault Tree Analysis 

 Qualitative analysis (minimal cut sets) 
• direct: {A,C.D}      (BDDs for complex SFTs) 

 

 Quantitative analysis (Pr{TE}) 
• direct: Pr{TE} = Pr{A + (C.D)}  

     = Pr{A} + Pr{C.D} 

     = Pr{A} + Pr{C} x Pr{D} 

(evaluation methods for complex SFTs) 

 

M 

TE 

P A 

A B 

N 

D 

A C 

Q 

TE  

       

= A + (A . B) + (A + C) . D 

= A + (C . D) 

BOOLEAN 

ALGEBRA 

STRUCTURE FUNCTION 

7 

The case of Static Fault Trees (gates: OR, AND, K/among/M) 

Basic fault (event) : occurs with 

a given probability Pr{A} 

Top fault (event) 



The case of Dynamic Fault Tree Analysis 

(SFT + gates PAND, FDEP and Spare) 

Symbol Definition 

A before B 
Q 

B A 

PAND 

T 

A B 

FDEP 

A B 

Q 

Spare 

Asserts a functional dependency – that the 

failure of the trigger event causes the 

immediate and simultaneous failure of the 

dependent basic events 

Output of gate occurs when the principal 

and all spares components have failed. 

 

2 states for each spare component 

(active/dormant) associated to 2 failure 

rates : l/al 

 3 types of spares: Cold (a = 0), Warm (0 

< a < 1), Hot (a = 1) 

No algebraic model for Dynamic Gates 

• Structure Function of DFT undeterminable 

 

Qualitative analysis (minimal cut 

sequences) 

• Extracted from Occurrence graph of SPNs 

 

 

 

 

Quantitative analysis 

• Continuous Time Markov Chains, Markov 

Decision Processes 

• limited to exponential distributions, time 

consuming 

Q 

B A 

Q 

B A 

8 

 

[Dugan et al. 1992] 

[Fussel et al. 1976] 

[Dugan et al. 2002] 



Dynamic Fault Tree Analysis 

(SFT + gates PAND, FDEP and Spare) 

Dynamic gates expressing a priority: 

- Sequential (PAND) 

- Preemption-based (FDEP) 

9 

Dynamic gate expressing : 

- Explicit duration of event 

- Dependence between probabilities 

(Pr{Bi} before A occurs < Pr{Bi] after A 

occurs) 

Symbol Definition 

A before B 
Q 

B A 

PAND 

T 

A B 

FDEP 

Spare 

Asserts a functional dependency – that the 

failure of the trigger event causes the 

immediate and simultaneous failure of the 

dependent basic events 

Output of gate occurs when the principal 

and all spares components have failed. 

 

2 states for each spare component 

(active/dormant) associated to 2 failure 

rates : l/al 

 3 types of spares: Cold (a = 0), Warm (0 

< a < 1), Hot (a = 1) 

Q 

B A 

Q 

B A 

 

A B1 

Q 

Bi 

Needs: modeling of the order of 

occurrence of fault events 

Results: Algebraic structure that allows 

determination of Structure Function 

and direct qualit. and quant. analysis 



Algebraic model of faults 

10 

  Defined on                     (faults = functions of time) 

  Two values 

•  0: no fault 

•  1: fault 

  non-repairable: single change of value 

 date of occurrence d(a) 

 

 

 

 

 

   Set of non-repairable faults Fnr  

  Two specific faults    and     

 

0 

1 

t 

a(t) 

d(a) 

   R



Algebraic model of static gates (example OR 

gate) 

Q 

B A 
t 0 

1 

0 

1 

t 

0 

1 

t 

A 

B 

Q 
t 0 

1 

0 

1 

t 

0 

1 

t 

A 

B 

Q 
0 

1 

t 

0 

0 

1 

t 
A 

1 

t 
B 

Q 
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 Q A B :

 

  



  

,   

nr nr nrF F F

a b a b

with    
   
   

 


  
 

 if 

 if 

 if 

a d a d b

a b a d a d b

b d a d b

  Expected behaviour 

 

 

 

 

  Algebraic model 

 

 

 

 

 
  (Fnr,+,.,   ,   ) is an abelian dioïd, like ({0,1},+,.,0,1) 

 common theorems of Boolean algebra usable 

 structure function of static fault trees is determinable and simplifiable 

 



Algebraic model of BEFORE operator 

 Expected behavior: 

 

 

 

 

 

 

 

 Algebraic model: 
 

 

 

 

 

0 

1 
a    b 

t t 0 
a    b 

1 

t 0 
a    b 

1 

0 

0 

1 

t 
a 

1 

t 
b 

0 

1 

t 

0 

1 

t 

a 

b 

0 

1 

t 

0 

1 

t 

a 

b 
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:

 

 

,   

nr nr nrF F F

a b a b
   
   

 
 

 

 si 

 si 

a d a d b
a b

d a d b

if 

if 



Behavioral & probabilistic model of dynamic gates 
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Gate symbol Behavioral model Probabilistic model 

   . .

.

a a d

d a

Q B A B A B A

B B

 




          

          

Pr

Pr

T A T A T

T B T B T

A t F t F t F t F t

B t F t F t F t F t

   

   

 

 

   

   

T

T

A A T T A T

B B T T B T

   

 





. .

.

Q A B A B

B A B
      

0

Pr
t

B AQ t f u F u du 

      
0

Pr ,
a

t t

B A

v

Q t f u v du f v dv
 

  
 

 

   
0

d

t

B AF u f u du

Q 

B A 

T 

A B 

A B 

Q 

B may be active or dormant 



Théorèmes  

Simplification Theorems Development Theorems 

Some theorems for development and simplification 
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Simplification Theorems Development Theorems 
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f f f

 

 

 

 

 



 



.

.

.T

T T

.

f f g f

f f g f

f f

f f

f

f

     

     

   

  

. .

. . .

f g h f g f h

f g h f g f h

14 



Another example [Fussel, 1976] 

TE = (P . S) + (P . (C  P)) 

STRUCTURE FUNCTION 

Qualitative analysis 

 minimal cut sequences: {P,S},{S,P} and {C,P} 

 

TE 

P P S C 

Switch 

C 

Primary 

P 

Standby 

S 

15 



 quantitative analysis: 

 

 

 

 

 

 Pr{P} and Pr{S} are known whatever the distribution 

 Pr{P.(C   P)} is known from the distributions of C and P 

 

 

 the method does not depend on the distribution 

      

          

          
           

         

 

  

   

    

    

Pr Pr . .

Pr . Pr . Pr . . .

Pr Pr Pr . Pr . .

Pr Pr Pr . Pr Pr .

Pr Pr 1 Pr Pr .

TE P S P C P

P S P C P P S P C P

P S P C P S P C P

P S P C P S P C P

P S S P C P

     . .TE P S P C P

               
0 0

, ,Pr . ,
t t

B A A AA B B A B f u F u du F t f v dv
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Quantitative analysis using our algebraic 

method (1) 

TE 

P P S C 



 quantitative analysis for an exponential distribution: 
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p c
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t t
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s s
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u u

p c p

t tp c

c p c p

P t f u du e du e

S t f u du e du e

P C P t f u F u du e e du

e e

                

 l l l l l
l l

l l l l

    

    

   
 

Pr Pr Pr 1 Pr Pr .

1c p s p s
t tp p t

c p c p

TE t P t S t S t P C P t

e e e
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Quantitative analysis (2) TE 

P P S C 

Probabilistic Algebraic Analysis of Fault Trees with Priority Dynamic Gates and Repeated 

Events, G. Merle, J.-M. Roussel, J.-J. Lesage, A. Bobbio, IEEE Trans. on Reliability, 

59(1), pp. 250-261, March 2010 

More detail: 
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Evaluation of Time Performances of 

Networked Automation Systems by 

Iterative Proofs of Logic Properties 

Silvain RUEL, 

Olivier DE SMET, Jean-Marc FAURE 
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Fault 

Forecasting 



Time performances of networked automation 

systems 

19 

 

 

 

 

 

 

 

 

 

 

 

 

 

Response time: delay between 

an input event and the resulting 

output event 

 

 

 

 

 

Difference of response time: 

delay between two output events 

resulting from the same input 

event 

Plant (controlled system) 

inputs outputs 

NAS 

input 

output 
response time 

t 

input 

output 1 

t 

t 

t 

difference of response time 

PLC1 PLC2 PLC3 

Switched 

communication 

network 

(Modbus TCP/IP) 

Remote I/O 

Modules 

(RIOMs) 

t 

output 2 



Aim of this study 

• Simulation techniques (based on analysis of Petri nets 

models of the NAS or on specific network simulator): 

• are non-exhaustive 

• then can provide a distribution of a time performance but not the 

bounds of this distribution. 

 

• Is it possible to obtain these bounds by formal 

verification of timed models? 

• Exhaustive analysis technique 

 

• Two issues to solve: 

• How to obtain numerical values from results of verification of 

logic properties? 

• How to avoid (limit) combinatory explosion? 
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Formal verification of timed models 

21 

« E <> p » 

Non-formal 

property 

Timed model-

checker 

The property is 

verified (or not). 

Formal 

property 

Timed 

formal 

model 

Five kinds of formal 
properties with the 
selected model-checker 
(UPPAAL) 

• E<>p (possibility) 

• E[ ]p (potentially always) 

• A<>p (eventually) 

• A[ ]p (invariantly) 

• pq (leads to) 

 

Only logic properties 
can be checked; it is not 
possible to obtain a 
numerical value at the 
end of the verification 



Contribution (1): parametric observer automaton 

22 

Basic idea 

 

 

 

 

 

Three cases 

• to - ti < τ 

• to - ti = τ 

• to - ti > τ 

 

Parametric observer automaton structure 

 

 

 

 

 

 

Associated reachability properties 

• P1 : E<> OBS.3 

• P2 : E<> OBS.4 

• P3 : E<> OBS.5 

There exists at least one execution such that the 

state 3 (resp. 4, 5) is reached. 

 

1 

2 

4 5 

Waiting for the input event 

↑Input 
Clock initialization 

Waiting for the output event 

3 

↑Output  
observed delay< τ 

Input 

t 0 
Output 

t 0 

t 

ti 

to 

↑Output  
observed delay > τ 

↑Output  
observed delay = τ 

• t is the upper bound iff P1 and P2 are verified and P3 is not verified 

• t is the lower bound iff P2 and P3 are verified and P1 is not verified 



Contribution (2): Iterative proofs of logic properties 

Timed model-checker 

Formal model 
of NAS 

Verification results 

Modification of 
t (dichotomy 

search) 

t  = searched bound 

Yes 

No 

Timed model-checking 

Parametric observer 
automaton 

+ 
Reachability properties 



Scalability 

24 

 

 

 

 

 

 

 

 input output2 

Controlled system 

output1 

MAI1 

MAI2 

MAI3 

COM1 

COM2 

COM3 

RIO1 

RIO2 

RIO3 

RIO4 

RIO5 

RIO6 

RIO7 

RIO8 

RIO9 

CF1 

CF2 

CF3 

CF4 

CF5 

CF6 

CF7 

CF8 

CF9 

CF10 

CF11 

CF12 

CF13 

CF14 

CF15 

CF16 

CF17 

CF18 

O1 

I 

O2 
ENVOBS 

Structure of the formal model: 

A network of 34 communicating timed automata 



Scalability 

25 

34 communicating timed automata 

34 independant clocks 

49 non-deterministic transitions 

144 shared logic variables 

 

Combinatory explosion occurs! 



Two-stepped abstraction method 

26 

Simplified model 

Initial model of NAS 

Final abstract model 

Simplification of the structure 
of the model  

(some components models 
are removed) 

Modification of the models of 
the remaining components 
(to keep the impact of the 

removed models) 

Time performance to 
study 

• Abstraction is conservative 

w.r.t. the studied time 

performance 

• No more combinatory 

explosion 

• Verification results obtained 

in reasonable times (some 

seconds to some minutes) 

For more details:  

Ruel S. et al. Building effective formal models to prove 

time properties of networked automation systems. 

WODES'08, pp. 334-339, Göteborg (Sweden), May 2008 



Experimental validation 

27 

Input Output 

PLC1 PLC2 

M1 M2 M3 M5 M4 M6 M7 M8 M9 

SW1 
SW2 

SW3 

• All the measured values are within the computed bounds.  
• Small differences between the computed bounds and the 

minimum/maximum values of the distribution: 11% for the lower bound, 
4% for the upper bound 

 

Measures Results obtained 

by iterative proofs 
 
• RTmin = 9.49 ms  
• RTmax = 23.13 ms 

 

 

Number of measures 

Response time (ms) 



Other works on networked automation systems 

• Formal verification of 

properties of redundant 

Ethernet Powerlink 

• Cooperation with Alstom Power 

(PhD work of Steve Limal) 

 

• Examples of properties 

• Each message is transmitted even if 

one medium fails. 

• Each failure must be detected. 

• The redundant extension must not 

trigger the CSMA/CD mechanism. 

 

 

 

 

 

 

 

 

 

 

28 

C
e

ll
 

Redundant  

Cell Controller 

Field Network 

Field 

Controllers 

and 

remote I/Os 

Automation cell 



Other works on networked automation systems 

• Analytic evaluation of the 

response time using the 

(max,+) algebra 

• PhD work of Boussad Addad) 

 

• The system is modeled as a set of 

Timed Event Graphs (Petri nets 

where every place has at most 

one upstream and one 

downstream transition).  

• The distribution and its bounds 

can be obtained from the analytic 

expression. 
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For details:  

Analytic Calculus of Response Time in 

Networked Automation Systems, 

B. Addad, S. Amari, J-J. Lesage, IEEE 

Trans. on Automation Science and 

Engineering  Vol. 7, Issue. 4, pp. 858-869, 

2010. 
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Conformance test of logic 

controllers from specifications in 

Grafcet language 

Julien PROVOST, 

Jean-Marc ROUSSEL, Jean-Marc FAURE 
 

(In the frame of the TESTEC (Test of critical real-time embedded 

systems) project funded by the French Research Agency) 
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Aim of conformance test 

Check whether an implementation, seen as a black-box 

with inputs-outputs, behaves correctly with respect to its 

specification 

 

 

 

 

 

 

 

 
Conformance test 

Verdict (conform/not conform) 

+ example if not conform 

Specification 

Textual 

description 

of the expected 

behavior 

Red

F1

A1

ProduceA

3

2 4

1

Start

/Start

ProdReqA + ProdReqB

/ProdReqA

=1

5

/ProdReqB

ProduceB

RedRed

F1

A1A1

ProduceAProduceA

3

22 4

11

Start

/Start

ProdReqA + ProdReqB

/ProdReqA

=1

5

/ProdReqB

ProduceBProduceB

Implementation 

or 

ECU PLC 

Code 

+ OS 

or electronic board, VLSI  circuits, 

communicationprotocol… 

!a 

!b ?X 

?Y 

1 

2 

3 
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Conformance test execution 

32 

The implementation under test is connected to a test-bench which 

generates an inputs sequence. 

 

The observed outputs sequence is compared to the expected one. 

 

Controller under test 

VERDICT 

U 

V 

W 

Observed 

outputs 

sequence U 
 

V 
 

W 

Expected 

outputs 

sequence 

a 
 

b 
 

c 

Inputs sequence 

Test sequence 

PLC 

How to build automatically the test sequence from the specification? 

Code 

+ OS 



Constraints of this study 

• Specification in Grafcet language (IEC 60848 standard) 

• Conformance test must be complete: every evolution 

from every state of the specification must be tested 

• Non-invasive test 

• Automatic construction of the test sequence 

 

• Only non-timed models are considered 
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2 scientific issues / 2 scientific contributions 

How to obtain a formal 

model from a Grafcet 

specification? 

• The Grafcet standard provides 

only textual descriptions of the 

evolution rules. 

• A formal model is mandatory 

to build a complete test 

sequence. 

 

How to build a test 

sequence suitable for 

controllers with cyclic I/O 

scanning? 

A formal semantics of 

Grafcet in the form of FSM 

(Mealy machine) 
• Parallel and transient 

evolutions are taken into 

account 

• Relies on an intermediary 

model: Stable Location 

Automaton 

 
 

Definition of the SIC-

testability concept 
• To prevent from spurious test 

results 
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From Grafcet to FSM 

Grafcet 

Stable Location Automaton 

FSM 

Evolution and stability conditions consistency 
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Transition function of the Mealy machine 

Set of active steps 

Set of emitted outputs 

Stability condition 

nstates = nlocations 
ntransitions = nlocations . 2

nIV 



Some figures 

Grafcet 

Stable Location Automaton 

FSM 
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• 29 input alphabet and 210 output 

alphabet elements 

• State machine: 64 states and 32,768 

transitions 

• Every transition is labeled by a couple 

(input,output) 

• 9 inputs and 10 outputs 

• Several sub-graphs: 16 steps and 15 transitions 

• Transition conditions are defined by Boolean 

expressions 

• Same numbers of inputs and outputs 

• State machine: 64 locations and 389 

evolutions 

• Evolution conditions are defined by 

Boolean expressions 

Provost, J., et al. Translating Grafcet specifications into Mealy 

machines for conformance test purposes. 

Control Engineering Practice (2010), 

doi:10.1016/j.conengprac.2010.10.001 

850 ms 

350 ms 



The test sequence must be: 
• Initializable: the first test step corresponds to a transition that starts from the 

initial state 

• Complete: every transition must be tested at least once 

 

Two optimization criteria 
•  Classical approach: minimization of the length (number of test steps) 

- Transition-Tour method, variant of the Chinese Postman problem 

- For the previous example, this sequence comprises 73,528 test steps and is 

computed in less than 2 s 

- Erroneous verdicts may occur with logic controllers with cyclic I/O scanning 

 

•  Our proposal: minimization of the number of MIC test steps 

- To avoid the previous issue 

- Definition of the concept of SIC-testability  

Test sequence construction from the 

equivalent FSM 
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Conformance test execution experiments with 

minimum-length sequences 
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Second program 

Erroneous program, with intentionally 

added errors 
 

Test bench may accept the program. 

All errors are not always detected. 
 

Non-valid results 

 

 

 

 

 

 
First program 

Correct program, model-checked 
 
 

Test bench may reject the program. 

False errors are sometimes declared. 
 

Biased results 

 Lack of confidence in the conformance test verdicts 



Results analysis 
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All verdict errors occur when several input values are 

changed simultaneously. 

 

Synchronous events generated by the test-bench are 

seen as asynchronous by the implementation under 

test. 

 

 



Solutions 
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• Synchronize the test-bench and the controller under 

test 
• Not always easy and not realistic ( a plant is not synchronized with its 

controller) 

• Privilege SIC test sequences 

 

 

MIC (Multiple Input Changes) 

test sequence 

Several logical inputs can 

change at the same date ti 

 

SIC (Single Input Change) 

test sequence 

Only one logical input 

changes at any date ti 

ti 



Proposed method to build test sequences 
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• Is the specification SIC-testable? (an initializable, 

complete and SIC test sequence can be built from 

the specification) 
• If the specification is not SIC-testable, determine its SIC-testable part. 

 

• Build the test sequence 
• For a SIC-testable specification, this sequence is obtained by solving a 

Traveling Salesman problem on a specific graph whose nodes are couples 

(state, inputs valuation) 

• For a non-SIC-testable specification, this sequence is composed of a SIC 

sequence to test its SIC-testable part followed by a MIC sequence to test 

the remaining transitions 

• For more details: 
Provost, J., et al. SIC-testability of sequential logic controllers. WODES 2010, Berlin, pp. 203-208, 

August 30 - September 1, 2010 

Provost, J., et al. Testing Programmable Logic Controllers from Finite State Machines specification. 

DCDS'11, pp. 3-8, Saarbrücken, Germany, June 15-17, 2011  

 

 

 

 

ti 



Checking SIC-testability of a specification (1) 

A SIC relation is defined between two inputs valuations 
• vI and v'I satisfy a SIC relation: they differ in only one input 

 

• Notation: v’I RGray vI 

 

 

• Example 

 

 

 

 

 

 

 

 

 This specification is not SIC-testable 



Checking SIC-testability of a specification (2) 

SIC-testability checking is based  

on a fixed point computation,  

starting from the initial state 

 

The SIC-testable part of the  

example is shown on the right. 

 

Two transitions of the original 

model are not SIC-testable 

(cannot be included into a 

SIC test sequence): 

 

 

 

A SIC test sequence can be generated 

for the SIC-testable part. 

 



Conclusions 

• DES modeling and analysis techniques can definitely 
contribute to improve the dependability attributes 
(safety,security,availability,…)ofautomatedsystems 

 

• However, be careful with: 

• Combinatory explosion when dealing with non-trivial systems 

• Abstraction mechanisms or algebraic approaches may lessen 
(remove) this issue 

• Construction of the formal models  

• A DES model may be mathematically sound but meaningless 
w.r.t. the real world 

• Industrial acceptance of the scientific results and scientific acceptance 
of the industrial constraints and practices (tailored-made languages, 
existing engineering environments, well-established know-how) 
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Thank you ! 


