

L
a

 s
p

ir
a

le
,

1
9

5
7

 –
 G

e
rm

a
in

e
 R

ic
h

ie
r

Improving dependability of controlled

systems: a challenge for automation

science and engineering

Jean-Marc Faure

with contributions from Jean-Jacques Lesage and other

colleagues and PhD students of the Automation

Engineering team of LURPA

http://www.lurpa.ens-cachan.fr/isa/

Dependable Control of Discrete event

Systems
• Dependability

• Dependability is the trustworthiness of a system which allows
reliance to be justifiably placed on the service it delivers

• Dependability attributes: safety, security, availability, reliability,
maintainability

• Objective of our works: to develop methods, models
and tools that improve design, implementation and
operation of mainly discrete control systems, so as
to increase the overall dependability.

• Targets: from basic embedded logic controller to
networked automation systems

• Application fields: critical systems (energy,
transport, healthcare, complex mechatronic
systems)

• Industrial partners: Alstom, Dassault Systems, EDF,
…

Dependable Control of DES: the quest for

the Holy Grail On-line approaches (during operation)

• FDI, Diagnosis, Prognosis, …

• Dynamic reconfiguration, …

Off-line approaches (during specification, design, implementation

and validation)

• Fault Prevention (Synthesis, …)

• Fault Forecasting (Fault Tree Analysis, …)

• Fault Tolerance (Physically or functionally redundant solutions, …)

• Fault Removal (Verification, Test, …)

Requirements

Analysis

Spéc. &

Design

Soft.

Coding

Integration, Valid.

& test of the DES

O
f
th

e
P
la

n
t

Specif.

& Design

of the

Controller

S
p
ec., D

esig
n
 & O

f t
he

 H
ar

dw
ar

e

Integ.

Valid.

& Test

Soft.

Integration

Valid. & Test

Of the

Controller

Specification &

Design of the DES

Optimization, Operation, Maintenance

RealizationRealization

S
p
ecificatio

n
, D

esig
n

Realization

Requirements

Analysis

Spéc. &

Design

Soft.

Coding

Integration, Valid.

& test of the DES

O
f
th

e
P
la

n
t

Specif.

& Design

of the

Controller

S
p
ec., D

esig
n
 & O

f t
he

 H
ar

dw
ar

e

Integ.

Valid.

& Test

Soft.

Integration

Valid. & Test

Of the

Controller

Specification &

Design of the DES

Optimization, Operation, Maintenance

RealizationRealization

S
p
ecificatio

n
, D

esig
n

Realization

3

Some recent PhD works

4

Algebraic Analysis of

Dynamic Fault Trees

Model-Based

Conformance Test

Model-Based Diagnosis

Evaluation of Time

Performances of

Networked Systems

Algebraic synthesis

of logical controllers

Requirements

Analysis

Spéc. &

Design

Soft.

Coding

Integration, Valid.

& test of the DES

O
f
th

e
P
la

n
t

Specif.

& Design

of the

Controller

S
p
ec., D

esig
n
 & O

f t
he

 H
ar

dw
ar

e

Integ.

Valid.

& Test

Soft.

Integration

Valid. & Test

Of the

Controller

Specification &

Design of the DES

Optimization, Operation, Maintenance

RealizationRealization

S
p
ecificatio

n
, D

esig
n

Realization

Requirements

Analysis

Spéc. &

Design

Soft.

Coding

Integration, Valid.

& test of the DES

O
f
th

e
P
la

n
t

Specif.

& Design

of the

Controller

S
p
ec., D

esig
n
 & O

f t
he

 H
ar

dw
ar

e

Integ.

Valid.

& Test

Soft.

Integration

Valid. & Test

Of the

Controller

Specification &

Design of the DES

Optimization, Operation, Maintenance

RealizationRealization

S
p
ecificatio

n
, D

esig
n

Realization

L
a

 s
p

ir
a

le
,

1
9

5
7

 –
 G

e
rm

a
in

e
 R

ic
h

ie
r

Algebraic modeling and analysis of

Dynamic Fault Trees

Guillaume MERLE

Jean-Marc ROUSSEL, Jean-Jacques LESAGE

Requirements

Analysis

Spéc. &

Design

Soft.

Coding

Integration, Valid.

& test of the DES

O
f
th

e
P
la

n
t

Specif.

& Design

of the

Controller

S
p
ec., D

esig
n
 & O

f t
he

 H
ar

dw
ar

e

Integ.

Valid.

& Test

Soft.

Integration

Valid. & Test

Of the

Controller

Specification &

Design of the DES

Optimization, Operation, Maintenance

RealizationRealization

S
p
ecificatio

n
, D

esig
n

Realization

Requirements

Analysis

Spéc. &

Design

Soft.

Coding

Integration, Valid.

& test of the DES

O
f
th

e
P
la

n
t

Specif.

& Design

of the

Controller

S
p
ec., D

esig
n
 & O

f t
he

 H
ar

dw
ar

e

Integ.

Valid.

& Test

Soft.

Integration

Valid. & Test

Of the

Controller

Specification &

Design of the DES

Optimization, Operation, Maintenance

RealizationRealization

S
p
ecificatio

n
, D

esig
n

Realization

Fault

Forecasting

5

6

n ignition source m gas concentration

e f

flame

d p leak

a c b

burner leak tap leak tube leak

AND

GATE

t domestic gas

explosion

top fault

basic fault

basic fault

spark seclusion OR

GATE

intermediate

fault

Fault Tree syntax

Fault Tree Analysis

 Qualitative analysis (minimal cut sets)
• direct: {A,C.D} (BDDs for complex SFTs)

 Quantitative analysis (Pr{TE})
• direct: Pr{TE} = Pr{A + (C.D)}

 = Pr{A} + Pr{C.D}

 = Pr{A} + Pr{C} x Pr{D}

(evaluation methods for complex SFTs)

M

TE

P A

A B

N

D

A C

Q

TE

= A + (A . B) + (A + C) . D

= A + (C . D)

BOOLEAN

ALGEBRA

STRUCTURE FUNCTION

7

The case of Static Fault Trees (gates: OR, AND, K/among/M)

Basic fault (event) : occurs with

a given probability Pr{A}

Top fault (event)

The case of Dynamic Fault Tree Analysis

(SFT + gates PAND, FDEP and Spare)

Symbol Definition

A before B
Q

B A

PAND

T

A B

FDEP

A B

Q

Spare

Asserts a functional dependency – that the

failure of the trigger event causes the

immediate and simultaneous failure of the

dependent basic events

Output of gate occurs when the principal

and all spares components have failed.

2 states for each spare component

(active/dormant) associated to 2 failure

rates : l/al

 3 types of spares: Cold (a = 0), Warm (0

< a < 1), Hot (a = 1)

No algebraic model for Dynamic Gates

• Structure Function of DFT undeterminable

Qualitative analysis (minimal cut

sequences)

• Extracted from Occurrence graph of SPNs

Quantitative analysis

• Continuous Time Markov Chains, Markov

Decision Processes

• limited to exponential distributions, time

consuming

Q

B A

Q

B A

8

[Dugan et al. 1992]

[Fussel et al. 1976]

[Dugan et al. 2002]

Dynamic Fault Tree Analysis

(SFT + gates PAND, FDEP and Spare)

Dynamic gates expressing a priority:

- Sequential (PAND)

- Preemption-based (FDEP)

9

Dynamic gate expressing :

- Explicit duration of event

- Dependence between probabilities

(Pr{Bi} before A occurs < Pr{Bi] after A

occurs)

Symbol Definition

A before B
Q

B A

PAND

T

A B

FDEP

Spare

Asserts a functional dependency – that the

failure of the trigger event causes the

immediate and simultaneous failure of the

dependent basic events

Output of gate occurs when the principal

and all spares components have failed.

2 states for each spare component

(active/dormant) associated to 2 failure

rates : l/al

 3 types of spares: Cold (a = 0), Warm (0

< a < 1), Hot (a = 1)

Q

B A

Q

B A

A B1

Q

Bi

Needs: modeling of the order of

occurrence of fault events

Results: Algebraic structure that allows

determination of Structure Function

and direct qualit. and quant. analysis

Algebraic model of faults

10

 Defined on (faults = functions of time)

 Two values

• 0: no fault

• 1: fault

 non-repairable: single change of value

 date of occurrence d(a)

 Set of non-repairable faults Fnr

 Two specific faults and

0

1

t

a(t)

d(a)

 R

Algebraic model of static gates (example OR

gate)

Q

B A
t 0

1

0

1

t

0

1

t

A

B

Q
t 0

1

0

1

t

0

1

t

A

B

Q
0

1

t

0

0

1

t
A

1

t
B

Q

11

 Q A B :

,

nr nr nrF F F

a b a b

with

 if

 if

 if

a d a d b

a b a d a d b

b d a d b

 Expected behaviour

 Algebraic model

 (Fnr,+,., ,) is an abelian dioïd, like ({0,1},+,.,0,1)

 common theorems of Boolean algebra usable

 structure function of static fault trees is determinable and simplifiable

Algebraic model of BEFORE operator

 Expected behavior:

 Algebraic model:

0

1
a b

t t 0
a b

1

t 0
a b

1

0

0

1

t
a

1

t
b

0

1

t

0

1

t

a

b

0

1

t

0

1

t

a

b

12

:

,

nr nr nrF F F

a b a b

 si

 si

a d a d b
a b

d a d b

if

if

Behavioral & probabilistic model of dynamic gates

13

Gate symbol Behavioral model Probabilistic model

 . .

.

a a d

d a

Q B A B A B A

B B

Pr

Pr

T A T A T

T B T B T

A t F t F t F t F t

B t F t F t F t F t

T

T

A A T T A T

B B T T B T

. .

.

Q A B A B

B A B

0

Pr
t

B AQ t f u F u du

0

Pr ,
a

t t

B A

v

Q t f u v du f v dv

0

d

t

B AF u f u du

Q

B A

T

A B

A B

Q

B may be active or dormant

Théorèmes

Simplification Theorems Development Theorems

Some theorems for development and simplification

.

.

f f g f

g f g f g

f f g f g

f f g h f

T

f f

f f

f

f

. . .

.

f g g h f h f g g h

f g g f

.

.

. .

.

f g h f g f h

f g h f h g h

f g h f g f h

f g h f h g h

f g h f g f h

Simplification Theorems Development Theorems

. .

. . . .

.

f g g f

f g g f

f g h f g f

f g h f g f

f f f

f f f

.

.

.T

T T

.

f f g f

f f g f

f f

f f

f

f

. .

. . .

f g h f g f h

f g h f g f h

14

Another example [Fussel, 1976]

TE = (P . S) + (P . (C P))

STRUCTURE FUNCTION

Qualitative analysis

 minimal cut sequences: {P,S},{S,P} and {C,P}

TE

P P S C

Switch

C

Primary

P

Standby

S

15

 quantitative analysis:

 Pr{P} and Pr{S} are known whatever the distribution

 Pr{P.(C P)} is known from the distributions of C and P

 the method does not depend on the distribution

Pr Pr . .

Pr . Pr . Pr . . .

Pr Pr Pr . Pr . .

Pr Pr Pr . Pr Pr .

Pr Pr 1 Pr Pr .

TE P S P C P

P S P C P P S P C P

P S P C P S P C P

P S P C P S P C P

P S S P C P

 . .TE P S P C P

0 0

, ,Pr . ,
t t

B A A AA B B A B f u F u du F t f v dv

16

Quantitative analysis using our algebraic

method (1)

TE

P P S C

 quantitative analysis for an exponential distribution:

l l

l l

l l

l l l

l

l

l

l l

l l l l

0 0

0 0

0 0

Pr 1

Pr 1

Pr . 1

p p

s s

p c

c p p

t t
u t

p p

t t

u t

s s

t t
u u

p c p

t tp c

c p c p

P t f u du e du e

S t f u du e du e

P C P t f u F u du e e du

e e

 l l l l l
l l

l l l l

Pr Pr Pr 1 Pr Pr .

1c p s p s
t tp p t

c p c p

TE t P t S t S t P C P t

e e e

17

Quantitative analysis (2) TE

P P S C

Probabilistic Algebraic Analysis of Fault Trees with Priority Dynamic Gates and Repeated

Events, G. Merle, J.-M. Roussel, J.-J. Lesage, A. Bobbio, IEEE Trans. on Reliability,

59(1), pp. 250-261, March 2010

More detail:

L
a

 s
p

ir
a

le
,

1
9

5
7

 –
 G

e
rm

a
in

e
 R

ic
h

ie
r

Evaluation of Time Performances of

Networked Automation Systems by

Iterative Proofs of Logic Properties

Silvain RUEL,

Olivier DE SMET, Jean-Marc FAURE

Requirements

Analysis

Spéc. &

Design

Soft.

Coding

Integration, Valid.

& test of the DES

O
f
th

e
P
la

n
t

Specif.

& Design

of the

Controller

S
p
ec., D

esig
n
 & O

f t
he

 H
ar

dw
ar

e

Integ.

Valid.

& Test

Soft.

Integration

Valid. & Test

Of the

Controller

Specification &

Design of the DES

Optimization, Operation, Maintenance

RealizationRealization

S
p
ecificatio

n
, D

esig
n

Realization

Requirements

Analysis

Spéc. &

Design

Soft.

Coding

Integration, Valid.

& test of the DES

O
f
th

e
P
la

n
t

Specif.

& Design

of the

Controller

S
p
ec., D

esig
n
 & O

f t
he

 H
ar

dw
ar

e

Integ.

Valid.

& Test

Soft.

Integration

Valid. & Test

Of the

Controller

Specification &

Design of the DES

Optimization, Operation, Maintenance

RealizationRealization

S
p
ecificatio

n
, D

esig
n

Realization

18

Fault

Forecasting

Time performances of networked automation

systems

19

Response time: delay between

an input event and the resulting

output event

Difference of response time:

delay between two output events

resulting from the same input

event

Plant (controlled system)

inputs outputs

NAS

input

output
response time

t

input

output 1

t

t

t

difference of response time

PLC1 PLC2 PLC3

Switched

communication

network

(Modbus TCP/IP)

Remote I/O

Modules

(RIOMs)

t

output 2

Aim of this study

• Simulation techniques (based on analysis of Petri nets

models of the NAS or on specific network simulator):

• are non-exhaustive

• then can provide a distribution of a time performance but not the

bounds of this distribution.

• Is it possible to obtain these bounds by formal

verification of timed models?

• Exhaustive analysis technique

• Two issues to solve:

• How to obtain numerical values from results of verification of

logic properties?

• How to avoid (limit) combinatory explosion?

20

Formal verification of timed models

21

« E <> p »

Non-formal

property

Timed model-

checker

The property is

verified (or not).

Formal

property

Timed

formal

model

Five kinds of formal
properties with the
selected model-checker
(UPPAAL)

• E<>p (possibility)

• E[]p (potentially always)

• A<>p (eventually)

• A[]p (invariantly)

• pq (leads to)

Only logic properties
can be checked; it is not
possible to obtain a
numerical value at the
end of the verification

Contribution (1): parametric observer automaton

22

Basic idea

Three cases

• to - ti < τ

• to - ti = τ

• to - ti > τ

Parametric observer automaton structure

Associated reachability properties

• P1 : E<> OBS.3

• P2 : E<> OBS.4

• P3 : E<> OBS.5

There exists at least one execution such that the

state 3 (resp. 4, 5) is reached.

1

2

4 5

Waiting for the input event

↑Input
Clock initialization

Waiting for the output event

3

↑Output
observed delay< τ

Input

t 0
Output

t 0

t

ti

to

↑Output
observed delay > τ

↑Output
observed delay = τ

• t is the upper bound iff P1 and P2 are verified and P3 is not verified

• t is the lower bound iff P2 and P3 are verified and P1 is not verified

Contribution (2): Iterative proofs of logic properties

Timed model-checker

Formal model
of NAS

Verification results

Modification of
t (dichotomy

search)

t = searched bound

Yes

No

Timed model-checking

Parametric observer
automaton

+
Reachability properties

Scalability

24

 input output2

Controlled system

output1

MAI1

MAI2

MAI3

COM1

COM2

COM3

RIO1

RIO2

RIO3

RIO4

RIO5

RIO6

RIO7

RIO8

RIO9

CF1

CF2

CF3

CF4

CF5

CF6

CF7

CF8

CF9

CF10

CF11

CF12

CF13

CF14

CF15

CF16

CF17

CF18

O1

I

O2
ENVOBS

Structure of the formal model:

A network of 34 communicating timed automata

Scalability

25

34 communicating timed automata

34 independant clocks

49 non-deterministic transitions

144 shared logic variables

Combinatory explosion occurs!

Two-stepped abstraction method

26

Simplified model

Initial model of NAS

Final abstract model

Simplification of the structure
of the model

(some components models
are removed)

Modification of the models of
the remaining components
(to keep the impact of the

removed models)

Time performance to
study

• Abstraction is conservative

w.r.t. the studied time

performance

• No more combinatory

explosion

• Verification results obtained

in reasonable times (some

seconds to some minutes)

For more details:

Ruel S. et al. Building effective formal models to prove

time properties of networked automation systems.

WODES'08, pp. 334-339, Göteborg (Sweden), May 2008

Experimental validation

27

Input Output

PLC1 PLC2

M1 M2 M3 M5 M4 M6 M7 M8 M9

SW1
SW2

SW3

• All the measured values are within the computed bounds.
• Small differences between the computed bounds and the

minimum/maximum values of the distribution: 11% for the lower bound,
4% for the upper bound

Measures Results obtained

by iterative proofs

• RTmin = 9.49 ms
• RTmax = 23.13 ms

Number of measures

Response time (ms)

Other works on networked automation systems

• Formal verification of

properties of redundant

Ethernet Powerlink

• Cooperation with Alstom Power

(PhD work of Steve Limal)

• Examples of properties

• Each message is transmitted even if

one medium fails.

• Each failure must be detected.

• The redundant extension must not

trigger the CSMA/CD mechanism.

28

C
e

ll

Redundant

Cell Controller

Field Network

Field

Controllers

and

remote I/Os

Automation cell

Other works on networked automation systems

• Analytic evaluation of the

response time using the

(max,+) algebra

• PhD work of Boussad Addad)

• The system is modeled as a set of

Timed Event Graphs (Petri nets

where every place has at most

one upstream and one

downstream transition).

• The distribution and its bounds

can be obtained from the analytic

expression.

29

For details:

Analytic Calculus of Response Time in

Networked Automation Systems,

B. Addad, S. Amari, J-J. Lesage, IEEE

Trans. on Automation Science and

Engineering Vol. 7, Issue. 4, pp. 858-869,

2010.

L
a

 s
p

ir
a

le
,

1
9

5
7

 –
 G

e
rm

a
in

e
 R

ic
h

ie
r

Conformance test of logic

controllers from specifications in

Grafcet language

Julien PROVOST,

Jean-Marc ROUSSEL, Jean-Marc FAURE

(In the frame of the TESTEC (Test of critical real-time embedded

systems) project funded by the French Research Agency)

Requirements

Analysis

Spéc. &

Design

Soft.

Coding

Integration, Valid.

& test of the DES

O
f
th

e
P
la

n
t

Specif.

& Design

of the

Controller

S
p
ec., D

esig
n
 & O

f t
he

 H
ar

dw
ar

e

Integ.

Valid.

& Test

Soft.

Integration

Valid. & Test

Of the

Controller

Specification &

Design of the DES

Optimization, Operation, Maintenance

RealizationRealization

S
p
ecificatio

n
, D

esig
n

Realization

Requirements

Analysis

Spéc. &

Design

Soft.

Coding

Integration, Valid.

& test of the DES

O
f
th

e
P
la

n
t

Specif.

& Design

of the

Controller

S
p
ec., D

esig
n
 & O

f t
he

 H
ar

dw
ar

e

Integ.

Valid.

& Test

Soft.

Integration

Valid. & Test

Of the

Controller

Specification &

Design of the DES

Optimization, Operation, Maintenance

RealizationRealization

S
p
ecificatio

n
, D

esig
n

Realization Fault Removal

30

Aim of conformance test

Check whether an implementation, seen as a black-box

with inputs-outputs, behaves correctly with respect to its

specification

Conformance test

Verdict (conform/not conform)

+ example if not conform

Specification

Textual

description

of the expected

behavior

Red

F1

A1

ProduceA

3

2 4

1

Start

/Start

ProdReqA + ProdReqB

/ProdReqA

=1

5

/ProdReqB

ProduceB

RedRed

F1

A1A1

ProduceAProduceA

3

22 4

11

Start

/Start

ProdReqA + ProdReqB

/ProdReqA

=1

5

/ProdReqB

ProduceBProduceB

Implementation

or

ECU PLC

Code

+ OS

or electronic board, VLSI circuits,

communicationprotocol…

!a

!b ?X

?Y

1

2

3

31

Conformance test execution

32

The implementation under test is connected to a test-bench which

generates an inputs sequence.

The observed outputs sequence is compared to the expected one.

Controller under test

VERDICT

U

V

W

Observed

outputs

sequence U

V

W

Expected

outputs

sequence

a

b

c

Inputs sequence

Test sequence

PLC

How to build automatically the test sequence from the specification?

Code

+ OS

Constraints of this study

• Specification in Grafcet language (IEC 60848 standard)

• Conformance test must be complete: every evolution

from every state of the specification must be tested

• Non-invasive test

• Automatic construction of the test sequence

• Only non-timed models are considered

33

2 scientific issues / 2 scientific contributions

How to obtain a formal

model from a Grafcet

specification?

• The Grafcet standard provides

only textual descriptions of the

evolution rules.

• A formal model is mandatory

to build a complete test

sequence.

How to build a test

sequence suitable for

controllers with cyclic I/O

scanning?

A formal semantics of

Grafcet in the form of FSM

(Mealy machine)
• Parallel and transient

evolutions are taken into

account

• Relies on an intermediary

model: Stable Location

Automaton

Definition of the SIC-

testability concept
• To prevent from spurious test

results

34

From Grafcet to FSM

Grafcet

Stable Location Automaton

FSM

Evolution and stability conditions consistency

35

Transition function of the Mealy machine

Set of active steps

Set of emitted outputs

Stability condition

nstates = nlocations
ntransitions = nlocations . 2

nIV

Some figures

Grafcet

Stable Location Automaton

FSM

36

• 29 input alphabet and 210 output

alphabet elements

• State machine: 64 states and 32,768

transitions

• Every transition is labeled by a couple

(input,output)

• 9 inputs and 10 outputs

• Several sub-graphs: 16 steps and 15 transitions

• Transition conditions are defined by Boolean

expressions

• Same numbers of inputs and outputs

• State machine: 64 locations and 389

evolutions

• Evolution conditions are defined by

Boolean expressions

Provost, J., et al. Translating Grafcet specifications into Mealy

machines for conformance test purposes.

Control Engineering Practice (2010),

doi:10.1016/j.conengprac.2010.10.001

850 ms

350 ms

The test sequence must be:
• Initializable: the first test step corresponds to a transition that starts from the

initial state

• Complete: every transition must be tested at least once

Two optimization criteria
• Classical approach: minimization of the length (number of test steps)

- Transition-Tour method, variant of the Chinese Postman problem

- For the previous example, this sequence comprises 73,528 test steps and is

computed in less than 2 s

- Erroneous verdicts may occur with logic controllers with cyclic I/O scanning

• Our proposal: minimization of the number of MIC test steps

- To avoid the previous issue

- Definition of the concept of SIC-testability

Test sequence construction from the

equivalent FSM

37

Conformance test execution experiments with

minimum-length sequences

38

Second program

Erroneous program, with intentionally

added errors

Test bench may accept the program.

All errors are not always detected.

Non-valid results

First program

Correct program, model-checked

Test bench may reject the program.

False errors are sometimes declared.

Biased results

 Lack of confidence in the conformance test verdicts

Results analysis

39

Theoretical solicitation Possible perception of the solicitation by the PLC
a

t

a

t

a

t

a

t
b

t

b

t

b

t

b

t

ab abthen ab abthen abab then abthen abab then abthen

Theoretical solicitation Possible perception of the solicitation by the PLC
a

t

a

t

a

t

a

t
b

t

b

t

b

t

b

t

ab abthen ab abthen abab then abthen abab then abthen

Theoretical solicitation Possible perception of the solicitation by the PLCTheoretical solicitation Possible perception of the solicitation by the PLC
a

t

a

t

a

t

a

t

a

t

a

t

a

t

a

t
b

t

b

t

b

t

b

t

b

t

b

t

b

t

b

t

ab abthen ab abthen abab then abthen abab then abthenab abthenabab abthen ab abthen abab abthen abab then abthenabababab then abthen abab then abthenabababab then abthen

All verdict errors occur when several input values are

changed simultaneously.

Synchronous events generated by the test-bench are

seen as asynchronous by the implementation under

test.

Solutions

40

• Synchronize the test-bench and the controller under

test
• Not always easy and not realistic (a plant is not synchronized with its

controller)

• Privilege SIC test sequences

MIC (Multiple Input Changes)

test sequence

Several logical inputs can

change at the same date ti

SIC (Single Input Change)

test sequence

Only one logical input

changes at any date ti

ti

Proposed method to build test sequences

41

• Is the specification SIC-testable? (an initializable,

complete and SIC test sequence can be built from

the specification)
• If the specification is not SIC-testable, determine its SIC-testable part.

• Build the test sequence
• For a SIC-testable specification, this sequence is obtained by solving a

Traveling Salesman problem on a specific graph whose nodes are couples

(state, inputs valuation)

• For a non-SIC-testable specification, this sequence is composed of a SIC

sequence to test its SIC-testable part followed by a MIC sequence to test

the remaining transitions

• For more details:
Provost, J., et al. SIC-testability of sequential logic controllers. WODES 2010, Berlin, pp. 203-208,

August 30 - September 1, 2010

Provost, J., et al. Testing Programmable Logic Controllers from Finite State Machines specification.

DCDS'11, pp. 3-8, Saarbrücken, Germany, June 15-17, 2011

ti

Checking SIC-testability of a specification (1)

A SIC relation is defined between two inputs valuations
• vI and v'I satisfy a SIC relation: they differ in only one input

• Notation: v’I RGray vI

• Example

 This specification is not SIC-testable

Checking SIC-testability of a specification (2)

SIC-testability checking is based

on a fixed point computation,

starting from the initial state

The SIC-testable part of the

example is shown on the right.

Two transitions of the original

model are not SIC-testable

(cannot be included into a

SIC test sequence):

A SIC test sequence can be generated

for the SIC-testable part.

Conclusions

• DES modeling and analysis techniques can definitely
contribute to improve the dependability attributes
(safety,security,availability,…)ofautomatedsystems

• However, be careful with:

• Combinatory explosion when dealing with non-trivial systems

• Abstraction mechanisms or algebraic approaches may lessen
(remove) this issue

• Construction of the formal models

• A DES model may be mathematically sound but meaningless
w.r.t. the real world

• Industrial acceptance of the scientific results and scientific acceptance
of the industrial constraints and practices (tailored-made languages,
existing engineering environments, well-established know-how)

 44

L
a

 s
p

ir
a

le
,

1
9

5
7

 –
 G

e
rm

a
in

e
 R

ic
h

ie
r

Thank you !

