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Space manipulators
- Introduction
- flexible joint control
- flexible link control

Mobile robots in Space

Flying robots

ICINCO 2012, Rome, lItaly, July 2012



SpacelmanipllateisyVsViebile

o Manipulators

o Mobile robots (rovers, autonomous ground

o Flying and floating robots (UAV and
Spacecraft)
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 space robotic manipulators
o can perform repetitive and lengthy tasks
with reduced risk and improved
performance
o0 require less infrastructure than manned
systems

N/

“* no life support systems

1 application examples
O maintenance, repair, and assembly
O spacecraft deployment and retrieval
0 extravehicular activity support
0
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shuttle inspection
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— U flexible links andjoints
o operational control challenges due to
flexible effects, especially in the joints
o link and joint flexiblility effects introduce
vibrations that can lead to instability
when neglected in the control system
design
1 objectives
o0 develop and validate advanced control
systems for flexible joint space robotic
; ManiPUlatofiSo iz, rome, tay, sy 2012




 unresolved issues

o simple and efficient algorithms that
account for practical limitations have yet
to be developed

o applicability of existing control strategies
to real-time space applications (no
gravity, highly limited computational load)
needs to be assessed

o performance validation should be done
with large square trajectories (flexible
effects are more noticeable — greater
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1 propose 4 control strategies for flexible
joint space robots
d compare their respective performance
while trackinga 12.6 mx 12.6 m
sguare trajectory
4 further Improvements
0 extend for robots with
unknown/variable joint stiffness
coefficients
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MenipulEior Sysism
(RIS
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Remeis Meaniulkior Sysism (RVIS)

Caneckrm or Sviie
o15.3 mlong

o Weight 408 kg
o Diameter 38 cm
o Payload 29,500 kg
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Mellls Servicing Sysismm

MBS

www.Ccsa.ca
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Specs Roldells Sysism
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Sysiiam
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Special Purpose
Dexterous
Manipulator

(SPDM - part 3)

sCamadarm 2

Space Station Remote
Manipulator System
(SSRMS- part 1)

Mobile Remote
r Servicer Base System
l‘-)_ (MRSES - part 2)

P
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Experiment Logistics
Module-Pressurized Section

' / (ELM-PS)

Remote Manipulator System
(JEMRMS)

Pressurized Module
(PM)

Exposed Facility Inter-orbit Experiment Logistics
{EF) communications Module-Exposed Section
system (ICS) (ELM-ES)
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o Technical Specs
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Total Length 57mx45mx2.9m
Mass (approx) 1,450 kg
Mass Handling/Transportation
Capacity 20,900kg
Degrees of Freedom Fixed
'. 6 Peak Power (Operational) 825 Watts
Average Power (Keep alive) 365 Watts
ICINCO 2012, Rome, Italy, July 2012 Wwww.csa.ca
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Camera, Light & CAS
EVA Handrail PaleTit ot~ CAR S
Trunnion (x3) (CLPA) | _ MCAS Capture
N 2 Latch MBS Common

- / Attachment System

padssis | / MCAS

Worksite i \ \ f y / )

Interface &L ; ] :
o). "5

Umbilical Mechansim
Assembly (UMA)

Video Distribution
Unit (VDU) (x2) — -

Canadian Remote
Power Controller
Module (CPRCM) (x6) -

ORU Base

MBS Computer
Unit (MCU) (x2) ~

Umbilical
Mate/Demate
T Payload & ORU
Meachanism Accommodation (POA)
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Station
Sysiizm (SRVIS)

SSRMS Arm Specifications:

Width 2.2M

Length 17.6M

Mass (approx.) 1,800Kg

Mass handling capacity 100,000Kg
Degrees of freedom 7

Peak power 2000 Watts

Average power 1360 Watts

ml'ﬂ;ﬂhul .i' Stopping distance ( max. load) 0.6m
v, :1} ‘-L'-"-"ﬁ _:. 1

T R I
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Camera Joints

and Ligit [Rall, Yawr, Fiteli
Azzambly /

Canadarm 2
Space Station Remote
Manipulator System

Latching
End Effactor "A" Camers, Light
and Pan/Tilt Joint
Unit Electronica
Jointa Unit
Fiece | Hings (Roll, Yaw;, Fitch) (2 par Unit)

4

Elbow Transition

Camery, Light
and PanvTilt Unit

| { End "B
Baom Indicator Stripe

Elboww Joint Camera and
Ligit Assembly |

Latzhing
End Effector "B"
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Vianipuilates

Sysizn SSRVIS
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Etui a outils

DEXTRE

(Manipulateur agile spécialisé)

Borne électromécanique

|

Torse

Articulation de
lacet de I'épaule  Articulation de

I'épaul
g de Topaule Articulation de

tangage du coude

Articulation de
roulis du poignet

Articulation de \ \ =
roulis de I'épaule =g i - Capteur de force
( 2 i

. : et de moment
Bloc électronique

i e Rkt
Articulation de lacet du poignet " Bras 2
Caméra panoramique
et basculante avec
éclairage (CLPA) Changeur d'outils

et d'ORU* (OTCM)
Articulation de

roulis du corps

1
v QQ{?" Plate-forme temporaire de
- N «Q remplacement d'ORU* (OTP)
@ ™~ Effecteur de .
verrouillage

ORU* = Unité remplagable sur orbite
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Shuftls Arm (RVS)
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SElRIE
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Context

- Space Robotic Manipulators

* Represent an ideal technology to perform repetitive and
lengthy tasks

* Require less infrastructure than humans (such as life
support systems)

- Application Examples
« Maintenance, repair and assembly
« Spacecraft deployment and retrieve Image courtesy of ESA
» Extravehicular activity support
« Shuttle inspection

ICINCO 2012 Rome, ltaly, July 2012




Context

- Manipulators

« Operational control challenges due to flexible effects,
especially in the joints

 Joint flexibility effects introduce vibrations and can lead to
Instability when neglected in the control system design

- Main Objective

* Develop and validate advanced control systems for
flexible joint space robotic manipulators

ICINCO 2012 Rome, ltaly, July 2012



Two-Link Space Robot

- Rigid Dynamics
=M, (@)d+C.(a.9)q

where

M., =ml+m, (If +12,+21,1_, cos q2)+ |, +1,
2
M r2 — M rol — mz(lcz + I1|c2 COS q2)+ I2

r

_ 2
M 22 _m2|02+ I2

> and

. |10 O +(q
Cr(q’CI) :_mzlllcz Slnq2|: .2 ' 2:|

¢ 0
ICINCO 2012 Rome, ltaly, July 2012



Two-Link Space Robot

- Flexible Joint Dynamics

* Derived by Including the kinetic energy of the
rotors and considering the elastic potential
energy of the linear springs at the joints

M. (@)d+C,(a,9)q=k(q,—a)
J.0, +k@,-a)=1

*The link dynamics and the
motor dynamics Egs. are
only coupled by the elastic
torque term k(a,—a)

ICINCO 2012, Rome, ltaly, July 2012




FlexiblerJoint Control Survey

- Flexible Joint Control Categories
* Proportional Derivative (Tomei, 1991)
» Singular Perturbation-Based (Spong, 1989)
 Integral Manifold (Ghorbel and Spong, 1992)
* Feedback Linearization (De Luca, 1998, 2005, 2008)
* Optimal (Merabet and Gu, 2008)
« Adaptive (Slotine, 1987, 1988, 2008)

« Simple Adaptive Control (Sasiadek, Ulrich, Barkana, 2009,
2010, 2011, 2012)

* Robust (Lee, Yeon, Park and Yim, 2006, 2007)

* Nonlinear Backstepping (Brogliato, 1995, 1998)
* Fuzzy and Neural Network (Zeman, 1989, 1997)
* lterative (Wang, 1995)

ICINCO 2012, Rome. Italy. July 2012




FlexiblerJoint Control Survey

« Unresolved Issues

« Simple and efficient algorithms considering practical
limitations are yet to be developed

« Applicability of existing control strategies to real-time
space applications (no gravity, highly limited computational
load) needs to be assessed

* Performance validation should be done with large square
trajectories (flexible effects are more noticeable — greater
control challenge)

ICINCO 2012, Rome. Italy, July 2012



Advanced Control Strategies

- Compare 4 control strategies for flexible joint
space robots

» Slotine and Li controller
 PD controller

« Singular Perturbation-Based controller
* Nonlinear Backstepping controller

- Compare their respective performance while
tracking a12.6 m x 12.6 m square trajectory

ICINCO 2012, Rome, lItaly, July 2012



Advanced Control Strategies

- Slotine and Li Control Strategy

Slotine J. J. E. and Li W., “On the Adaptive Control of Robot Manipulators,” International Journal of Robotics
Research, Vol. 6, No. 3, pp. 49-59, 1987.

T, = Mr(q)qr+cr(q’q)qr o I(dS
where

qr :qc +A(qc _q)
qr :qc +A(qc _q)
s=-(q.-4)-A(Q.—-a)=4-q,

K4 = positive constant gain matrix

ICINCO 2012, Rome, ltaly, July 2012



Advanced Control Strategies

- PD Control Strategy

Tomei P., “A Simple PD Controller for Robots with Elastic Joints,” IEEE Transactions on Automatic Control, Vol. 36, No. 10,
pp. 1208-1213, 1991.

T= Kp(CImc _qm)_qum

where
qu — qC
K, = positive constant gain matrix

K, = positive constant gain matrix

ICINCO 2012, Rome, Italy, July 2012



Advanced Control Strategies

Singular Perturbation-Based Control Strategy

Spong M. W., “Adaptive Control of Flexible Joint Manipulators,” Systems and Control Letters, Vol. 13, pp. 15-21, 1989.

where
T=T,+T;
where
T, =T, = SLI control algorithm for space robots defined earlier
Ty = I'<v (q o qm)
K, = positive constant gain matrix

ICINCO 2012, Rome, Italy, July 2012



Advanced Control Strategies

- Nonlinear Backstepping Control Strategy

Brogliato B., Ortega R. and Lozano R., “Global Tracking Controllers for Flexible Joint Manipulators: A Comparative
Study,” Automatica, Vol. 31, No. 7, pp. 941-956, 1995

T=J3, [0 =200 — Goe) = 2(0y — A e) — ($+9) ]+ K (@, — Q)

where
One =K1, +0 Note: The joint acceleration
4 =kt g can be obtained by inverting

the link dynamics equation
i, =k )0) and the jerk is obtained by

. ) . . [time-differentiating the
§=— “A(q. —
. @.~9) qr acceleration

Kk = joint stiffness matrix

ICINCO 2012, Rome, Italy, July 2012



Advanced Control Strategies

- Simulation Results
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Advanced Control Strategies
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Novel Adaptive Control Scheme

« Further Improvement

 The Singular Perturbation-Based strategy must be
extended for robots with unknown/variable joint stiffness
coefficients

* The idea is to replace the rigid term (SLI) with an adaptive
control algorithm
T =@+‘rf

« As a first step, a novel model reference adaptive control
(MRAC) scheme for rigid joint space robots is presented

ICINCO 2012, Rome, Italy, July 2012



Novel Adaptive Control Scheme

- Adaptive Jacobian Scheme

eX e.X
t=J(q)" {K p(t){e }r K, (t){é }
where

J(Q) = Jacobian matrix

b el =[lu %) (v -] X=1,c08g, +1,C08(0, +3,)

:éx € | =:(Xref—>'<) (yref—y)_ y=1Ising, +1,sin(g, +4,)

2
Xref . yref ),

X, Y., S*+2w s+’
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Novel Adaptive Control Scheme

where the proportional adaptive gain is adapted as

K, ()= Kpp(t)+JKpi(t)dt

with
2
e I 0
Kplo(t):{xopID ‘T }
ey pp
2
K (t) _ Cx 1—‘pi _5pri11(t) , 0
i 0 ey 1_‘pi o 5p Kpi22 (t)
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Novel Adaptive Control Scheme
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- Simulation Results .
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Missions {io

o Viking Lander Missions

o Pathfinder/Sojourner Mission (Pathfinder
landed July 4-th, 1997)

o Spirit / Opportunity Mission

o Curiosity Mission (will land on August 6,
2012)

48 ICINCO 2012, Rome, Italy, July 2012



NMarSYiehelCIMISSIONS
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Yiking 1 landed:

Mars Pathfinder landed:

dth Jul 1997
Yiking 2 landed

3rd Sep 1976

20th Jul 1976

"HASAYOPP ORTU N LTy
i L .-=_-*_,-:I:

Deep space 2 and
Mars Polar Lander
crashed 3rd Dec 1999

ICINCO 2012, Rome, Italy, July 2012
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Viiking) Leneler Missions (Orofiar 1
__ene Orolfier 2)
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IMaAGE oy NASA
_ "Opgperiunily”
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“Curiosity” Mars Science Laboratory

with a length of 9 feet (2.7 m) and weight of 1,984 pounds (900 kag),
the nuclear powered rover "Curiosity” will carry a payload of scientific
experiments more than ten times as massive as earlier Mars rovers.

ChemCam will fire a

laser and analyze the

elemental composition

of vaporized materials

from areas smaller

than 1 millimeter on L
the surface of Martian

racks and soils.

' Robotic Arm puts
instruments in contact
with the Martian soil. |8
| Instruments include the B
Alpha Particle X-ray
. Spectrometer (APXS)
. and the Mars Hand
Lens Imager it -
{MAHLI), as well as . SESSE

MMRTG Nuclear Power Source
contains 10 pounds (4.8 kilograms)

of plutonium dioxide

devices associated with Six wheels, each with its own individual motor.

sample acquisition and B The two front and two rear wheels also have
preparation. ® individual steering motors, which allow the
T e : 8 vehicle to turn in place a full 360 degrees.

" ST ik ol £ Sl

SOURCE: JET PROPULSION LABORATORY

Graphic by Karl Tate
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Meolle Spees [ools eesign 2
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Curlesity’, “Splllt" §SO|OUTNETS
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Probabilistic
methods

Kalman
filtering
methods

Occupancy Particle
grid mapping filters

Adaptive

Adaptive Monte Carlo

occupancy

Kalman

filtering ¢ grid methods method




) [FUSion

o Sensor fusion IS a measurement
Integration procedure

o Sensor fusion Is one of the most important
elements of robot GNC system
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Sensor Fusion

Sensor
Fusion

Probabilistic
methods

Least square
methods

Intelligent
methods
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iwo ilenfifzble

o Gate passage problem
o Navigation with vision system
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v 6 wheel drive

v" 4 cycle engine with 200 HP

v/ 617 cc and load capacity of 700 Ibs
v electronic ignition
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\ Orv r r
010110]0)c101 e 0

NovAtel GPS,

MicroStrain inertial sensor,
Built in wheel odometry,
LMS-221 laser scanner (SICK)

S S NN
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Gate Through
Navigation

Detected

ﬁ Ob jects

O




Gate Recognition
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UNIT: Meter
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Visibilities of Gate Segments

/one Late Segments /one
I [1
1] L ] [V
\/ | | V]
VII L _ VIII
IX | | X




Laser Sensor Scanning

ASTUNIISCaNIO LIS OB PTOVICESISBASFaNgER/AlUES

(indeXedfaccordingitofaiscanningiangle)




Model Start

Flowchart of gate
nav'gatlon modu|e from GPS/INS

Data reading Raw Map Building

Scanning Data
from LMS Map Filtering

Gate segments
Fitting

Unexpected Error o
Check Mission Abort

Standard Create Current
Signatures Signature

Localization

Gate thro
Control
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Parking Control / Astolfi-controller

dp/dt=-V cosa
da/dt=Vsina/p-w
dy /dt=-w

or

V=Kp
o=Ko+ Ky
In X-y coordinate

V =K X" +y°
= Kl(arctan(%) —0)+ Kz(%— o)

ICINCO 2012, Rome, Italy, July 2012
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Navigation

do/dt=-Vsinysin(a+y)
da/dt=Vsinycos(a+yw)/ p—w

dy /ldt=-w
After linearization:
da/dt=-Ka-Ky+K w
dy /dt =—-K,a - K,y
The control law is: @ =-Ka—-K,y

The gains are experimentally set i : = 0.1, K, =0.9;K, =-0.4

IS estimated online b
& sensing . y

ICINCO 2012, Rome, Italy, July 2012 82



Navigation
Experimental results




Gate Through Navigation

Experimental results
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Gate Through Navigation
Experimental results
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Video 3 Video 4



Flfering

" 1 to estimate the robot pose:

O Mmeasurements (scanning) from the
SICK sensor are compared with the
map scanning results

 robot pose estimation by particle
filtering Is suitable for this problem:

0 a set of hypotheses (particles) about
the robot’s pose or about the
locations of the objects around the
robot are maintained

87 ICINCO 2012, Rome, Italy, July 2012



Flfering

 particle filtering algorithm is divided into
four steps:

o Initial sampling;
O prediction;

O update;

0 re-sampling

88 ICINCO 2012, Rome, Italy, July 2012



4.1

The robot running along the desired patrolling path is simulated. It is
assumed that the robot has the pose information from GPS/Odometry
sensor and the LRS supplies the scan data. Also, the a priori map of the
environment is supposed to be known and is used to obtain the reference
scan data. The robot starts from a point in the bottom edge and runs in

anti-clockwise direction.

3 12 1 10

—————- = n————ﬁ————n————gg
| |

| |

[ 000 N Sttty Rt B ity tes B Setesetes |

| |

|

| e
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Localization with Particle Filtering

The FOF of paicies

‘The distribution of particles
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“The distribution of particles.

50
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|_ocalization with Particle Filtering

The POF of particles

The distribution of particles.
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I I I | I I
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¥ teeear)  {metery

The POF of particles
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Nayigation

1 objective

O achieve accurate rover navigation
In crowded environments

O accurate positioning, localization,
and mapping

o fusion of odometry, inertial
navigation unit (INU), and vision
data,

92 ICINCO 2012, Rome, Italy, July 2012



Rt Newigetion Using Vision
"~ 0 cameras are carried by robots
O can cameras be used for accurate
navigation?

 robot position and pose come from
rotation and translation of fixed camera

1 key Initial operation
o Identification and localization of
points-of-interest

93 ICINCO 2012, Rome, Italy, July 2012



Nevigetion wiih vision sysism
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UAV USIing]

1 one camera
O motion can be derived from
geometrical considerations If
camera view Is of points on a
plane
1 two cameras
O Image depth can be derived
O rotation and translation can be
derived using iterative closest
point algorithm

96 ICINCO 2012, Rome, Italy, July 2012



Afionemous Venicle Using

~ SILAM
 Objective

o0 to develop an efficient navigation
method for autonomous robots
based on SLAM and Rao-
Blackwellised particle filtering with
the following considerations
e Data association
o Computational complexity
 Non-linear motion and sensor

models

97 ICINCO 2012, Rome, Italy, July 2012




what does the
environment look like?

where am 1?

where am | supposed
to go?

how can | get there?
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A Comperison beiwesn EKF-SLAM and FastSILAM

KF-SLAM with Gaussian LAM with Non-Gaussian A
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FAST-SLAM Vs. EKF-SLAM in a Dense Map for Multiple Objects
(750 Landmarks)
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Fast-SLAM vs. EKF-SLAM in a Dense Map for Multiple Objects
(750 Landmarks)

101

y direction

50

45

40

35

W
o

N
(&)

N
o

15

10

Mapping multiple objects by RBPF

B SRR
%x %%Mmm
B X
ﬁéww% Mﬁ“m
| | | | | | | | |
0 10 15 20 25 30 35 40 45 50

x direction

ICINCO 2012, Rome, ltaly, July 2012



FAST-SLAM Vs. EKF-SLAM in a Dense Map for Multiple Objects
(750 Landmarks)
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Condusions

o Space robotics includes many control
challenges;

o Present applications of robots in Space
are not fully autonomous,

o Full autonomous operations should be our
objective.

103 ICINCO 2012, Rome, Italy, July 2012



104 ICINCO 2012, Rome, Italy, July 2012



ACkneWIEdgEMERT

o Images courtesy of Canadian Space
Agency and NASA or from sites:

o WWW. csa.ca
o Www.nasa.gov
o www.oldrobots.com
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