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Abstract

This paper presents a method for markerless human mo-

tion capture using a single camera. It uses tree-based filter-

ing to efficiently propagate a probability distribution over

poses of a 3D body model. The pose vectors and associ-

ated shapes are arranged in a tree, which is constructed

by hierarchical pairwise clustering, in order to efficiently

evaluate the likelihood in each frame. A new likelihood

function is proposed that improves the pose estimation of

thinner body parts, i.e. the limbs. The dynamic model takes

self-occlusion into account by increasing the variance of

occluded body-parts, thus allowing for recovery when the

body part reappears. An online motion capture system was

implemented on two platforms: a standard PC and a system

using Cell Broadband EngineTM [8]. As an application we

present a computer game in which an avatar is controlled

by the player’s body motion.

1. Introduction

Human pose estimation from image sequences has var-

ious applications in areas such as human-computer inter-

faces, computer games, and avatar animation, and is an area

of active research [1, 2, 4, 5, 7, 9, 11, 13, 12, 16, 18].

Some applications, such as gesture interfaces for gam-

ing, require real-time capability, thus an efficient search for

the optimal pose is important. Real-time motion capture

has been achieved using incremental tracking, however, in

this case the problem of initial pose estimation needs to be

solved and often estimation errors can accumulate over long

image sequences [11, 18]. Detecting body parts [4, 13, 17]

can reduce the computational cost and does not require a

manual initial pose estimate, but finding body parts in a sin-

gle view is particularly difficult because of self-occlusion.

Efficient versions of particle filtering have been used with

success in the past, but they have the drawback of requir-

ing pose initialization at the start and when tracking failure

occurs [5].

Recently learning-based methods have received more at-

tention, where a mapping from observation to body pose is

learned from a large set of training examples [1, 10, 14].

However, these methods do not adapt the final model esti-

mate to an individual subject.

In this paper we present a system for real-time pose esti-

mation using a single camera without markers. Our method

is based on tree-based filtering, where the current pose is

estimated by hierarchically evaluating observation likeli-

hoods from image silhouettes while taking temporal con-

sistency of the poses into account [15].

This paper introduces several innovations that improve

robustness and efficiency: (1) A 3D body model, selected

from a discrete set according to the user’s body size, is

used to generate silhouettes that are used for more accu-

rate matching. (2) To further increase the computational

efficiency, we evaluate the silhouette distance on an im-

age pyramid using different image resolutions for different

tree levels. (3) The dynamic model explicitly takes self-

occlusion into account by increasing the variance of the

joint parameters of occluded body-parts. This relaxes the

temporal constraint on such parts in order to resume track-

ing them when they reappear. (4) The cost function for sil-

houette matching is based on weighted distance functions

with equal weight on the ‘shape skeleton’ of the silhouette.

Using this normalized weight improves the estimation with

respect to thinner body parts such as arms and legs.

2. Tree-based filtering framework

Tracking of pose is formulated using a probabilistic

framework as follows: Given the observations up to time

t, z1:t, the aim is to estimate the posterior distribution of

the state xt which consists of joint angles and 3D position.

With the Markov assumption, that the observation at time

t is independent of all past observations given xt, the pos-

terior is updated using the Bayes rule when obtaining the

observation at time t:

p(xt|z1:t) = ctp(zt|xt)p(xt|z1:t−1), (1)

where ct is a normalization constant and p(zt|xt) and

p(xt|z1:t−1) are likelihood and prior distribution, respec-

tively. The prior is computed as follows:

p(xt|z1:t−1) =
∑

xt−1

p(xt|xt−1)p(xt−1|z1:t−1), (2)

where p(xt|xt−1) is the probability distribution for state

transitions. The state posterior distribution is estimated in

each time step by repeated application of prediction (Eq. 2)

and update (Eq. 1). For computational efficiency a tree

structure is used to compute discrete approximations to

these distributions.

2.1. Hierarchy of silhouette shapes

Using a marker-based motion capture system, pose data

from three subjects is collected. The pose data is used to
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Figure 1. 3D model (left) and its silhouette (right). The

body is represented by a triangular mesh animated by a

skeleton with 27 joints. Projected limbs are shown in dif-

ferent colors in the silhouette image.

generate silhouette shapes by projecting a 3D body model

onto the image plane. The geometric model is a triangular

mesh and is animated by a skeleton with 27 joints. Hier-

archical pair-wise clustering based on silhouette shape dis-

tances (see next section) is used to construct the shape hi-

erarchy, see Figure 2. This is similar to the shape hierarchy

in [6] but with important differences: (i) the input to the

algorithm is the maximum within-cluster distance, and (ii)

each node also contains an associated pose vector.

The tree is used for a coarse-to-fine approximation of

the true posterior distribution over the poses, i.e. the tree is

evaluated once for each frame. If a node has a low poste-

rior value in an upper level, the subtree of that node is not

searched. The thresholds for this decision are set according

to the distance in the clustering step. Note that in contrast

to [15], the state space is divided based on the silhouette

distance. This avoids the generation of different nodes for

cases where poses are nearly identical but one limb is oc-

cluded in frontal view.

For further computational efficiency, an image pyramid

is used for evaluating the silhouette distance. For a tree

of height three image resolutions of 80×60, 160×120, and

320×240 pixels are used at the first to third level, respec-

tively.

2.2. Likelihood computation

The likelihood relates the observed silhouette zt in the

current image to the the unknown pose, xt. We assume a

normal distribution as the likelihood function as follows:

p(zt|xt) ∼
1√

2πσ2
exp

(

−d(Si, Sm(xt))
2

2σ2

)

, (3)

where d(Si, Sm) is a silhouette distance between the sil-

houette observed in the image Si in the current frame and

the model silhouette Sm generated from the 3D body model

in pose xt, and the variance σ2 is determined experimen-

tally.

The choice of the distance for comparing two silhouettes

is crucial, as we require high discriminative power as well

as rapid evaluation. A straightforward option is the XOR
distance in a fixed bounding window w (which is essentially

a Hamming distance):

dXOR(Si, Sm) =
1

|w|
∑

k∈w

(1 − δSi(k),Sm(k)), (4)

where δ is the Kronecker delta function (1-XOR). However,

since this cost weighs differences close to the contour, equal

to those close to the skeleton of the silhouette, it is sensitive

to variation of clothing and body shape.

...

... ... ...

... ... ... ... ... ...

...

... ...

Level 1

Level 2

Level 3

Figure 2. Shape hierarchy. Each node in the tree contains

a pose vector and a silhouette representation. It is generated

by hierarchical clustering of the silhouette shapes. The tree

contains 57,136 nodes.

In order to emphasize structural difference between

the silhouettes, Chen et al. [3] have suggested a ‘core-

weighted’ XOR distance, defined as:

dwXOR(Si, Sm) =
1

|w|
∑

k∈w

(1 − δSi(k),Sm(k))d̂(k), (5)

where the weight

d̂(k) = D(Si)(k) + αD(S̄i)(k) (6)

gives different weight to different types of mismatches.

D(Si) is the distance transform of the image silhouette Si

(foreground 1, background 0) and is zero inside the silhou-

ette and increases with the distance from the contour. S̄i

is the pixel-wise inverse of the silhouette and its distance

function is zero outside the contour and high in regions near

the core area, i.e. the ‘shape skeleton’. The weight α is set

to 5 in [3], thereby highly penalizing the case when points

inside the image silhouette are not covered by the model

projection.

One drawback of this choice of silhouette distance is that

pixels on different parts of the shape skeleton have differ-

ent penalties. This is because the distance transform D(S̄i)
generally contains higher values for large body parts such

as the torso, leading to instability when estimating the pose

of thinner limbs. We therefore normalize the weight such

that each pixel on the shape skeleton has the same weight.

This is done by dividing the right term in Eq. 6 by the dis-

tance between the contour and the skeleton:

d̂(k) = D(Si) + α̃
D(S̄i)

D(S̄i) + D(Sskl)
, (7)

where Sskl and D(Sskl) are the skeleton of the silhouette

shape and its distance transformation, respectively. The

weight of a pixel inside the silhouette is normalized by di-

viding the distance from the silhouette contour, D(S̄i), by

the distance between the contour and the skeleton, D(Si)+
D(Sskl). The shape skeleton is defined as the ridge of the

values in the distance transformed image D(S̄i). See Fig-

ure 3 for a visualisation of the weights for the normalized

core-weighted XOR distance. Figure 4 demonstrates the

improvement in robustness over other cost functions.

We use colour based background subtraction, where we

normalize the colour values by their intensities and model

the pixel-wise distributions with Gaussian pdfs. In each

frame, the silhouette is detected as the set of pixel with a

Mahalanobis distance larger than a threshold. For chang-

ing backgrounds adaptive techniques such as in [17] can be

used.
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(a) Input (b) Silhouette (c) wXOR (d) nwXOR

Figure 3. Weighted distance functions for likelihood

computation: Extracted silhouette (b) from input (a) and

the weights for (c) core-weighted XOR and (d) normalized

core-weighted XOR, where high brightness corresponds to

larger weight. The normalized XOR in (d) makes the pose

estimation of limbs more stable.

2.3. Motion model

A first order process model is used as a dynamic model,

which is easy to evaluate and shows good adaptability to

unknown motion:

p(xt|xt−1) ∼ N(xt−1, Σ), (8)

where Σ is a diagonal covariance matrix and the variance

σj for each body part j is determined from the available

motion data.

Since we use a single camera, self-occlusion occurs fre-

quently. In such cases, stable tracking of the occluded parts

is difficult because the simple dynamic model in Eq. 8 fails

during occlusion. However, the system is capable of esti-

mating the occurrence of self-occlusions using the 3D body

model by searching for body parts whose projection is not

assigned to any pixel. The variances in the dynamic model

of the occluded parts is gradually increased:

Σ = diag(σ′

j

2
), σ′

j =

{

σj if part j is visible

mσj if part j is occluded
,

(9)

where m > 1 is a parameter for increasing the standard

deviation of an occluded part. We use m = 5 in our ex-

periments. When the occluded parts are observed again,

these body parts have large variance and the observation is

trusted.

3. Experiment and Application

In the following experiments, we use a color camera

with an image resolution of 640×480 pixels, and downsam-

ple the image to 320×240 pixels. The poses are collected

by a marker-based motion capture system where the only

poses stored are those that differ at least 5 degrees in any

joint angle from other poses. The total number of poses is

57,136. We construct the tree with three levels as shown in

Figure 2, where 7,828, 26,805 and 44,108 nodes are gener-

ated for top, middle and bottom level, respectively.

For accurate tracking it is beneficial for the 3D body

model to have a similar shape to the current subject. Based

on the dress size system in the Japanese Industrial Stan-

dard (JIS L4004 and L4005), we obtain 10 body models

for men, 14 for women and 6 for children. Before track-

ing begins we compute silhouettes and create the tree struc-

ture for each body model. All trees and silhouette shapes

are loaded into RAM before tracking, requiring approxi-

mately 300 MB. One of the trees is selected depending on

Fail Error Success

Distance Fail Error Success

wXOR+ DM1 24 0 0

wXOR+ DM2 24 0 0

nwXOR+ DM1 7 7 10

nwXOR+ DM2 0 10 14

Figure 4. Tracking an arm swing using the proposed

distance function and dynamic model. In 24 experi-

ments, the proposed distance function based on normalized

weighted XOR performed most robustly. DM1 and DM2

are two different dynamic models: DM1 does not explicitly

handle self-occlusion in contrast to DM2, where equation 9

is applied. The top shows the three cases corresponding to

the table below, namely tracking failure, inaccurate track-

ing (error) and successful tracking.

the person to be tracked according to body height, chest size

and weight. This selection can be done either from images

or, if known, entered by hand. In our experiments a uniform

background is used for stable silhouette extraction, however

this is not required as long as the background estimation is

sufficiently robust.

Figure 5 shows tracking results for three different mo-

tions. The frame rate of the input sequence is 15 fps and

the duration of the whole sequence is about 2 minutes. In

Figure 5(a) the target person turns around the axis vertical

to the optical axis of the camera, where discrimination be-

tween front and back is difficult. The proposed method cor-

rectly estimates this motion using the dynamic model. In

Figure 5(b) the subject performs a golf swing towards the

camera. Even though the right arm is occluded, the poses

are correctly estimated. Figure 5(c) shows tracking result of

the pointing right arm. Our method is capable of tracking

such a thin part based on our silhouette distance described

in the section 2.2. The computational time varies depending

on the number of likelihood evaluations. The average pro-

cessing time per frame is 127 ms using a current high-end

PC (Two Opteron 280 Dual Core, 2.8 Ghz, 4GB RAM) and

86 ms using a Cell Broadband EngineTM [8], respectively

(see Table 1).

A computer game based on the proposed method has

been developed according to the setup shown in Figure 6. A

player controls an avatar (“ninja”) by his/her body motion

to defeat an opponent or to avoid attacks from the opponent.

The types of motion that the system recognizes are (1) rais-

ing both arms to the sides and bending them on the chest

(transfiguration to ninja), (2) crouching (avoid hit 1), (3)

stepping sideways (avoid hit 2), (4) swinging the right arm

upright (hit 1), and (5) raising both arms and lowering them

quickly (hit 2). The system has been demonstrated with

approximately fifty different users at an electronics fair.
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(a) Turn

(b) Golf swing

(b) Pointing

Figure 5. Tracking results. The estimated 3D model is

superimposed onto each original image in the upper rows,

the input images are shown below.

PC Cell/BE

Min Max Avg Min Max Avg

Capture 21 29 22 20 53 23

Pose estimate 21 236 104 17 169 62

Total 43 261 127 39 202 86

Table 1. Computation time in [ms/frame].

4. Conclusion

We presented a method for markerless human motion

capture using a single camera which is based on tree-based

filtering using a tree structure of sample poses defined

by a silhouette distance. A real-time video motion cap-

ture system was implemented and an interactive computer

game demonstrated the applicability of the method. The

method can also be used for capturing motion of other ar-

ticulated objects such as hands when a 3D model is avail-

able [10, 15]. There are many interesting directions for

future research, including the combination of our model-

based approach with parts-based methods or efficient learn-

ing.
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