Description

Many real-world data-mining applications involve obtaining and evaluating predictive models using data sets with strongly imbalanced distributions of the target variable. Frequently, the least-common values are associated with events that are highly relevant for end users. This problem has been thoroughly studied in the last decade with a specific focus on classification tasks. However, the research community has started to address this problem within other contexts such as regression, ordinal classification, multi-label classification, multi-instance learning, data streams and time series forecasting. It is now recognised that imbalanced domains are a broader and important problem posing relevant challenges for both supervised and unsupervised learning tasks, in an increasing number of real world applications.

Tackling issues raised by imbalanced domains is crucial to both academia and industry. To researchers, it is an opportunity to develop more adaptable and robust systems/approaches for very complex tasks. For the industry, these tasks are in fact those that many already face today. Examples include the ability to prevent fraud, to anticipate catastrophes, and in general to enable more preemptive actions.

This workshop+tutorial is focused on providing a significant contribution to the problem of learning with imbalanced domains, and to increasing the interest and the contributions to solving some of its challenges. The tutorial component is designed to target researchers and professionals who have a recent interest on the subject, but also those who have previous knowledge and experience concerning this problem. The workshop component invites inter-disciplinary contributions to tackle the problems that many real-world domains face nowadays. With the growing attention that this problem has been collecting, it is important to promote its further development in order to tackle its theoretical and application challenges.

PROCEEDINGS 

All accepted papers will be included in the workshop proceedings, published as a volume in Proceedings of Machine Learning Research (https://proceedings.mlr.press/). 
Additionally, based on the success of the workshop, authors of selected papers will be invited to submit extended versions of their manuscripts to a premier journal concerning the topics of this workshop. 

Call for paper

Important Dates

Draft paper submission deadline:2018-07-02

Author guidelines

For each accepted paper, a presentation slot of 20 minutes is provided. 

* The maximum length for papers is 14 pages. Papers not respecting such limit will be rejected.
* All submissions must be written in English and follow the PMLR format. Instructions for authors and style files may be found in https://ctan.org/tex-archive/macros/latex/contrib/jmlr/sample-papers 
* All submissions will be reviewed by the Program Committee using a double-blind method. As such, it is required that no personal information or reference to the authors should be introduced in the submitted paper.
* Papers that have already been accepted or are currently under review for other workshops, conferences, or journals will not be considered.
* Submissions will be evaluated concerning their technical quality, relevance, significance, originality and clarity. 
* At least one author of each accepted paper must attend the workshop and present the paper.

Topics of submission

The research topics of interest to LIDTA'2018 workshop include (but are not limited to) the following: 

*** Foundations of learning in imbalanced domains 
Probabilistic and statistical models 
New knowledge discovery theories and models 
Understanding the nature of learning difficulties embedded in imbalanced data 
Deep learning with imbalanced data 
Handling imbalanced big data 
One-class learning 
Learning with non i.i.d. data 
New approaches for data pre-processing (e.g. resampling strategies) 
Post-processing approaches 
Sampling approaches 
Feature selection and feature transformation 
Evaluation in imbalanced domains 

*** Knowledge discovery and machine learning in imbalanced domains 
Classification, ordinal classification 
Regression 
Data streams and time series forecasting 
Clustering 
Adaptive learning and algorithm-level approaches 
Multi-label, multi-instance, sequence and association rules mining 
Active learning 
Spatial and spatio-temporal learning 

*** Applications in imbalanced domains 
Fraud detection (e.g. finance, credit and online banking) 
Anomaly detection (e.g. industry, intrusion detection) 
Health applications 
Environmental applications (e.g. meteorology, biology) 
Social media applications (e.g. popularity prediction, recommender systems) 
Real world applications (e.g. oil spill detection) 
Case studies 

Committee

PROGRAM COMMITTEE 

Roberto Alejo, Tecnológico Nacional de México/Instituto Tecnlógico de Toluca
Gustavo Batista, Universidade de São Paulo
Colin Bellinger, University of Alberta
Seppe Vanden Broucke, Katholieke Universiteit Leuven
Alberto Cano, Virginia Commonwealth University
Inês Dutra, DCC - Faculty of Sciences, University of Porto
Tom Fawcett, Apple
Mikel Galar, Universidad Pública de Navarra
Salvador García, Granada University
Francisco Herrera, Granada University
Jose Hernandez-Orallo, Universitat Politecnica de Valencia
Ronaldo Prati, Universidade Federal do ABC
Rita Ribeiro, DCC - Faculty of Sciences, University of Porto
José Antonio Saez, University of Salamanca
Shengli Victor Sheng, University of Central Arkansas
Marina Sokolova, University of Ottawa
Jerzy Stefanowski, Poznan University of Technology
Isaac Triguero Velázquez, University of Nottingham
Anibal R. Figueiras-Vidal, Universidad Carlos III de Madrid
Shuo Wang, University of Birmingham
Michal Wozniak, Wroclaw University of Science and Technology

ORGANIZERS 

Luis Torgo | Dalhousie University
Stan Matwin | Dalhousie University
Nathalie Japkowicz | American University
Bartosz Krawczyk | Virginia Commonwealth University
Nuno Moniz | University of Porto, LIAAD - INESC TEC
Paula Branco | University of Porto, LIAAD - INESC TEC

Message

Leave a message

Refresh

Important dates

  • Conference Dates

    10 Sep.

    2018

    TO

    14 Sep.

    2018

  • 02 Jul.

    2018

    Draft paper submission deadline

Contact information

  • lidta2018@easychair.org